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Structural genomics initiatives are leading to rapid growth
in newly determined protein 3D structures, the functional
characterization of which may still be inadequate. As an
attempt to provide insights into the possible roles of the
emerging proteins whose structures are available and /or
to complement biochemical research, a variety of computa-
tional methods have been developed for the screening and
prediction of ligand-binding sites in raw structural data,
including statistical pattern classification techniques. In this
paper, we report a novel statistical descriptor (the Oriented
Shell Model) for protein ligand-binding sites, which utilizes
the distance and angular position distribution of various
structural and physicochemical features present in immedi-
ate proximity to the center of a binding site. Using the sup-
port vector machine (SVM) as the classifier, our model
identified 69% of the ATP-binding sites in whole-protein
scanning tests and in eukaryotic proteins the accuracy is
particularly high. We propose that this feature extraction
and machine learning procedure can screen out ligand-
binding-capable protein candidates and can yield valuable
biochemical information for individual proteins.
Keywords: ATP-binding site/binding site prediction/Oriented
Shell Model/protein–ligand interaction/support vector machine

Introduction

High-throughput projects in structural genomics, aimed at
exhaustively ‘covering’ the genome with protein structural
data, are leading to an increasingly large databank of protein
three-dimensional (3D) structures. It is likely, however, that
many of these emerging structures will be relatively poorly
understood in terms of exact biological or biochemical function
(Kinoshita and Nakamura, 2003). On the other hand, the rapid
accumulation of tertiary structures aptly represents a founda-
tion for subsequent functional and mechanistic characterization
(Burley et al., 1999; Vitkup et al., 2001). The detection of
ligand-binding sites, in particular, has been the target of
considerable research effort as it can provide hints about
protein function and also facilitate the drug design process.

Ligand-binding sites, or functional sites, can be recognized
by a variety of different cues (Campbell et al., 2003). One
intuitive way is to trace the conservation of amino acid residues
in protein families for functionally important sites (Lichtarge

and Sowa, 2002). Recent developments of the evolutionary
tracing method include mapping conserved residues on to a
protein surface (Pupko et al., 2002) and analysis of inter-family
conservation consistency (Kunin et al., 2001; Friedberg and
Margalit, 2002).

Alternatively, functional site predicting can be approached
from an energetic point of view. Molecular docking exploits
statistical mechanics and quantum chemistry calculations of
binding energies in view of molecular force fields (Goodford,
1985), hydrogen bonding (Wade et al., 1993a,b), hydrophobic
interaction (Kellogg et al., 1991) and/or solvation energy (Pitt
and Goodfellow, 1991). Considering the chemistry of protein–
ligand interactions, docking is probably the most natural, simu-
lative approach to functional site prediction. Nonetheless,
molecular docking is usually very computationally costly
and as a result its application to genome-wide ligand-binding
site screening is only at a pioneering stage (Pang et al., 2001;
Jackson, 2002).

Since distinguishing a functional site from a ‘non-site’ is
essentially a two-class classification problem, statistical pattern
recognition methods have also been introduced. Work of this
type focused on forging a statistical 3D template via machine
learning of known binding sites. For instance, Di Gennaro et al.
(2001) developed a ‘fuzzy functional form’ descriptor for
disulfide oxidoreductase and applied it to the functional anno-
tation of the Bacillus subtilis genome. For recognition from
structural clues, earliest efforts were devoted to discovering
conserved patterns in peptide sequences, but the accuracy was a
concern (Devos and Valencia, 2000). Rantanen et al. (2001)
divided atoms from both the ligand and its receptor into many
classes in terms of their chemical environment and modeled
their probabilistic spatial relations, leading to a reduced pre-
diction error. This model, however, did not take into account
heterogeneity of functional sites at the level of atom types. Wei
and Altman (2003) looked at a collection of physicochemical
properties, scoring them with structures in the PDB in a spheri-
cally symmetrical fashion by summing scores associated with
atoms at various distances from the site center. In this protocol,
orientation relationships of features are lost, which probably
leads to a sensitive although unspecific predictor. Studies that
used neural networks to predict active sites have also been
presented (Gutteridge et al., 2003).

In this paper, we report a novel 3D descriptor of ligand-
binding sites in proteins. This Oriented Shell Model (OSM)
takes into consideration both the distance and the orientation
information of a variety of physicochemical properties around
a functional site. These properties are aimed at exhaustively
extracting useful information around a binding site. Via the use
of the support vector machine (SVM), irrelevant properties are
spontaneously ignored in the final prediction process. Using
ATP-binding sites as a case study, our results show relatively
high sensitivity and specificity, as evidenced in a set of whole-
protein search tests. Moreover, different taxonomic groups
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seemingly have their own preferred prediction parameters,
opening up the possibility of a more refined genome-scale
interpretation of structural data.

Materials and methods

Theory and model
For any given type of ligand-binding site, a center atom and
two reference atoms are arbitrarily chosen from the ligand
molecule to set up an unequivocal xyz-coordinates reference
frame. In the ATP-binding site, C1* is designated as center and
PG, C4 as reference atoms (Figure 1). A coordinate system is
set up with reference to these three atoms. Next, a series of
gradually enlarging, concentric spheres are defined, all cen-
tered at C1* and equally spaced by 1.25 s (Wei and Altman,
2003). The outmost sphere in this sphere set should at least
fully encompass the ligand molecule (in the case of ATP, this
means 12 shells in all with the largest radius of 15 s). The
volume enclosed between every two neighboring spheres thus
specifies a ‘shell’ in which atoms can be considered roughly
equidistant from C1*. Next, each shell is further subdivided
into six ‘blocks’, each block occupying a different direction in
the x, y or z axis (Figure 1). In this way, the vicinal space around
ATP-binding site is partitioned into 72 bonnet-like blocks
contained in nested shells.

Blocks could overlap each other and some atoms could
belong to two or three blocks. This allows for some flexibility
in the machine-learned standard template for functional sites.
A block can be regarded as the part of a shell intersected by a
sphere with a radius r, where r specifies the size of a block
given a shell radius. R is the radius of the shell; in our imple-
mentation, it is approximated as the arithmetic average of the
radii of the inner and outer spheres. To cover a shell fully, r
should be >0.9194R. To avoid oppositely positioned shells
from overlapping, r has an upper limit of 1.4142R. Deciding
the value of r represents a means for controlling the stringency
of prediction.

We use a group of physicochemical properties largely as
reported previously (Wei and Altman, 2003), which included
atom types, amino acid residue types and chemical group type,
partial atomic charge, hydrophobicity, van der Waals radii of
atoms, peptide backbone mobility and secondary structure read
from DSSP (Kabsch and Sander, 1983). B-factors are not used
because they are comparable only intrastructurally. Scores are
assigned to atoms and are summed over all atoms within a
block for each property. The ligand molecule itself, if present,
was removed prior to data extraction for the training set.

Data set
A total of 174 structures deposited before July 2004 in the
Protein Data Bank (PDB) (Berman et al., 2000) are complexed
with ATP. After eliminating a few low-quality or obsolete
structures, 230 ATP-binding sites remained, 10 of which
were reserved as the test set. The remaining 220 binding
sites were fully employed as the ‘site’ training set. The
‘non-site’ training set arose from two sources. From those
structures used in the training set, we randomly picked up
94 non-site positions as training samples. In addition, we delib-
erately picked up another 410 non-sites randomly, all within
12 s but more than 5 s further from the center of an ATP-
binding site, so as to sharpen the classifier against the nuances
between true sites and their surroundings, which often bear a
site-like chemistry. Nonetheless, the choosing of these ‘para-
site’ non-sites was through a random procedure. Non-site sam-
ples were read in a random reference frame.

The non-redundant structure set referred to in the Discussion
was generated by removing from the training set homologous
structures of sequence identity >30% with the Blastclust
program of the BLAST package (Altschul et al., 1990). One
representative structure was picked out from each homology
cluster while intentionally preserving most test set samples for
the sake of comparison. This leads to a training set comprising
66 sites and 485 non-sites.

Classifier: the support vector machine
We utilized the support vector machine (SVM) method
(Vapnik, 1995, 1998) in the two-class classification problem
of identifying ligand-binding sites. SVM seeks an optimal
separating hyperplane (OSH) in a transformed high-
dimensional Hilbert space in which training and test samples
are presented. We used in our study a software tool for SVM
classification developed by Chang and Lin (2001).

The order of specifying blocks in feature vectors follows a
definite spatial route, ensuring the correct spatial register of
features in the vector. The kernel function of SVM was the
Radial Basic Function (RBF) kernel:

K xi, xj
� �

= exp �g jjxi � xjjj2
� �

where g is a coefficient to be optimized. To define a SVM
classifier, yet another parameter, C, which controls the trade
off between margin and misclassification error, must be deter-
mined. C and g of the kernel function were experimentally
tuned to achieve best performance.

Whole-protein scanning for ligand-binding site
In classifying a query position in a protein, a feature vector is
read as for generating the training set, but with a random
reference frame. Next, a systematic 24 coordinate systems

Fig. 1. Schematic representation of the shell-block system. The site-proximal
space is partitioned by a series of enlarging shells, all centered at C1*. A shell
with radiusR is illustrated. A block (colored gray) can be regarded as the part of a
shell intersected by a sphere with a radius r; where r specifies the size of a block.
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transformation is performed to check for possibilities in other
orientations. These 24 orientations are obtained by rotating
the original reference frame to cover the full sphere surface
while keeping furthest apart from each other. Only when all
these 24 systems gave negative results does the classifier regard
the query as a non-site, analogous to the lock-and-key model of
ligand binding. Probabilistic estimation shows that for 12 shells
each containing up to 10 characteristic ‘trait points’ that dis-
tribute randomly within the shell, the probability that at least
one of the 24 transformations still retains >90% traits in ori-
ginal shell-blocks is about 47% when r is equal to R. Consider-
ing the chemical similarity and the fact that we often observe
hits in clusters, the mathematical expectation of hits reported
around a site is well above one. In our studies, predicting only
the 24 coordinate systems indeed worked fairly well.

Beginning with a protein structure, we first build a 3D grid
with grid spacing 2.5 s. We tested a group of four proteins each
with 10 independently generated random grid origins and in
only three out of the 40 cases did the number of true positives or
false negatives differ. Hence we believe that using a random
grid origin will not significantly affect the prediction result.
Then, for each grid point that was inside the protein or within a
reasonable distance from its surface, we applied the 24 coor-
dinate transformations to read 24 data for a single point, which
were subsequently processed by the SVM classifier. Our cur-
rent implementation takes about 1 h to scan a protein structure
for ATP-binding sites on a Pentium IV 2.3 GHz PC. We experi-
mented with a wide range of (C, g) value sets in each protein we
tested to its best performance.

Cross-domain prediction accuracy
As an attempt to analyze the potential divergence between
eukaryotic binding site structures and their prokaryotic coun-
terparts, the complete training set was split into two subsets
according to the two taxonomic domains, namely, the struc-
tures from the Eukarya and those from the Prokarya. Next,
three SVMs were trained on the all, Eukarya and Prokarya
data, respectively and the resulting classifiers were used to
predict all the three groups of the training set to obtain the
accuracy on training set.

Results

Cross-validation of SVM classifiers
We performed 5-fold cross-validations of SVM classifiers for
ATP-binding sites with two empirically determined outper-
forming (C, g) pairs (Table I), one suitable for eukaryotes
and the other for prokaryotes. Cross-validation accuracy was
defined as the overall percentage of correctly classified training
samples over the training set. As eukaryotic and prokaryotic
ATP-binding sites apparently exhibit a certain degree of dif-
ference (Table III and IV), the cross-validation accuracy might
have been undermined by random partitioning of the training
set. However, the overall accuracy from two categories is still

�85%, significantly higher than a random classifier. The accu-
racy exhibited in cross-domain prediction (Table II) is much
higher. This indicates that with this feature-extraction and
machine learning scenario, ATP-binding sites and non-sites
were indeed mapped into two recognizably separate regions
in the high-dimensional space.

Whole-protein ATP-binding site scanning
We next tested our algorithm on an array of 11 whole-protein
functional site searches. A 2.5 s spacing grid was built super-
imposed on each protein and each grid point was subjected to
SVM classification. The block size r was set to R and g for the
RBF kernel was 0.0078125. C was optimized in each case. We
did not include a non-ATP-binding protein as a control because
the presence of ‘non-site’ query positions inherently served as
numerous negative controls.

Table III summarizes the results. Apparently, there is a dis-
tinct tendency for optimal C values favored by the eukaryotes
(�0.15) and prokaryotes (�0.52). Further, the prediction sys-
tem was highly accurate and precise, especially for eukaryotes.

Using the two empirical optimal C values, we re-tested the
whole-protein scanning power of the predictor on the same set
of proteins (Table IV). In 69% of the cases the predictor was
able to identify the binding site correctly (the ADP-binding
protein was not counted). The precision for eukaryotic proteins
was fairly high (60%) but in prokaryotes there were more false
positives, leading to lower precision, similar to what happened
with an influenza-derived viral protein (PDB code 1JJV).

Figure 2 shows one visualized instance of prediction results.
In the human Aurora-A protein kinase (PDB code 1OL6;
Bayliss et al., 2003), the SVM recognized two query positions
as binding site in close proximity to C1*, in addition to a false
positive found in a surface cleft. In our study, the SVM almost
always picked out ‘clusters’ of a few closely associated hits

Table I. Cross-validation accuracy with two sets of empirical parameters

C g Cross-validation accuracy (%)

0.15 0.0078125 88.2434
0.52 0.0078125 84.5090

Table II. Cross-domain prediction accuracy (%)

Values of parameters Train test All Eukaryotic Prokaryotic

C = 0.52, g = 0.0078125 All 99.0541 86.8919 94.3243
Eukaryotic 99.6644 99.3289 92.2819
Prokaryotic 98.3108 79.0541 98.6486

C = 0.15, g = 0.0078125 All 95.7950 74.9014 68.3311
Eukaryotic 98.6577 88.9262 72.8188
Prokaryotic 93.5811 72.6351 75.6757

Table III. Searching for optimal C in whole-protein scanning

Proteins PDB
ID

Predicted/all
sites

False
positives

Optimal C Source

Eukaryotic 1ol6 1/1 1 0.13 Human
1nsf 1/1 0 0.18 Hamster
1phk 1/1 0 0.16 Rabbit
1ql6 1/1 0 0.14 Rabbit
1hck 1/1 0 0.14 Human
1am1 (ADP) 1/1 0 0.52 Yeast

Prokaryotic 1dy3 1/1 1 0.52 E.coli
1jjv (viral) 1/1 2 0.52 H.influenzae
1a82 1/1 1 0.52 E.coli
1ji0 1/1 3 0.50 Thermotoga
1b0u 0/1 6 0.52 Salmonella
1mjh 2/2 3 0.52 Methanococcus
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rather than scattered, sporadic single hits. This probably
reflects the local similarity in physicochemical features of sur-
face crevices or clefts. We regard such a clearly shaped hit
cluster as a predicted binding site.

Cross-domain prediction accuracy
To tentatively address the potential discrepancy in binding site
structure between taxonomic domains further, we next calcu-
lated the cross-domain prediction accuracy. Three SVMs were
trained on the all, Eukarya and Prokarya data, respectively,
using the two optimal parameter sets, followed by calculation
of training error of all the three groups of the training set
(Table II). In both cases, SVM trained with prokaryotic sam-
ples exhibited lower and even unacceptable accuracy in pre-
dicting eukaryotic queries and vice versa. Nevertheless, when
C is 0.15, the value preferred by eukaryotes, SVMs trained on
both all and eukaryotic data yielded very high accuracy. On the
other hand, when C is 0.52 (the prokaryotic penchant), all- and

prokaryote-derived SVMs again showed comparably high
accuracy. The reason for this differential response to eukary-
otic and prokaryotic ATP-binding sites is unknown, although it
is possibly due to statistical differences in physicochemical
feature distribution. Nevertheless, it is advisable to apply dif-
ferent C values when treating a protein with a known organis-
mic source.

Discriminating power of the oriented shell model
Most, if not all, ATP-binding sites are simultaneously catalytic
sites which after hydrolysis reaction and conformational
changes can bind ADP. The specificity or discriminating
power of this prediction system was therefore assessed in
two experiments. In one, two proteins complexed with ADP
were subjected to prediction. In the other, two GTP-binding
sites were examined to test cross-predictability.

Our prediction system identified the ADP-binding site in
yeast Hsp90 molecular chaperone (PDB code 1AM1p;
Prodromou et al., 1997) as an ATP-binding site. The bovine
F1-ATPase structure (PDB code 1NBM) has three active
sites caught in an ATP-binding conformation and three
others in an ADP-binding state. In an experiment in which
the 12 s-proximal regions of active sites were searched,
both types were recognized (data not shown). Therefore, it
seems that this prediction system was capable of recognizing
ATP-hydrolysis active site in both conformations.

We then tested the system on two GTP-binding sites, those
of an Escherichia coli Moba protein (1FRW; Lake et al., 2000)
and a mouse adenylosuccinate synthetase (1LOO; Iancu et al.,
2002). In both cases, the SVM again responded positively
around each site (data not shown). The classifier apparently
failed to distinguish a GTP-binding site from its ATP-binding
counterpart.

Influence of allosteric effect
The structure of a bacterial Rad50 ATPase whose dimerization
is induced by ATP binding is available in the PDB in both
ATP-bound and ATP-free states (PDB code 1F2U and 1F2T;
Hopfner et al., 2000). The ATP-binding site lies at the interface
between the two monomers. We conducted a local search in the
region. The complete ATP-binding site in 1F2U was identifi-
able with our prediction system. In contrast, the half site exist-
ing before dimerization was not identified (Figure 3). It has
been reported that the binding of ATP g-phosphates to oppos-
ing conserved signature motifs in two opposing Rad50cd
molecules promotes dimerization that likely couples ATP
hydrolysis to dimer dissociation and DNA release (Hopfner
et al., 2000). In this respect, the 1F2T half site does not
have a characteristic ATP-binding microenvironment and it
is no surprise that our method failed to report this site. This
result is an example that some proteins exhibit different 3D
structure and fundamentally different affinity for their
ligands in different conformations and annotating their struc-
ture in only one conformational state may lead to deceptive
conclusions.

Discussion

Significance of sequence homology in training set
The feature extraction scenario in this work captures physico-
chemical properties that distribute three-dimensionally.
Because proteins fold into 3D structures after which the

Table IV. Summary of whole-protein scanning results

Proteins PDB
ID

Predicted/all
sites

False
positives

C
value

Source

Eukaryotic 1ol6 1/1 1 0.15 Human
1nsf 0/1 0 0.15 Hamster
1phk 0/1 0 0.15 Rabbit
1ql6 1/1 0 0.15 Rabbit
1hck 1/1 1 0.15 Human
1am1 (ADP) 1/1 0 0.52 Yeast

Prokaryotic 1dy3 1/1 1 0.52 E.coli
1jjv (viral) 1/1 2 0.52 H.influenzae
1a82 1/1 1 0.52 E.coli
1ji0 0/1 5 0.52 Thermotoga
1b0u 0/1 6 0.52 Salmonella
1mjh 2/2 3 0.52 Methanococcus

Fig. 2. Visualized result of whole-protein scanning for 1OL6. The backbone of
the human Aurora-A kinase (PDB code 1OL6) is represented as ribbons. The
ATP molecule has been added back and is shown as a ball-and-stick model and
C1*, the arbitrarily defined center atom of ATP, is space-filled and colored gray.
Hits are colored black.
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distribution of residues does not correlate well with their order
in primary sequence, sequence conservation of ATP-binding
motifs of certain types is not likely to contribute significantly in
our predictor. To test this, we generated a training set within
which pairwise sequence identities are <30% and repeated the
whole-protein ATP-binding site scanning experiments. Com-
parison of the results with the non-redundant training set
(Table V) with the original training set (Table IV) reveals
that there is indeed no decline in performance after removal
of homologous sequences, as expected.

Sensitivity to conformational changes and
structural minutiae
Conformational changes accompanying induced fit during
ligand binding may pose a recognition problem to a classifier
trained on a ligand-complexed state in identifying the same
sites in apoproteins. A recent review (Gutteridge and Thornton,
2004) countered some of the suspicion where 11 enzymes were
examined and in most of these enzymes only a relatively small
amount of conformational change was observed. This is parti-
cularly true for residues directly involved in catalysis, with an
r.m.s.d. of a C-a trace usually <1 s.

Consistent with this observation, our prediction system cor-
rectly recognized the two ADP-binding sites in 1AM1 and
1NBM. In either case, the ADP-binding site is actually an active
site that catalyzes the hydrolysis of ATP to ADP and is more
properly termed an ATP/ADP-binding site. Therefore, it seems
possible to predict ligand-binding sites from ligand-free apo-
state structures as long as dramatic allosteric control is absent.

This statistical descriptor apparently failed to discriminate
between GTP- and ATP-binding sites. This is not surprising.
GTP and ATP differ by only two substitutions on the purine
ring at C-2 and C-6, but otherwise share a similar overall
geometry. The distance from GTP C1* to 6-O is 5.03 s, so
the block containing 6-O is roughly 4.3 s in radius. In our
statistical descriptor, a block that large is unlikely to reveal
such structural details as other atoms contained in the block
could have overwhelmed the difference.

Parameter setting for the SVM
We observed that a larger block size, translatable to a larger
overlapping area between neighboring blocks, should lead to
lower stringency in prediction and thus a higher occurrence of
false positives and vice versa (data not shown). One explana-
tion is that larger blocks cannot tell minor displacements of
features and hence tolerate more structural heterogeneity.
Although no theoretical model is available to prescribe
an optimal value, within the 0.9194–1.4142 R range, we
empirically chose r = R throughout the experiments described
in this paper.

The classifier was not sensitive to changes in g . However, the
SVM prediction stringency behaved differently toward fluctua-
tions in C, as was supposed for such a non-linear SVM classi-
fication. Figure 4 shows the dependence of the number of hit
points (but not positive clusters) on the value of C for an E.coli
pyrophosphorylase (1DY3). The hit points drop dramatically
with decreasing C.

Fortunately, in our study, the optimal C values—the smallest
C when the genuine site is still identified but false positives are
minimized, listed in Table III—show a clear tendency to hold
for different proteins. For the one protein that we tested, we did
notice that interestingly yeast fits the prokaryotic C value. It is
reasonable to hypothesize that for ATP-binding sites, using
these two suggested values is very likely to yield valuable
binding site candidates.

Limitations on applicable ligand types
The shell-block division of site-proximal space that we
described assumes that the ligand has a complicated 3D archi-
tecture. The ATP molecule, however, is almost planar with a
rod-like triphosphate tail. Conceivably, a large proportion of

Fig. 3. Comparison of prediction results of an ATPase dimer and its constituent monomer. A local search in the region within 12s of the site center was conducted for
both the bacterial Rad50 ATPase dimer (1F2 U) and monomer (1F2T). The color scheme is as in Figure 2. The complete ATP-binding site in 1F2U was identified with
our prediction system when C was 0.52, but the half site in 1F2T was not, as expected.

Table V. Summary of whole-protein scanning results with non-redundant
training set

Proteins PDB
ID

Predicted/all
sites

False
positives

C
value

Source

Eukaryotic 1nsf 1/1 0 0.53 Hamster
1phk 1/1 0 0.53 Rabbit
1am1 (ADP) 1/1 5 1.72 Yeast

Prokaryotic 1jjv (viral) 1/1 6 1.72 H.influenzae
1a82 1/1 3 1.72 E.coli
1ji0 0/1 5 1.72 Thermotoga
1b0u 0/1 6 1.72 Salmonella
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the blocks would be ‘wasteful’ in terms of information content.
Future improvements could be directed towards the creation of
a ‘shape template’ for each different type of ligand where
important blocks (i.e. those close to the ligand backbone) in
the three-dimensional shell-block system are earmarked,
whereas the others are set aside from consideration.

Another limitation is that not all binding sites are large and
asymmetric enough to make the division into shell-blocks
meaningful. For instance, when it comes to sites that recognize
ions, e.g. a Ca2+-binding site or very small molecules such as
oxygen or CO2, the prediction system is not expected to
perform well.

Prospects for functional screening of structure libraries
We aimed to develop a technique that can initially screen raw
structural data to give some idea of protein function. Our
method outperformed other previous statistical models of this
type, yielding higher accuracy and precision in whole-protein
scanning tests. In some eukaryotic ATP-binding proteins, the
classifier is almost capable of pinpointing the binding site and in
prokaryotes only a small number of false positives appear.

Moreover, owing to the underlying physicochemical princi-
ple of this procedure, a reported site probably possesses a
molecular microenvironment similar to that of a true functional
site. A false positive, therefore, could be a potential target of
cross-reactivity or toxicity that can be screened or verified by
experimentation.
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Fig. 4. Influence of C value on the number of hits observed in 1DY3 whole-
protein search.C acts as a stringency-controlling factor in the prediction system.
With very largeC, a large number of false positives occur. WhenC is lowered to
a certain level, usually even the true sites disappear from the prediction results.
However, the true sites are almost always the last ones to disappear and the
optimal value for C consistently parallels the domain origin of organisms,
namely whether eukaryotic or prokaryotic.
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