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Abstract
In task 1A of the BioCreAtIvE evaluation, systems had to be devised that recognize words and
phrases forming gene or protein names in natural language sentences. We approach this problem
by building a word classification system based on a sliding window approach with a Support Vector
Machine, combined with a pattern-based post-processing for the recognition of phrases. The
performance of such a system crucially depends on the type of features chosen for consideration
by the classification method, such as pre- or postfixes, character n-grams, patterns of capitalization,
or classification of preceding or following words. We present a systematic approach to evaluate
the performance of different feature sets based on recursive feature elimination, RFE. Based on a
systematic reduction of the number of features used by the system, we can quantify the impact of
different feature sets on the results of the word classification problem. This helps us to identify
descriptive features, to learn about the structure of the problem, and to design systems that are
faster and easier to understand. We observe that the SVM is robust to redundant features. RFE
improves the performance by 0.7%, compared to using the complete set of attributes. Moreover,
a performance that is only 2.3% below this maximum can be obtained using fewer than 5% of the
features.

Background and overview
Task 1A of the BioCreAtIvE evaluation [1] is a named entity
recognition (NER) problem where entities are gene and pro-
tein names [2]. In this task, participants were given a set of
10.000 sentences with protein and gene names tagged in
the text. Using these sentences, algorithms had to be
designed that recognize gene and protein names in arbi-
trary text (in the following, we use the term "gene" as an
abbreviation for "gene and protein"). The performance of
the algorithms was tested based on a set of 5.000 previ-
ously unseen and untagged sentences. The evaluation was
strict, i.e., gene names that consist of multiple names
(phrases), such as "Drosophila shc gene product" had to

be recognized entirely without missing or additional
parts. All sentences provided by the organizers were previ-
ously tokenized, i.e., broken into tokens separated by
white-spaces or sentence boundaries. Furthermore, part-
of-speech information was provided in-line with the text
for the training corpus.

The problems of the NER task for gene names in biomed-
ical text have been described in detail elsewhere (for
reviews, see e.g. [3,4]). Due to missing standards for
nomenclature, genes have multiple names, abbreviations
are frequent, names consist of letters, digits, and special
characters, and exact phrase boundaries are often
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debatable. Specifically the last problem, i.e., the recogni-
tion of multi-word phrases, has turned out to be a hard
problem if strict evaluation is applied.

Our system essentially uses two steps for solving the NER
problem (see Figure 1 for an overview of the general sys-
tem architecture). In the first step, the system tries to
detect at least one word of each gene phrase by using a
machine learning classifier on each token. In this step, we
reduce the multi-phrase problem to the decision of
whether each single token is part of a gene name or not,
rather than classifying complete phrases. For the machine
learning classifier we represent tokens using a large set of
characteristic properties (features), such as the whole word
in itself, certain predefined character sequences (such as
the suffix "-ase"), fixed-length character sequences (char-
acter n-grams, suffixes), and predefined character patterns
(occurrence of special symbols, capital letters, numbers).
Once a set of features is fixed, the token is represented as
a feature vector indicating for each feature whether it is
present in the token or not. A machine learning algorithm
(in our case a Support Vector Machine, SVM) has to identify
the set of features and their combinations that are descrip-
tive for either gene names or non-gene names, thus find-
ing a separation of the two classes.

In the second step, we take the classification of each single
token as input and expand candidates to complete gene
phrases. We call this step post-processing. Post-processing is
based on a set of hand-crafted rules matching tokens and
part-of-speech information determined by a POS-tagger.
As a rule of thumb, if one word in a noun-phrase is classi-
fied as a gene name, the post-processing step tags the
whole phrase afterwards.

On the BioCreAtIvE devtest corpus, our system is able to
obtain a precision of 71.4% and a recall of 72.8%, corre-
sponding to an f-measure of 72.1%, for the closed divi-
sion. The same parameter setting yields an f-measure of
71.2% on the evaluation set (71.9% precision at 70.6%
recall). Results for the open division are about 1% higher.
Although it greatly improves the overall performance (see
Results), post-processing is currently not the focus of our
research. The most important reason for this is that a care-
ful error analysis reveals that about 76% of all errors result
from wrong token classifications and only 24% stem from
the post-processing (see Discussion). For that reason, we
focus on finding and characterizing good sets of features.

The performance of any NER system based on machine
learning techniques, including classification based sys-
tems like ours and systems using sequential information
(e.g. hidden Markov models (HMM) and conditional random
fields (CRF) [5-8]), crucially depend on the "right" set of
features. Having too large a feature set may degrade sys-
tem performance both in terms of quality of predictions
as in terms of execution time. The feature set we used for
the BioCreAtIvE evaluation was determined using a labo-
rious and manual trial-and-error approach. The same,
essentially heuristic and intuition-driven approach was
apparently used by other systems in the contest as well
[9,10], but it cannot guarantee the best possible set of fea-
tures. Our focus in this paper lies on the systematic evalu-
ation and ranking of different feature classes and their
combinations.

Clearly, it is not feasible to test all subsets of more than
250.000 features, which is the total number of features
our system can generate. We therefore follow a recursive
feature elimination (RFE) [11] procedure that successively
removes the features with the smallest impact from the
training samples, followed by a re-evaluation of the result-
ing new model (see Figure 1). Using RFE, we achieve a
number of different goals. First, RFE provides a ranking of
features regarding their importance for learning the best
model possible. We thus hope to improve system per-
formance by removing non-descriptive features. Second,
it helps to understand and gain insights into the model,
separating helpful from malicious features. This generates
hints into which direction future development should
look. Third, the resulting system is much smaller in terms
of the number of features used, leading to systems with
better time performance.

Note that even using RFE as we did does not guarantee to
find the truly optimal set of features, as many
combinations remain untested. In this sense, RFE is still a
heuristic for determining a hopefully best candidate set.

System architectureFigure 1
System architecture. The overall system architecture, 
including the recursive feature elimination process.
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In the following section we present results of the feature
engineering and elimination. After that, we discuss our
results, provide a detailed analysis of the errors of our sys-
tem, and compare it to other systems. The Methods sec-
tion describes our system and the engineering process in
detail.

Results
The system we implemented for the BioCreAtIvE evalua-
tion used a set of feature classes determined by trial and
error. We shall first present results for this system. After
the competition, we applied a more systematic method
for finding the optimal set of features. For this approach,
we started with a model using the full set of all feature
classes and recursively removed the features having the
lowest weights in the model learned by the SVM. The
results are presented in the second section of this chapter.
Finally, we show the impact of our post-processing step,
which was the same in both cases. The set of all features
considered in either approach, together with their impact
on a baseline classifier, can be found in Table 1.

Original feature sets
For the BioCreAtIvE submission, we implemented a
number of different feature classes and checked a variety
of combinations in which we toggled the usage of classes
on and off. The subset of feature classes that we used in
the final submission is marked "*" in Table 1. As a base-
line, the system yields an f-measure of 54.1% when only
the tokens themselves are used as features. As an example,
after adding character 1-, 2-, and 3-grams, the system
reaches 68.2%.

We observed that using all features leads to lower per-
formance. We thus defined a particular subset of surface
clues yielding the best f-measure we could measure. This
subset includes the tests for a single or two capital letters
that comprise a token, only capital letters in a token, a mix
of lower and upper case letters only, occurrence of special
characters and combinations of letters and digits. Possibly
due to the correlation of features classes, not all of these
features improved performance when chosen alone, but
only in combination with others. For instance, special
characters and letter/digit combinations improved per-
formance only when used together.

The competition had two divisions, one called open,
allowing for the construction of gazetteers from arbitrary
data sources, and one called closed, where gazetteers could
only be built from the training data provided by the
organizers. This separation was introduced since one
expects a larger impact of gazetteers. Interestingly, this has
not turned out to be true. Gazetteers built automatically
showed a rather low impact when used in addition to the
gazetteers derived from the training data. When we took

as features only the tokens and the gazetteer built from
training data and external sources (synonym lists for gene
names from mouse, yeast, and fruit fly (all from BioCreA-
tIvE Task 1B), and human [12]), performance drops
slightly, compared to taking only tokens as features (see
Table 1). When gazetteers were used together with other
feature classes we observed a minor improvement;
therefore, the respective gazetteer was used in our submis-
sions for both divisions. As the overall results showed,
there was only a 1% difference between open and closed
division. The small gain in performance is in contrast to
the results from Task 1B, where the best performing sys-
tems were largely based on manually curated dictionaries.

Another interesting feature class are part-of-speech tags.
As Table 1 shows, using only tokens and the part-of-
speech tags provided with the data lets the f-measure drop
to almost zero. The feature vector in this case consists of
one feature for each token in the training corpus and fea-
tures for each part-of-speech tag (we used 12 different
tags). In this vector, only two entries are 1 (the feature rep-
resenting the token itself and the part-of-speech tag of the
token). Apparently, this information completely confuses
the SVM. However, other systems showed that using POS
when trained on a domain-specific corpus and used in
combination with other features can improve the per-
formance of NER systems [5,6].

Feature engineering / recursive feature elimination
In the aftermath of the BioCreAtIvE workshop, we
improved our system in two ways. First, we added a
number of new features, partly inspired by other partici-
pants of the challenge, partly taken from literature or our
own inspiration. This includes character 4-grams, a fea-
ture checking for tokens starting with lower case letters
followed by a mixture of lower and upper case, and spe-
cial features for Greek letters and Roman numbers (see
Table 1; new features are marked "&#x25E6;"). A check for
Greek letters increases the performance slightly, Roman
numerals add to the precision of our system. Combined,
all new features add about 2% to the f-measure when
added to the previously best subset of features. The most
successful subset of all features (new and old) that we
have been able to identify manually so far performs about
4% better than the full feature set, and about 2% better
than our submission to the BioCreAtIvE evaluation. Sec-
ond, we tried to find a more systematic way of finding and
characterizing sets of features. The heuristic selection of
feature classes performed for the BioCreAtIvE evaluation
is unsatisfactory for a number of reasons. First, one cannot
know whether other combinations of features would yield
better results. Second, we chose the set of features by drop-
ping only entire feature classes, but not single features,
since this seemed infeasible. Third, the time necessary for
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learning the model and for using the model for prediction
is very high for large sets of features.

Therefore, we studied the impact of a gradual exclusion of
features. We start with a full model containing all features

described in Table 1. We iteratively remove a number of
the features with the lowest weight, retrain the model, and
check the resulting performance; this procedure is referred
to as recursive feature elimination (RFE). Post-processing
was turned off during these runs, as the decision about

Table 1: Feature classes and their impact prediction quality. Table of all feature classes. *: classes used in the BioCreAtIvE submission, 
�: classes implemented afterwards, partly adopted from other participants of the contest. The forth column gives the impact of each 
single feature class compared to the baseline (only tokens). This figures include post-processing. The fifth column shows which how 
precision and recall are affected. Letter surface clues (last rows) refer to the following features: {special, allCaps, initCap, capMix, 
lowMix, Idl, ddd}.

Feature Example Short name Impact

Token* Sro7 Token = 54% - baseline -
Unseen token* UToken
n-grams of token* 1G, 2G, .. +15%

+14%
1..4-grams, P+, R++

1..3-grams
Previous & next tokens P/NToken -5%

-6%
[1,1]-window, P+, R-

[2,2]-window
n-grams of tokens in window 2PG/2NG/..
Prefixes, suffixes 1P, 2P, 3P, 1S.. ±0
Stop word the, or Stop -5%

-1%
-.5%

10,000 words, P+, R-
1000 words, P+, R-
100 words, P+, R-

POS tag NN, DT POS -50% P-, R-

Initial upper case* Msp initCap +.5% P=, R+
All chars are upper case* MMTV allCaps +.5% P-, R+
Upper case letters* InlC, GUS Upper
Upper case (skip first)* MsPRP2 Upper2
Single capital A singleCap +.5% P+, R+
Two capitals RalGDS twoCaps +.5% P+, R+
Capital, then mixed letters � IgM capMix
Lower case, then mixed � kDa lowMix +1% P-, R+
Special symbols* ICAM-1 special ±0 P-, R+
Characters and numbers* p50 CharNum
Numbers* p50, HSF1 Number
Letters, digits, letters � H2kd Idl ±0
Digit, dot, digit � 5.78 ddd -.1% P-, R-
Greek letter � alpha greek +.5% P+, R-
Roman numeral � II, xii roman ±0 R+, R-
Number followed by '%' � 75.0% percentage -.1% P-, R-
DNA, RNA sequences � ACCGT DNA, RNA -.1% P-, R-
Longest consonant chain * Sro7 → 2 LCC -2% P-, R-

Keyword distance* keyDist -20% P+, R-

Gazetteer* Gaz -3% P-, R-

Prev./next token is NEWGENE PTG, NTG -18% prev. only, P+, R-

Tokens + letter surface clues +2% P+, R-
Tokens + 1,2,3-grams + greek + roman + letter surface clues +14% P+, R++
Tokens + 1,2,3,-grams + keyDist + Gaz + LCC + special + combi + 
allCaps +
initCap *

+16% P+, R++

Tokens + 1,2,3,4-grams + keyDist + Gaz + LCC + special + combi + 
allCaps + initCap* + lowMix �

+18% P+, R++
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removal of features is based solely on the absolute value
of the weight vector resulting from the SVM training. We
expected the RFE to (a) remove features and feature classes
decreasing the performance of our system, and to (b) lead
to a concise and informative model in the end.

Regarding (a), we made two experiments. First we
removed the 10% features with lowest weights in each
iteration. Figure 2 shows the correlation between removal
rates and performance. Figure 3 shows the change in per-
formance corresponding to the remaining number of fea-
tures. We see that the performance drops slowly, but
constantly with each iteration. Interestingly, we find that
even after removing more than 95% of the features, the
performance drops only marginally (by about 2.3%). In a
second experiment, we reduced the step-width in each
iteration using the following scheme. We removed the
1.000 features with lowest weights and all features with
zero-weight in each round. RFE achieves a maximal f-
measure of 71.1%, when approximately 23.000 features
remain (see Figure 3).

Regarding (b), we performed an RFE until only 150 fea-
tures remained. These 150 (presumably most discriminat-
ing) features can be divided into the following classes:
about 70 token features, about 70 different 3- and 4-
grams, the gazetteer feature (whether or not the word
appears in the dictionary), and nine different surface clue
features (allCaps, initCaps, combi, special_upperCase,
special_number, greek, lowerUpper, singleCap, capMix-
Letters – see Table 1 for examples). Table 2 shows a list of
examples from all classes including their weights.

The 70 single token features again can be roughly split
into three groups: common stop words receiving a highly
negative weight (such as "the" or "are"), common impor-
tant keywords receiving a highly positive weight
("kinase", "protein"), and abbreviations ("Gnt", "ZII")
receiving either positive or negative weights. Examples for
the 70 remaining 3- and 4-grams are "ing" and "ese" (pop-
ular suffixes), or "76-k", "Stai", and "GTTA". Interestingly,
only very few character 3- and 4-grams overlap each other,
indicating that the RFE has effectively resolved the obvi-
ous correlation in those cases. To find patterns in the most
important n-grams, we stopped a new RFE run as soon as
only 500 n-grams remained. We then counted their occur-
rences in the whole corpus, finding that most of them
occur more often in gene names than outside or vice versa.
For example, the 4-gram "nRNP" occurs 20 times in the
corpus (denoting an abbreviation for "nuclear ribonucle-
oprotein") in words like "hnRNP" or "snRNP-specific", all
of which are (parts of) gene names. Behind most highly
ranked token features we can find biological meanings, as
in the previous example. On the other hand, the 4-gram

"oped" (e.g., part of "developed") has a negative weight
and occurs exclusively outside gene names (55 times).

Post-expansion to complete gene names
The expansion of the single tokens predicted by the SVM
to full gene name phrases uses a set of hand-crafted rules
(see Table 3). Details on the structure of our rules can be
found in the Methods section. These rules either extend a,
possibly unconnected, sequence of tokens to a full phrase,
or remove tags from isolated tokens. In sequences of
tokens tagged as gene name by the SVM with a length
larger than one, positive tags are never removed.

Post-processing has a high impact on the performance of
our system, adding 12% precision and 10% recall com-
pared to the original system. It corrects about 300 previ-
ously incomplete gene names (more than 20% of the
former false negative predictions). It additionally removes
120 false positives (10%) by explicitly deleting generic
single word names (e.g., "protein"). By manual inspection
we found the post-processing never makes a mistake in
the latter cases. In Figure 4, we present the impact of the
post-expansion on recall and precision.

Discussion
Our system for the recognition of gene and protein names
in natural language text conceptually has three blocks:
First, a number of features are defined that can be advan-
tageous for the classification of each word in isolation.
Second, we use a recursive feature elimination to find the
best set of features, i.e., those features that offer the best
performance for the machine learning classifier doing the
actual classification. Third, we use a rule-based post-
processing to combine classifications of single words into
classification of phrases. We will discuss each of these top-
ics, starting with the impact of the RFE step. The general
set of features and their impact will be discussed based on
a comparison to other systems in the related work section.

Recursive feature elimination
Application of RFE has been beneficial in several ways. It
helped to track down the set of most important features.
Most notably are the remaining keyword tokens. These are
tokens appearing very often inside gene names or at least
collocated with them. As the tokens form common words,
they lack descriptive n-grams or other properties such as
upper case letters, and thus have to be represented by
themselves. According to intuition, the common
keywords described above have a positive weight, com-
mon stop words a negative weight. Another positive
aspect of RFE when applied in a fine-grained manner is
that it helped to improve the system's overall performance
(see Figure 3). Although our currently best system was still
found by manual combination of feature classes, RFE is
already quite close to this performance. Thus, applying
Page 5 of 11
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RFE from the beginning of a project can help to drastically
reduce the amount of time invested into trying different
combinations of feature classes. A final positive aspect is
that we discovered that only 5% of all features perform
almost as well as the whole set in discriminating gene
names from other words (see Figure 2). This can save con-
siderable time when applying NER to a large corpus such
as the entire MEDLINE.

Related work
Some groups participating in the BioCreAtIvE evaluation
2003 make use of techniques similar to ours. Three other
groups propose token-based classifiers with SVMs. The
performance of such approaches varies widely. In the fol-
lowing, we will present the systems most similar and com-
pare the approaches to ours.

Table 2: Feature classes remaining after the RFE. Examples for features and feature classes remaining after 64 iterations. In every 
round, we remove the 10% of all features having the lowest weight. After the 64 iterations, only 0.12% of all features remain. We show 
the upper, middle, and lower weighted features in this table. High weighted features are more likely to apply to positive samples 
(NEWGENE), low weighted features to negative samples. Names in bold indicate binary orthographic features and the gazetteer 
(Gaz), in contrast to single features, like a particular 3-gram. The feature named special in Table 1 actually consists of four parts, two 
of which are present in the list of top ranking features.

Feature Class Weight Feature Class Weight

Gaz 1.497386 AACC 4-gram 0.088738
insulin Token 0.632708 D2-m 4-gram -0.022443
protein Token 0.628168 Stai 4-gram -0.082046
kinase Token 0.608392 mig 3-gram -0.083135
human Token 0.536695 Reve 4-gram -0.096548
proteins Token 0.535368 ing 3-gram -0.099499

greek 0.498111 GnT Token -0.099619
combi 0.489201 owl 3-gram -0.100996

serum Token 0.480326 231 Token -0.104751
lowerUpper 0.457806 ZII Token -0.105133
singleCap 0.438028 had Token -0.106545

factor Token 0.438028 we Token -0.107104
wild-type Token 0.389359 [..]

initCaps 0.366269 that Token -0.174203
mutants Token 0.340689 scre 4-gram -0.175351
genes Token 0.340352 OH Token -0.179445
promoter Token 0.327395 ims 3-gram -0.182513
receptor Token 0.323412 be Token -0.186265
polymerase Token 0.305972 . Token -0.188904
complex Token 0.292019 To Token -0.189576
receptors Token 0.292019 acyc 4-gram -0.191766
c-myc Token 0.292019 the Token -0.192838
sites Token 0.243349 off Token -0.197588
mutant Token 0.243349 rank Token -0.198915
domain Token 0.231541 Dar Token -0.205479
sequences Token 0.216691 ( Token -0.206405
sequence Token 0.216683 omit 4-gram -0.220064
domain Token 0.215116 nost 4-gram -0.223077

specialnumber 0.205077 spit 4-gram -0.238335
isoforms Token 0.194679 allCaps -0.243183

specialupperCase 0.179926 oped 4-gram -0.246457
capMixLetters 0.179394 The Token -0.246535

[..] aged Token -0.253814
lare 4-gram 0.105354 are Token -0.267228
bicu 4-gram 0.103185 ssif 4-gram -0.272211
bea 3-gram 0.100539 encoding Token -0.447471
[ Token 0.097113 which Token -0.535368
ntei 4-gram 0.093310 activate Token -0.535368
GTTA 4-gram 0.088738 contain Token -0.640844
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PosBIOTM-Ner
Song et al. [9] use a modification of the classes separating
gene names from other words to the BIO-markup. This
includes not only the differentiation between tokens
inside and outside a gene name (I/O), but they add a class
for tokens at the beginning of a compound gene name
(B). Our own system only uses the I and O classes. A sig-
nificant contribution to the feature space is a gazetteer
lookup for tokens and phrases based on edit-distances.
The edit-distance does consider lexical variations. In our
own approach, we use exact matches of candidate terms,
but against a gazetteer containing spelling variants. Song
et al. try to enlarge the training sample artificially. The sys-
tem reuses sentences from the training corpus with
replaced gene names. Assuming that every named entity
appears only in base noun phrases, all tokens outside
noun-phrases plus determiners are excluded completely.
The method scores an f-measure of 73.8% without and
66.7% with the additional training examples, indicating
that the restriction to noun-phrases does not improve the
overall performance. The recall is about 1–2% higher
when using artificial examples, and precision drops by
17%. BIO-classes and the invocation of a gazetteer are the
main differences from our system, and PosBIOTM-NER
scores about 1% higher f-measure, mainly because the
predictions are more precise (80% precision at 68.5%
recall).

YamCha
Mitsumori et al. [10] use the same extension to BIO-
classes as the system presented above. The method addi-
tionally uses a context window, which, however, does not
improve the performance of our own system. We also
experimented with context windows (symmetrical and
asymmetrical) of different sizes, but did not find positive
influence on the overall performance. However, note that
context is implicitly used by our post-processing step.
SWISS-PROT and TrEMBL data comprise the gazetteer fea-
ture used in YamCha. It enhances performance by 3% up
to an f-measure of 78.1%. In addition to the different
source for gazetteer entries, YamCha makes use of the gaz-
etteer in a different way than we do. Token n-grams are
used for exact matches against phrases in the gazetteer.
YamCha lacks a name expansion step but performs about
5% better than our system. This is surprising, as the per-
formance of our system without post-processing is about
15% less than with post-processing.

PowerBioNE
Zhou et al. propose an ensemble methods of two HMM
and one SVM classifier [5,6]. The SVM uses a feature set
similar to ours. Rather than having one feature
representing the appearance of a candidate token in a
vocabulary, PowerBioNE has one dimension for each
word in the vocabulary. Orthographic features for the

Impact of the Recursive Feature EliminationFigure 2
Impact of the Recursive Feature Elimination. Impact 
of removing 10% of the features with the lowest weight vec-
tor in each round. After 30 iterations, with only 4.28% of all 
features remaining, the f-measure has dropped only by 2%. 
The underlying evaluation method only considers the recog-
nition of single tokens rather than whole phrases. The bot-
tom line (65 iterations) shows the impact of the remaining 
0.11% of all features. All values are evaluated without the 
post-expansion step (see text).

Dependence of the f-measure on the number of featuresFigure 3
Dependence of the f-measure on the number of fea-
tures. Performances (precision, recall, f-measure) for differ-
ent numbers of features. Starting from the full feature set, 
recursive feature elimination removes the features with the 
lowest weight vector and we measure the performance after 
each round.
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representation of tokens are comparable to ours, but
include checks for parentheses, punctuation, and stop
words as well. Our own implementation consists of the
100, 1,000, and 10,000 most common English words,
and we do not know about the composition of PowerBi-
oNE's stop word list. Zhou et al. distinguish two kinds of
triggers indicating whether a token is included in two sep-
arate lists of words. One consists of words typically occur-
ring inside gene names, and the other contains words
typically found in the local context of gene names. Our
own system measures the distance to such keywords and
sets the value for one single feature according to this dis-
tance. However, as the authors propose an ensemble
method, the exact difference in prediction performance
compared to our system is not known. The same is true for
the influence of different feature sets.

Some of the features described by other participants as
advantageous do not enhance (and sometimes even
decrease) our prediction performance. We reproduced all
features which were not in our original system, but most
of them do not contribute to an improvement of our sys-
tem (e.g., ldl, ddd, DNA – see Table 1). The recursive fea-
ture elimination removes almost all of them in early
rounds, indicating that their discriminative power is low.

Surprisingly, most features we use to train the Support
Vector Machine, and which invoke context information,
did not demonstrate their presumed value. This result is in
contradiction to other systems, which benefit from similar
features. Even information on the (predicted) class of the
neighboring tokens does not improve our results. This
method increases precision by approximately 6%, but
reduces recall by approximately 10%. Our post-processing
phase adjusts for this. It uses the local context, based on
part-of-speech information, to expand predicted tokens to
compound names. The most successful systems presented

for the BioCreAtIvE evaluation use sequence-based NER
systems rather than pure SVMs. Those systems depend on
the engineering of a carefully chosen set of features as
well. We therefore believe that our results can be helpful
for improving those approaches, too.

Other systems based on SVM classifiers on similar prob-
lems have been proposed before. They were evaluated on
different corpora, however, and performances may not be
entirely comparable. GAPSCORE [13] scores single words
based on a statistical model of gene and protein names
that quantifies their appearance, morphology and con-
text. The authors compared naïve Bayes, maximum
entropy, and SVM classifiers, and found that the latter out-
performs the others slightly. Detected gene name candi-
dates are extended to preceding and following tokens
based on POS information. GAPSCORE achieved an f-
measure of 57.6% on the YAPEX corpus for exact matches.

The system described by Seki et al. [14] uses surface clues
to detect potential protein name fragments, and addition-
ally applies a false positive filter. A probabilistic model
expands single names to compounds. For exact matches,
the system achieves an F-measure of 63.6% on the YAPEX
corpus.

We reproduced most of those features proposed in the
BioCreAtIvE evaluation, which were not included in our
initial submission. We discovered that some of them
(character 4-grams, a feature checking for tokens starting
with lower case letters followed by a mixture of lower and
upper case, and special features for Greek letters and
Roman numbers) help to improve the performance of our
own system. The gazetteers of all systems were imple-
mented in different ways. It would certainly help to check
for the most successful implementation, because impacts
were not measured by other groups. As we learn from the

Table 3: Rules used for the post-expansion step. The rules switch certain part-of-speech tags to NEWGENE tags. We exclude 372/222 
nouns from the expansion, and include only 778 particular adjectives in the expansion of noun phrases. NN*: nouns, proper nouns, 
plurals; JJ: adjective; CD: cardinal digit; DT: determiner; '/' refers to the token itself.

Former POS pattern Expanded pattern Limitation

NEWGENE NN* NEWGENE NEWGENE all but 372 particular nouns
NN* NEWGENE NEWGENE NEWGENE all but 222 particular nouns
JJ NEWGENE NEWGENE NEWGENE only 778 particular adjectives
NEWGENE JJ NEWGENE NEWGENE only 778 particular adjectives
NEWGENE DT NN* NEWGENE NEWGENE NEWGENE
NEWGENE CD NEWGENE NEWGENE
NN* / NEWGENE NEWGENE NEWGENE NEWGENE
NEWGENE / NN* NEWGENE NEWGENE NEWGENE
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other contributions, a modification of the binary classifi-
cation to the B-I-O-classes seems to be a clever idea to
improve prediction quality.

Error analysis
We conducted an analysis on where and how our system
fails on the evaluation data set. Figure 5 shows the distri-
bution of the errors. Boundary errors are cases where we
correctly tagged at least one token of a gene phrase con-

sisting of more than one token but we either did not tag
the complete phrase or we did tag too many tokens
exceeding the boundary of the phrase. 25% of all errors
are boundary errors. Only 1% of those are caused by the
SVM, i.e., cases where the SVM falsely predicted a token as
gene name that lies adjacent but outside a gene phrase. All
other boundary errors are caused by the post-processing
by wrongly including tokens into phrases or excluding
tokens from phrases.

We also categorized the boundary errors into four types.
In 27% of all boundary errors, the tagged sequence
exceeds the real boundary to the left, and in 28% the real
phrase starts left of the predicted boundary. In 32% of the
cases, the tagged sequence exceeds the real boundary to
the right, and in 31% the real phrase ends after the pre-
dicted boundary on the right. Note that those percentages
do not sum to 100% because the errors at the left and right
boundary can be present at the same time in one gene
name. Overall, the errors of the expansion step are almost
balanced regarding the direction (left/right) and also the
type (exceeding/insufficient tagging).

The other errors not related to boundary errors divide into
false positives and false negatives (Figure 5). These are
cases where predicted gene tokens do not even overlap
with an actual gene token sequence. Such errors must can
traced back to our first step, the classification of single
gene tokens, since post-processing only extends token
sequences or removes single tags from single token
sequences, but never makes mistakes in the latter cases.
Together with the 1% boundary related errors, we account
76% of the errors to the single token classification by the
SVM. Only 24% are caused to the expansion step. Finally,
we found that our system predicts many false positives
which are very generic terms, such as "transcription fac-
tor" or "rat gene". The BioCreAtIvE task definition
excludes these names from being gene names.

Conclusion
We have presented a system for recognizing names of
genes in proteins in text. Our approach is a word classifi-
cation system based on a sliding window approach with a
Support Vector Machine. We combine this prediction of
candidate tokens with a pattern-based post-processing for
the recognition of compound names. We found that the
most important features and feature classes for discrimi-
nating gene names from other text are the tokens them-
selves, character n-grams, a gazetteer, and orthographic
features. Patterns checking for upper case letters, digits, or
special symbols and mixtures, and Greek words comprise
the latter. Distances to keywords completed this set.

We showed that a careful selection and test of feature
classes used for vector space model representation of

Recall/precision with and without post-expansionFigure 4
Recall/precision with and without post-expansion. 
Comparison of recall and precision before and after the post-
expansion step. We use the full feature set (marked "100%" 
in Figure 2) for this evaluation. We obtain the different spots 
by parallelly shifting the hyperplane.

Error analysisFigure 5
Error analysis. Proportions of different causes for four 
classes of errors. We distinguish between boundary errors 
and non-boundary errors (see text).
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tokens has a significant impact on performance. It is not
only crucial to gather a variety of feature classes, but
equally important to check them for possible negative
influences. For the NER problem at hand, feature selec-
tion did have an influence on the prediction quality. We
observed that recursive feature elimination detects at least
some of the features and feature classes having a negative
influence on the performance. RFE is able to detect a small
subset of all features, which performs similarly well as the
full set.

Methods
The system we implemented is a composition of two
steps. A Support Vector Machine classifier [15-17] is
trained on predicting whether a single token is part of a
gene name or not. Our system furthermore invokes a set
of context-sensitive post-processing rules that label certain
surrounding tokens as genes to detect multi-word names
[18].

The SVM uses a vector space representation of examples.
Each feature of an example corresponds to a dimension in
the vector space, and has a parameter value characteristic
for each example. In our case, every token in the training
and test data forms an example. All examples are labeled
either as positive or negative (part of a gene name or not).
The SVM learns a discriminating margin hyperplane
between the two classes, described by Support Vectors. The
decision whether a new example (from the test corpus)
gets a positive or negative label then depends on the side
of the hyperplane the example lies on.

Definition of features and feature classes
For each sample token from the training and test corpus,
we generate a set of features from the token and its con-
text. We toggle the usage of whole feature classes rather
than single features, e.g. all character 2-grams and not
only "al", "lp", or "ph". Feature engineering thus concen-
trates on identifying the most helpful feature classes (see
Table 1 for examples). We generate the features according
to the following definitions of different feature classes:

Token, unseen token
We take all tokens encountered in the training set as single
features. If they apply to an example, they are set to their
respective tf.idf values. We want to learn a model that is
robust to new tokens. To achieve this, we introduce a
single binary feature ("unseen"), and set it to 0 if the token
appears in the training set, and to 1 otherwise. During the
training phase, we randomly treat tokens as unseen. This
means, we set the "unseen" feature to 1 with a small prob-
ability, and do not set the proper tf.idf value for the single
token feature.

Character n-grams of tokens
We extract substrings of length one to five from all tokens
in the training set, each representing a single, tf.idf-
weighted feature.

Gazetteer
We match tokens and phrases against a gazetteer. The lat-
ter is built from the training corpus and (for the open divi-
sion) additional synonym lists from four organisms
(human, yeast, mouse, fruit fly). The gazetteer ignores
capitalization, and uses wildcards for digits, and word
separators (spaces, hyphens, slashes).

Surface clues
We add binary features to the vector space based on the
composition of tokens. These features represent matches
against various patterns composed of letters, digits, and
special characters (see Table 1).

Keyword distance
We measure the distance of an example to the nearest key-
word. Keywords are 25 hand-crafted terms, such as "recep-
tor", or "kinase", and were deduced from the training
corpus.

Post-processing for name expansion
We employ a post-processing step in which we apply sim-
ple hand-crafted rules to expand names, because many
gene names consist of multiple words. We find that the
SVM classifier recognizes these sometimes incompletely –
frequently, unseen nouns and unseen or nondescript
adjectives are missing in predicted names.

The rules refer to the tokens, their labels generated by the
SVM, and their POS tags. For the latter, we use POS tags
taken from the Brill tagger [19]. This tagger uses its default
lexica and contextual rules, learned from unspecific data,
namely the Wall Street Journal corpus [20], and the
Brown corpus [21]. As a rule of thumb, when a noun
phrase contains a gene name, then the whole noun phrase
is typically a gene name – except for a number of special
nouns and adjectives which are never or rarely part of a
gene name. We gather these nouns and adjectives from
the tagged training corpus by collocation analysis. Every
word appearing more frequently as a part of a gene name
than preceding a gene name (and vice versa) is included
in a NEWGENE phrase. This leads to the application of
two exclusion lists for nouns – we expand a phrase, if the
noun is none of 372 or 222 particular terms, respectively,
(see Table 3). We decided to use a negative list, as we
found much more nouns included in gene names than
appearing directly before of after such a name. With adjec-
tives, it is quite the opposite, though. Adjectives may be
parts of gene names or qualify a gene. We expand a phrase
Page 10 of 11
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to include a preceding or following adjective, on the other
hand, if the latter appears in a list of 778 particular terms.

The rules consider formations of gene names around "/"
and parentheses, too. As an additional false positive filter,
we remove 23 single words tagged as NEWGENE, that are
rarely gene names when occurring by themselves. Exam-
ples for such words are "alpha", "gene", "mRNA", and
"subunit".

Recursive feature elimination
In the following we briefly describe recursive feature elim-
ination [11]. In a linear SVM, a linear decision function
classifies a new token with the feature vector x by the sign

of , where w is the weight vector and b an
additive threshold. Disregarding the latter, the inner prod-
uct denotes a linear combination of the features of x,
where each feature is weighted by its corresponding com-
ponent of w. Since we allow only positive feature values,
the sign of each component of w determines if the
corresponding feature is an indicator for (positive sign) or
against (negative sign) a gene name. Their absolute values
are equivalent to their impact on the inner product and
therefore on the decision. Each RFE iteration starts with
training and evaluating the SVM classifier. Afterwards, we
firstly remove all redundant features having a zero com-
ponent in w. Secondly, we eliminate in different experi-
ments either a fixed percentage or a fixed number of the
remaining features, respectively. These features are chosen
according to their corresponding lowest weights of w. The
next RFE iteration then begins with retraining on the
reduced feature set.

Applying this elimination after training the classifier
recursively should lead to a small set of relevant features
that may be beneficial for further investigations. The main
advantage is an easier interpretation of the computed
solution, due to the reduced dimensionality.

List of abbreviations
CRF – conditional random fields; HMM – hidden Markov
model; NER – named entity recognition; POS – part of
speech; RFE – recursive feature elimination; SVM – sup-
port vector machine.
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