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ABSTRACT
Motivation: Currently, the most accurate fold-recognition method is to
perform profile–profile alignments and estimate the statistical signific-
ances of those alignments by calculating Z -score orE -value. Although
this scheme is reliable in recognizing relatively close homologs related
at the family level, it has difficulty in finding the remote homologs that
are related at the superfamily or fold level.
Results: In this paper, we present an alternative method to estimate
the significance of the alignments. The alignment between a query
protein and a template of length n in the fold library is transformed into
a feature vector of length n +1, which is then evaluated by support
vector machine (SVM). The output from SVM is converted to a pos-
terior probability that a query sequence is related to a template, given
SVM output. Results show that a new method shows significantly bet-
ter performance than PSI-BLAST and profile–profile alignment with
Z -score scheme. While PSI-BLAST and Z -score scheme detect 16
and 20% of superfamily-related proteins, respectively, at 90% spe-
cificity, a new method detects 46% of these proteins, resulting in more
than 2-fold increase in sensitivity. More significantly, at the fold level, a
new method can detect 14% of remotely related proteins at 90% spe-
cificity, a remarkable result considering the fact that the other methods
can detect almost none at the same level of specificity.
Contact: kds@kaist.ac.kr

INTRODUCTION
Fold recognition is to recognize native-like structural folds of an
unknown protein from the known protein structures. It provides not
only the structural templates from which a detailed tertiary structure
of a protein is predicted by comparative modeling, but also a means
to increase our understanding of its biological function by detecting
homologs that are difficult to detect by conventional homology search
methods. It is also relevant to the target selection in the structural
genomics initiatives (Kim, 1998) where one of the main goals is
to experimentally determine enough protein structures to build the
total repertoire of protein folds fromwhich all proteinswith unknown
structure canbemodeledby fold recognition andhomologymodeling
(Friedberg et al., 2004; Hou et al., 2003a). In addition, by increasing
the sensitivity of the fold-recognition method, we can increase the
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structural coverage of newly sequenced genomes (McGuffin et al.,
2004).
In general, the fold recognition-methods fall into two classes.

The first class uses solely the sequence information. The hidden
Markov model (HMM) methods (Karplus et al., 1999), PSI-BLAST
(Altschul et al., 1997), FFAS (Rychlewski et al., 2000), a method
by Yona and Levitt (2002) and COMPASS (Sadreyev and Grishin,
2003) can be classified into this category. The second class uses the
structural information in addition to the sequence information in
various ways (Bowie et al., 1991). GenTHREADER (Jones, 1999),
3D-PSSM (Kelley et al., 2000), FUGUE (Shi et al., 2001), RAPTOR
(Xu et al., 2003) and PROSPECT (Kim et al., 2003; Xu and Xu,
2000), to name a few, represent the fold-recognition methods that
belong to the second class. It is known that including the evolution-
ary information for both the query and template proteins increases
not only the fold-recognition performance but also the alignment
quality (Kim et al., 2003; Ohlson et al., 2004). It is also known
that the structural information, when it is used with the sequence
information, increases the performance of the template-based tertiary
structure prediction. Especially, the information on the predicted
secondary structure of a query protein significantly improves the
alignment quality (Elofsson, 2002) and fold-recognition perform-
ance (Przybylski andRost, 2004). However, mounting evidence from
the continuous benchmarking program of fold-recognition servers,
such as LiveBench (Rychlewski et al., 2003) and the assessment on
recent round of CASP (Kinch et al., 2003), suggests that the impact
of the structural information is rather limited and the dominant factor
in fold recognition is the quality of the profiles of both a query and
a template.
Currently, a common strategy that the most accurate fold-

recognition methods are adopting is to first perform sequence-profile
(Altschul et al., 1997) or profile–profile (Wallner et al., 2004) align-
ments between a query sequence and the template sequences in
the fold library, and then to estimate the statistical significances
of those alignments by calculating Z-score (Kim et al., 2003; Shi
et al., 2001) or E-value (Karlin and Altschul, 1990; Sadreyev and
Grishin, 2003). Although this scheme is reliable in recognizing
relatively close homologs related at the family level, reaching the
sensitivity of ∼80% at 99% specificity, it still has difficulty in find-
ing the remote homologs that are related at the superfamily or fold
level, reaching only 25% sensitivity at 90% specificity at the super-
family level and almost zero sensitivity at the fold level (Ohlson
et al., 2004). Here, we present an alternative way to estimate the
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significance of the alignments by support vector machine (SVM)
(Vapnik, 1998).
Utilizing the machine learning techniques, such as the artificial

neural network (NN) or SVM, for the fold-recognition problem is
not new. For example, GenTHREADER (Jones, 1999) andRAPTOR
(Xu et al., 2003) transformquery–template alignments to fixed length
feature vectors, and then evaluate the feature vectors using NN and
SVM, respectively, to produce a likelihood measure for each pre-
dicted fold recognition. The features used in these works include raw
alignment score, alignment length, sequence lengths, pair energy
evaluated by threading potential, salvation energy, sequence iden-
tity, etc. The critical difference between these previous works and
the present method is that in this method all templates in template
library have feature vectors of different lengths with profile–profile
alignment scores at each position as their features, whereas the length
of feature vectors for GenTHREADER and RAPTOR is the same
for all templates. The methods, such as SVM-HMMSTER (Hou
et al., 2004), SVM-I-sites (Hou et al., 2003b), SVM-pairwise (Liao
and Noble, 2003) and SVM-Fisher (Jaakkola et al., 2000) are also
closely related to the present method in many aspects in that these
methods attempt to detect remote homologs by examining sequence
alignments. In our method, the alignment between a query protein
and a template of length n is transformed into a feature vector of
lengthn+1 composed ofn profile–profile alignment scores and a raw
alignment score, (sa1, sa2, . . . , sai , . . . , san, total_score), where sai

is the profile–profile alignment score at position i. Then, the feature
vector is evaluated by SVM, and the output is converted to a posterior
probability (Platt, 1999) that a query sequence is related to a tem-
plate, given an SVM output. The test on large-scale benchmark set
indicates that improvement over previous methods is quite dramatic;
improvement is remarkable in the sensitivity of detecting remote
homologs that are related at the superfamily and the fold levels.

MATERIALS AND METHODS
Data
We assess the fold-recognition performance of each algorithm by testing its
ability to recognize related protein domains at the three different similarity
levels, family, superfamily and fold, classified by the SCOP version 1.65
(Murzin et al., 1995). First, the fold library composed of ∼5600 domains is
constructed using domain subsets with<40% sequence identity to each other
prepared by ASTRAL Compendium (Chandonia et al., 2004). We choose the
folds containing at least 20 members for training the SVM and testing. A
total of 62 folds and 2854 templates are selected as a result. Two-thirds of
all templates in each fold (1885 templates) are randomly chosen and used for
training the SVM for each template and the remaining one-third of templates
(969 templates) are used for testing.

SVM feature vectors and training
To train SVMs for all 1885 templates in the training set, we first gener-
ate all-against-all alignments by profile–profile alignment scheme, without
using any structural information. The profile–profile score to align the
position i of a template q and the position j of a template t is given by
mij = ∑20
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jk are the frequen-
cies and the position-specific score matrix (PSSM) scores of amino acid k,
at position i of a template q and position j of a template t , respectively.
The frequency matrices and PSSMs are generated by running PSI-BLAST
using default parameters except for the number of iterations (j = 6).
For each template of length n in the training set, alignments with the
other 1884 templates in the training set are generated. Then, these 1884

Fig. 1. Generation of the input feature vectors from alignments. (a) The
sequence of a template of length n is aligned to the sequences of positive
(solid line) and negative (dot line) examples by profile–profile alignment
method. (b) Each alignment is transformed to (n + 1)-dimensional feature
vector composed of the alignment scores at n positions and the total align-
ment score. (c) These feature vectors, after scaling, are used to train SVM
for a target template.

alignments are transformed, respectively, into (n + 1)-dimensional feature
vectors, (sa1, sa2, . . . , sai , . . . , san, total_score), where sai is the profile–
profile alignment score at position i of a given template and total_score
the total profile–profile alignment score (Fig. 1). If gaps occur, fixed neg-
ative scores are arbitrarily assigned. Instead of using raw alignment scores,
smoothened profile–profile alignment scores given by sai = mi−2+2mi−1+
3mi +2mi+1+mi+2, wheremi denotes a raw profile–profile alignment score
at position i of a template (Tress et al., 2003), are used. The total alignment
scores are scaled to make their average and the standard deviation to equal 0
and 1, respectively, so that they have a comparable magnitude and range as
the rest of the scores. Positive examples are the templates sharing the same
fold with a target template for which an SVM is to be trained; otherwise, the
templates are regarded as a negative example. In SVM training, the linear
and radial basis function (RBF) kernels are tried, without attempting seri-
ous performance optimization. Freely available SVM software, svm_light
(http://svmlight.joachims.org/), is used for SVM training and testing.

Testing and performance assessment
For each sequence in the testing set, the profile–profile alignments with all
templates in the training set are generated and transformed to the feature vec-
tors, which are then evaluated by the trained SVMs to produce outputs for
all templates. A well-known problem of SVM is that the output values are
neither calibrated nor directly associated with probabilistic meaning (Platt,
1999). The fact that a template α produces a greater SVM output than a
template β does not imply that the alignment of a query protein with a tem-
plate α is more significant than that with a template β. Therefore, ranking the
templates by their raw SVMoutputs is problematic. Instead, a posterior prob-
ability that a query sequence is related to a template, given an SVM output
is estimated by the procedure proposed by Platt (1999). In Platt’s method, an
SVM output, f , and the posterior probability, p(y = 1|f ), are related by a
sigmoid with two parameters, A and B;p(y = 1|f ) = 1/[1+ exp(Af +B)].
Ideally, the parameters, A and B, should be estimated from an independent
set other than training and testing sets. However, owing to the scarcity of
members in some folds, it is hard to form an independent set that has enough
number of members. Therefore, we estimate the parameters as follows. For
each template in the training set and a query protein, we pretend that the
testing set has a query protein only and the independent set is the testing set
minus a query protein. We estimate the parameters using the independent set
and finally calculate the posterior probability. The same procedure is repeated
for all proteins in the testing set. By doing so, we can avoid the possibility
of introducing any bias. We have found that using the posterior probabilit-
ies instead of the SVM raw outputs improves the performance slightly. We
measure fold-recognition performance of various methods in two different
ways, the receiver operating characteristic (ROC) scores and the specificity–
sensitivity plot. The ROC score is the area under the ROC curve, the plot of
true positives as a function of the number of false positives (Gribskov and
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Fig. 2. ROC scores of various methods. The x-axis and y-axis represent
the ROC score and the fraction of the proteins with a given performance,
respectively. SVM-RBF, SVM-linear,Z-Score and PSI-BLAST denote SVM
method with RBF kernel, SVM method with linear kernel, Z-score method
and PSI-BLAST, respectively.

Robinson, 1996). The highest score is 1, which indicates that all positives are
ranking higher than all negatives. For randomly ordered list of positives and
negatives, the score is expected to be 0.5, while a score <0.5 indicates that
the ranking by a method is worse than random ordering. The Specificity is
defined as Specificity = TP/(TP + FP), where TP and FP denote the num-
bers of true and false positives, respectively, given a cutoff score. It measures
the probability, that a pair with a score greater than a given cutoff score is a
related protein pair at each similarity level. On the other hand, the Sensitiv-
ity is defined as Sensitivity = TP/(TP + FN), where FN is the number of
false negatives given a cutoff score. It is the fraction of the number of related
proteins that are correctly recognized among all related proteins.

Running PSI-BLAST and calculating Z-scores
When running PSI-BLAST, we first generate the profiles for the sequences
in the testing set using ‘nr’ database and the default parameter values, except
for the number of iterations set to 10. Then using these profiles we search the
database composed of the sequences in the training set. For each sequence
in the testing set, the sequences in the training set are ranked according to
their E-values. We have tried a few different options for parameters, such as
E-value cutoff, the number of iterations etc. However, the results are more
or less the same. To calculate the Z-score, a randomly shuffled sequence of
a query protein is aligned to the template. By repeating the same process
100 times, the average and the standard deviation of the alignment score
distribution, and eventually Z-score, are estimated.

RESULTS
In this section, we describe the fold-recognition performance of the
present method, compared with those of PSI-BLAST method and
the Z-score scheme.
In Figure 2, the ROC scores of various methods are shown. It

is clear that the SVM method with the radial basis function (RBF)
kernel significantly outperforms PSI-BLAST and the conventional
Z-score scheme, demonstrating the superior performance of the
present method. We have not tried the other SVM kernels, such
as polynomial or sigmoid kernels, as other previous works on fold
recognition (Xu et al., 2003) and the secondary structure predic-
tion (Hua and Sun, 2001) using the SVM suggest that RBF kernel
generally gives the best performance. Although we have not tried

Fig. 3. The specificity–sensitivity plot for variousmethods at the family level.
The inset plot shows the sensitivity as a function of error rate, which is defined
by 1−specificity. SVM,Z-Score, PSI-BLAST denote the SVMmethod with
RBF kernel, Z-score method and PSI-BLAST, respectively. The sensitivity
of the present method is better than those of the other two methods by∼98%
specificity. However, beyond 98% specificity, the performance of the SVM
method deteriorates rather sharply compared with the other two methods.

to systematically optimize the parameters, we believe that the cur-
rent performance is not far from the optimum. From now on all the
SVM results are obtained by using the RBF kernel. The observation
that the profile–profile alignment with Z-score scheme outperforms
PSI-BLAST is not surprising in that numerous previous studies
(Kim et al., 2003; Ohlson et al., 2004; Sadreyev and Grishin, 2003;
Von Ohsen et al., 2004) have demonstrated similar results. Com-
paring the improvement of the conventional Z-score scheme over
PSI-BLAST and that of the present method over the conventional
Z-score scheme, it is rather surprising how big a performance gain
we can achieve by changing the method used to estimate the sig-
nificance of the alignments while keeping the same profile–profile
alignments. Using the SVM method with RBF kernel, 63% of all
proteins in the testing set have >0.9 of ROC score, while the cor-
responding figures using Z-score scheme and PSI-BLAST are 23
and 15%, respectively. Moreover, with a new method,>20% of pro-
teins achieve a near-perfect separation (ROC score of 0.99) of the
positives from the negatives, while the corresponding figures were
only 7 and 4% with Z-score scheme and PSI-BLAST, respectively.
The major portion of performance improvement is attributable to
the correct recognition of the remote homologs that are related to a
query protein at the fold level, most of which PSI-BLAST and the
conventional Z-score scheme typically fail to recognize. This is the
direct consequence of training each template to recognize its remote
homologs.
Figure 3 shows the specificity–sensitivity plot for the three meth-

ods at the family level, the SVM method with RBF kernel, the
conventional Z-score method and PSI-BLAST. Also shown in the
inset plot of Figure 3 is the sensitivity as a function of error rate, which
is defined as 1− specificity to show more clearly the performance of
the threemethods at a low error rate region. It is easy to recognize that
the sensitivity of the newmethod is better than those of the other two
methods by∼98% specificity. However, beyond 98% specificity, the
performance of a SVMmethod deteriorates rather sharply compared
with the other two methods. This drop in performance at very low
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Fig. 4. The specificity–sensitivity plot for variousmethods at the superfamily
level. SVM,Z-Score, PSI-BLAST denote the SVMmethodwith RBF kernel,
Z-score method and PSI-BLAST, respectively.

error rate (very high specificity region) is due to a few high-scoring
false positives that are erroneously recognized by the SVM.Themain
reason for this problem is the definition of the positive examples
with which the SVMs are trained. Since a protein that is related to
the template at the fold level of similarity is considered as a positive
example, and the alignment accuracy between the two proteins that
are related at the fold level of similarity can be very low in some
cases, the SVMs, that are trained based on those alignments, make
a few obvious mistakes. However, this kind of problem is not serious
because it can be dealt with in manyways. One way is to examine the
scores of other templates in the fold library; if a certain high-scoring
template is not related to all the other high-scoring templates that are
related, or if most of the related templates of a certain high-scoring
template all have low scores, it is likely that the high score of that
template is the result of an error in the SVMmethod. In fact, a similar
idea of using the global structure in the protein similarity network
to improve homology search has been reported to be useful (Weston
et al., 2004).
Performance improvement of the present method over the exist-

ing methods is more clearly shown in Figure 4 where a similar
specificity–sensitivity plot at the superfamily level is shown. PSI-
BLAST and Z-score scheme detect 16 and 20% of superfamily-
related proteins at 90% specificity, respectively. According to a
recent study on the fold-recognition performances of PSI-BLAST
and the profile–profile alignment methods (Wallner et al., 2004),
PSI-BLAST and the profile–profile methods detect 16 and 20%
of superfamily-related proteins at 90% specificity, respectively.
Although they used a different benchmark set, their results are nearly
the same as our calculation, which implies that difficulty in bench-
marking our testing set is nearly the same as with that of their set.
Meanwhile, the present method detects 46% of these proteins, res-
ulting in more than 2-fold increase in sensitivity compared with the
previous methods.
More significantly, as shown in Figure 5, at 90% specificity the

present method can detect as much as 14% of remotely related
proteins at the fold level, whereas the other methods can detect
almost none at the same level of specificity. This result has important
implications in many different but related aspects. One aspect is the

Fig. 5. The specificity–sensitivity plot for various methods at the fold level.
SVM, Z-Score, PSI-BLAST denote the SVM method with RBF kernel,
Z-score method and PSI-BLAST, respectively.

target selection (Brenner, 2000) in the structural genomics initiatives
(Kim, 1998). A recent analysis on TargetDB (Chen et al., 2004), a
database for the target proteins of all structural genomics centers,
suggests that the target proteins are highly redundant and the per-
centage of novel folds among solved structures is not as high as
expected (Bourne et al., 2004). To achieve the original goal set by
structural genomics initiatives, which is to experimentally determine
enough protein structures to build the total repertoire of protein folds
from which all proteins with unknown structure can be modeled
using fold recognition and homology modeling, it is important to
select as a target, the proteins that are most likely to have a novel
fold. Thanks to the high sensitivity of the present method, failure
to recognize a likely fold of a candidate protein will increase the
possibility that a protein may have a novel fold. The other aspect
is the structural annotation coverage of a genome. According to a
recent study (McGuffin et al., 2004), on average 64% of the pro-
teins encoded in a genome can be confidently assigned to known
folds. The main reason for such low coverage rate is the existing
fold-recognition program’s inability to detect remote homologs. It
is expected that by improving fold-recognition method we can sig-
nificantly increase the structural coverage rate, thereby increasing
the capability of structural annotation of a new genome. The biggest
implication is on the template-based protein structure prediction. The
quality of predicted protein structure depends on choosing the best
structural template and the alignment accuracy.Moreover, the applic-
ability of the template-based protein structure prediction methods is
limited by our ability to recognize a correct fold. As is evident from
Figure 5, many existing best-performing fold-recognition methods
fail to recognize structural analogs that are related to a query protein
at the fold level. By increasing the sensitivity of fold recognition at
the fold level, it is possible to significantly increase the applicability
of the template-based protein structure prediction methods, as well
as the accuracy of protein structure prediction.

DISCUSSION
Why does the SVM method work so well? The reason for its suc-
cess is related to the intermediate sequence search (Park et al., 1997)
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Fig. 6. Schematic illustration of remote homolog search by SVM. P1 can be
related to proteins in the area enclosed by the dash line by typical homolog
search algorithms. P1 can also recognize proteins in the area enclosed by the
dash–dot line through an intermediate sequence P2. In addition, proteins in
the area enclosed by dot line can be recognized by SVM’s ability to learn the
essential features of the fold.

and its ability to recognize the essential features among alignments
of remotely related proteins. The situation is schematically depic-
ted in Figure 6. In a situation where we try to search for all the
proteins that are related to the template P1, by existing homology
search algorithms we can typically find proteins in the area enclosed
by the dash line; most family members, roughly a third of super-
family members and a few fold members. However, in the present
method, P1 has been trained to recognize the sequences that are
similar to P2. Therefore, it will also recognize proteins in the area
enclosedbydash–dot line. This situation is similar to the intermediate
sequence search (Park et al., 1997), where two homologous proteins
are related through an intermediate sequence that are recognized to
be homologous to the two sequences; P2 acts as an intermediate
sequence. In addition, proteins in the area enclosed by dot line can
be recognized by the presentmethod, even though these proteins can-
not be reached by an intermediate sequence search. Since we train
SVM to learn some essential features of the alignments between
proteins that belong to the same fold, the present method can detect
remotely related proteins if the alignments between these proteins
and P1 contain those essential features.
A good example is a domain 1kfwA2 (SCOP version d.26.3.1).

In Table 1, the names and the scores of high-ranking templates
for a domain 1kfwa2 using SVM method and Z-score scheme are
shown. The top five templates (1goiA3, 1ll7A2, 1hjxA2, 1edqA3
and 1itxA2) share the same family with 1kfwA2, and are easily
recognized by both methods, yielding high posterior probabilities
and Z-scores by SVM method and Z-score scheme, respectively.
The next template by SVM is 3eipA_ with a high probability of 0.84,
which shares the same fold with a query, while the Z-score scheme
fails to recognize the template 3eipA_ with a very low Z-score of
−0.7. The reason that 3eipA_ is recognized by SVM but not by
Z-score scheme is that when we train 3eipA_ using SVM, all top five
templates (1goiA3, 1ll7A2, 1hjxA2, 1edqA3 and 1itxA2) are used as
a positive example. As a result, 3eipA_ is trained to be recognized by
proteins that are similar to these five templates, which is 1kfwA2, in
this example. In fact, 1goiA3, 1ll7A2, 1hjxA2, 1edqA3 and 1itxA2
are all acting as an intermediate sequence that connects a query and
3eipA_.
In many situations, for instance, when we want to predict the

structure of an unknown protein, the fact that a method can recognize
a template from the same fold is not so significant, if templates from

Table 1. Top seven templates using SVM method with their probability and
the ranking, along with the Z-score and the ranking by Z-score

Domain (SCOP version.) Probability (rank) Z-Score (rank)

1goiA3 (d.26.3.1) 1.0 (1) 18.0 (1)
1ll7A2 (d.26.3.1) 1.0 (1) 14.4 (2)
1hjxA2 (d.26.3.1) 1.0 (1) 13.1 (3)
1edqA3 (d.26.3.1) 1.0 (1) 12.0 (4)
1itxA2 (d.26.3.1) 1.0 (1) 11.5 (5)
3eipA_ (d.26.2.1) 0.84 (6) −0.7 (1440)
1n1uA_ (g.3.3.1) 0.44 (7) 0.8 (459)

A query sequence is a domain 1kfwA2 (SCOP version d.26.3.1). Note that the top five
templates share the same family with a query and the sixth template only shares the
same fold.

Fig. 7. The specificity–sensitivity plot for the new set and the old set at
the fold level. SVM and Z-Score denote the SVM method and the Z-score
method, respectively. In the new set, the training and testing sets share the
proteins from the same superfamily. The old set denotes the training and
testing sets described in the Materials and methods Section.

the same family are also recognized with higher scores, just like
the above example, because that template will not be used for the
structure prediction anyway. A difficult, but significant case is when
there are only the templates that are similar to a query protein at the
fold level. To assess the effectiveness of the present method in such
a case, we prepare the training and testing sets that share no proteins
from the same superfamily. The training set has 1288 templates and
the testing set has 602 templates. This case is much more difficult
than the previous one because there are no intermediate sequences
from the same family and superfamily that connect the training and
test sets. Only the sensitivity at the fold level can be discussed. The
result is shown in Figure 7. Higher sensitivity for a new set at low
specificity region is purely an artifact due to the fact that a new set has
higher percentage of true positives than the previous set. It is clear that
the present method outperforms the Z-score scheme significantly;
the sensitivity of Z-score method drops to near-zero level at the
specificity of ∼0.3, while the sensitivity of a new method remains
at the significant level, up to the specificity of 0.8. Apparently, the
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sensitivity of a new method for the new set is roughly half of that for
the previous testing set.
Since this drop in sensitivity is due to the absence of intermediate

sequences in the new set, it is reasonable to argue that it is mostly the
method’s ability to recognize the ‘essential features’ that are respons-
ible for the presentmethod’s higher sensitivity for the new testing set,
comparedwith the conventionalZ-score scheme. As inmostmachine
learning approaches, it is hard to pinpoint what features are import-
ant for the performance, therefore, it is not clear what the ‘essential
features’ are. Nonetheless, we believe that the ‘essential features’ are
from relatively small regions of alignments that are important, func-
tionally and structurally, to a group of related proteins, and that the
SVM can recognize these important alignment features. Let us sup-
pose that an important region and a not-so-important region equally
contribute to the total alignment score. Then, these two regions
contribute equally to the PSI-BLAST’s E-value and Z-score. On
the other hand, the SVM can distinguish an important region from
the not-so-important region and assign higher weight to the import-
ant region and ignore the other regions in calculating the posterior
probability.
The method described so far is by no means optimized. The fea-

ture vectors used in the present work are relatively simple, and
can be improved in many ways. We have tried the raw alignment
scores instead of smoothened profile–profile alignment scores, but
the performance seems to get slightly worse. We have found that by
including the total scores in the feature vectors we can improve the
performance slightly. When the total scores are included, the fraction
of proteins having the ROC scores of 0.9 and 0.99 increases to 0.62
and 0.18 from0.57 and 0.16, respectively. The current feature vectors
do not include the structural features. It is expected that by including
the structural features we may further improve the performance of
the method. The limitation of the present method is that in order to
properly train the SVM for a certain fold, a reasonable number of
members should be in the fold. It is well known that the distribu-
tion of the number of members in folds follows the power law (Qian
et al., 2001), which implies that a significant number of folds have
only a few (non-redundant) proteins with known structures. In our
template library with 5463 members, 3855 members belong to only
137 folds that have≥10 members, and the remaining 1608 members
are spread among 650 folds that have<10 members. One advantage
of the power law distribution is that these 137 folds cover ∼70%
(=3855/5463) of all proteins. Therefore, if the minimum number
of members in a fold required for the present method to be effective
is assumed to be 10, we may apply the present method to ∼70%
of cases. We may further increase the applicability of the method
by including remote homologs with unknown structure as a positive
example. Of course, if these homologs are included, we can not use
the structural features in the feature vectors. However, we believe
that the importance of the structural features is rather limited.
In summary, in order to improve fold recognition, we develop a

new method to estimate the significance of the alignments by SVM.
The alignment between a query protein and a template of length n

is transformed into a feature vector of length n + 1, and then this
feature vector is evaluated by SVM. The output from an SVM is con-
verted to a posterior probability that a query sequence is related to a
template given an SVM output. Tests on benchmark set demonstrate
that the newmethod show significantly better performance compared
with not only PSI-BLAST but also the profile–profile alignment with
Z-score scheme. Improvement is most prominent in recognizing

remotely related proteins at the fold level. This high sensitivity at
the fold level makes the present method a promising tool not only
for the protein structure prediction but also the target selection in the
structural genomics initiatives and increasing structural coverage of
a genome.
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