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Abstract

The function of a substantial percentage of the putative protein-coding open reading frames (ORFs) in viral genomes is unknown. As their

sequence is not similar to that of proteins of known function, the function of these ORFs cannot be assigned on the basis of sequence

similarity. Methods complement or in combination with sequence similarity-based approaches are being explored. The web-based software

SVMProt (http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi) to some extent assigns protein functional family irrespective of sequence similarity

and has been found to be useful for studying distantly related proteins [Cai, C.Z., Han, L.Y., Ji, Z.L., Chen, X., Chen, Y.Z., 2003. SVM-Prot:

web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res. 31 (13).

3692–3697]. Here 25 novel viral proteins are selected to test the capability of SVMProt for functional family assignment of viral proteins

whose function cannot be confidently predicted on by sequence similarity methods at present. These proteins are without a sequence

homolog in the Swissprot database, with its precise function provided in the literature, and not included in the training sets of SVMProt. The

predicted functional classes of 72% of these proteins match the literature-described function, which is compared to the overall accuracy of

87% for SVMProt functional class assignment of 34582 proteins. This suggests that SVMProt to some extent is capable of functional class

assignment irrespective of sequence similarity and it is potentially useful for facilitating functional study of novel viral proteins.

D 2004 Elsevier Inc. All rights reserved.
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Introduction

The complete genomes of 1536 viruses have been

sequenced (viral genomes at NCBI http://www.ncbi.nlm.

nih.gov/genomes/static/vis.html). Knowledge of these

genomes has facilitated mechanistic study of viral infections

and provided important clues for searching molecular

targets of antiviral therapeutics (Herniou et al., 2003; Marra

et al., 2003; Miller et al., 2003). The function of over 15%

of the putative protein-coding open reading frames (ORFs)

in these viral genomes is unknown (Herniou et al., 2003;

Marra et al., 2003; Miller et al., 2003). Determination of the
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function of these unknown ORFs is important for a more

comprehensive understanding of the molecular mechanism

of specific virus and for searching novel targets for antiviral

drug development.

The sequence of many of these unknown ORFs has no

significant similarity to proteins of known functions, and

their functions are difficult to probe on the basis of sequence

similarity. For instance, 50%, 100%, 20%, and 67% of the

unknown ORFs in the recently determined genomes of Fer-

de-lance virus (Makeyev and Bamford, 2004), Grapevine

fleck virus (Sabanadzovic et al., 2001), Indian citrus

ringspot virus (Rustici et al., 2002), and SARS coronavirus

(He et al., 2004) are without a homolog in Swissprot

database (Boeckmann et al., 2003) based on BLAST search

against all Swissprot entries as of September 2004. This
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suggests that a significant percentage of new viral proteins

are likely to have no known sequence homolog. It is thus

desirable to explore alternative methods or combination of

methods for providing useful hint about the function of

unknown viral ORFs.

Various alternative methods for probing protein function

have been developed. These include evolutionary analysis

(Benner et al., 2000; Eisen, 1998), hidden Markov models

(Fujiwara and Asogawa, 2002), structural consideration (Di

Gennaro et al., 2001; Teichmann et al., 2001), protein/gene

fusion (Enright et al., 1999; Marcotte et al., 1999), protein–

protein interactions (Bock and Gough, 2001), motifs (Hodges

and Tsai, 2002), family classification by sequence clustering

(Enright et al., 2002), and functional family prediction by

statistical learning methods (Cai et al., 2003, 2004; Han et al.,

2004; Jensen et al., 2002; Karchin et al., 2002).

In the absence of clear sequence or structural similarities,

the criteria for comparison of distantly related proteins

become increasingly difficult to formulate (Enright and

Ouzounis, 2000). Moreover, not all homologous proteins

have analogous functions (Benner et al., 2000). The

presence of shared domain within a group of proteins does

not necessarily imply that these proteins perform the same

function (Henikoff et al., 1997). Therefore, careful evalua-

tion is needed to determine which method or combination of

methods is useful for facilitating functional study of novel

proteins with no homology to proteins of known function.

The web-based software SVMProt (http://jing.cz3.nus.

edu.sg/cgi-bin/svmprot.cgi) to some extent has shown some

potential for assigning the functional class of distantly

related proteins and homologous proteins of different

functions as well as homologous proteins (Cai et al.,

2003, 2004). It classifies proteins into functional classes

defined from activities or physicochemical properties rather

than sequence similarity (Bock and Gough, 2001; Cai et al.,

2003, 2004; Han et al., 2004; Karchin et al., 2002). In

developing SVMProt, proteins in a training set, represented

by their sequence-derived physicochemical properties, are

projected onto a hyperspace where proteins in a class are

separated from those outside the class by a hyperplane. By

projecting a new sequence onto the same hyperspace,

SVMProt determines whether the corresponding protein is

a member of that class based on its location with respect to

the hyperplane. The accuracy of SVMProt depends on the

diversity of the protein samples, the quality of the

representation of protein properties, and the efficiency of

the statistical learning algorithm. To some extent, no

sequence similarity is required per se. Thus SVMProt may

be potentially explored for facilitating functional assignment

of proteins whose function cannot be assigned on the basis

of sequence similarity.

This work evaluates the usefulness of SVMProt for

predicting the functional class of viral ORFs of unknown

function. It is assessed by using novel viral proteins that are

without a single homolog in the SwissProt database

(Boeckmann et al., 2003), with their precise function
described in the literature, and are not included in the

training sets of SVMProt. These proteins are collected from

an unbiased search of Medline (Wheeler et al., 2003) and

SwissProt database (Boeckmann et al., 2003). The SVMProt

predicted functional classes of these proteins are compared

with the function described in the literature and databases to

evaluate to what extent SVMProt are useful for functional

class assignment of novel viral proteins. The prediction

accuracy for assignment of these novel proteins is compared

with the overall accuracy of the SVMProt assignment of a

large number of proteins to examine the level of sequence

similarity independence of SVMProt classification.
Results and discussion

Table 1 gives SVMProt ascribed functional classes for

each of the 25 novel viral proteins together with literature-

described function. More than one class may be charac-

terized by SVMProt and the probability of correct prediction

for each class is also given in Table 1. There are 18 proteins

with the top hit of the SVMProt assigned functional class

matching the literature-described function, representing

72% of the novel viral proteins studied in this work. These

proteins are MotA protein of bacteriophage T4 (Gerber and

Hinton, 1996), outer capsid protein VP4 of bovine rotavirus

(serotype 10/strain B223) (Hardy et al., 1992), ADOMetase

of bacteriophage T3 (Hughes et al., 1987), R.CviJI of

chlorella virus IL3A (Skowron et al., 1995), exonuclease of

bacteriophage lambda (Sanger et al., 1982), R.CviAII of

paramecium bursaria chlorella virus 1 (Zhang et al., 1992),

ORF13 of haemophilus phage HP1 (Esposito et al., 1996),

Protein kinase of enterobacteria phage T7 (Dunn and

Studier, 1983), DNA-directed RNA polymerase of African

swine fever virus (strain BA71V) (Yanez et al., 1995), AGT

(Miller et al., 2003), BGT (Miller et al., 2003; Tomaschew-

ski et al., 1985), DNK (Broida and Abelson, 1985),

Endonuclease II (Sjoberg et al., 1986), Endonuclease V

(Valerie et al., 1984), Gp61.9 (Valerie et al., 1986), IRF

protein (Chu et al., 1986), and I-TevII (Tomaschewski and

Ruger, 1987) of enterobacteria phage T4.

MotA protein of bacteriophage T4 has been found to be a

transcription activator that binds to DNA (Gerber and

Hinton, 1996) and the far-C-terminal region of the sigma70

subunit of Escherichia coli RNA polymerase (Pande et al.,

2002). The top hit of SVMProt predicted functional class for

this protein is the DNA-binding, which matches with

literature-described functions. Bovine rotavirus is a dou-

ble-stranded RNA virus that is naked. Thus, the outer capsid

protein VP4 of bovine rotavirus (serotype 10/strain B223) is

located at the viral surface acting as part of the viral coat

(Hardy et al., 1992). This protein is predicted by SVMProt

as a coat protein that is consistent with literature-described

function. The other 14 proteins are enzymes, and these are

all correctly assigned by SVMProt to the respective enzyme

EC class.
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Because these proteins have no homolog of known

function in the SwissProt entries of Swissprot database

based on PSI-BLAST search, our study suggests that

SVMProt has certain level of capability for providing useful

hint about the functional class of novel proteins with no or

low homology to known proteins, and this capability is not

based on sequence similarity or clustering. The overall

accuracy of 72% for the assignment of the novel viral

proteins is smaller, but not too far away, than that of 87% for

SVMProt functional class assignment of 34582 proteins.

This indicates certain level of the sequence-similarity-

independent nature of SVM protein classification.

Several factors may affect the accuracy of SVMProt for

functional characterization of novel plant proteins. One is

the diversity of protein samples used for training SVMProt.

It is likely that not all possible types of proteins, particularly

those of distantly related members, are adequately repre-

sented in some protein classes. This can be improved along

with the availability of more protein data. Not all distantly

related proteins of the same function have similar structural

and chemical features. There are cases in which different

functional groups, unconserved with respect to position in

the primary sequence, mediate the same mechanistic role,

due to the flexibility at the active site (Todd et al., 2002).

This plasticity is unlikely to be sufficiently described by the

physicochemical descriptors currently used in SVMProt.

Therefore, SVMProt in the present form is not expected to

be capable of classification of these types of distantly related

enzymes.

Some of the SVMProt functional classes are at the level

of families and superfamilies that may include a broad

spectrum of proteins. It has been shown that SVM works

not as well as HMM for distinguishing proteins in a

superfamily, but may be more accurate with subfamily

discrimination (Karchin et al., 2002). Thus, the use of some

large families and superfamilies as the basis for classifica-

tion may affect the prediction accuracy of SVMProt to some

extent.

SVMProt prediction may be further improved by using

protein subfamilies as the basis of classification, more

comprehensive set of protein samples, and more refined

protein descriptors. SVMProt optimization procedure and

feature vector selection algorithm may also be improved by

adding additional constraints, and by incorporating inde-

pendent component analysis and kernel PCA in the

preprocessing steps.
Concluding remarks

SVMProt shows certain level of capability for predicting

functional class of a number of novel viral proteins. This

suggests that SVMProt is potentially useful to a certain

extent for providing useful hint about the function of

distantly related proteins in viruses as well as in other

organisms. Further improvements in protein functional
family coverage, sample collections, and SVM algorithm

may enable the development of SVMProt into a practical

tool for facilitating functional study of unknown ORFs in

virus genomes and other genomes.
Methods

Selection of viral proteins

The key words, bnovel protein virusQ or bnovel viral

proteinQ, are used to search the Medline (Wheeler et al.,

2003) and the Swissprot database (Boeckmann et al., 2003)

for finding viral proteins that are both described as novel

and with their precise function provided. As the search of

the Medline is confined to the abstracts, those proteins

whose function is not explicitly hinted in an abstract are not

selected. Thus, the selected proteins likely account for a

portion of the known novel viral proteins with available

functional information. PSI_BLAST (Altschul et al., 1997)

sequence analysis is subsequently conducted on each of

these novel viral proteins against all SwissProt entries in the

SwissProt protein database (Boeckmann et al., 2003) so that

those with at least one sequence homolog of known function

(including that of the same protein in different species) are

removed. The commonly used criterion for homologs, the

similarity score e-value b the inclusion threshold value of

0.005 (Altschul et al., 1997), is used in this work. Finally,

those proteins that are in the training sets of SVMProt are

removed. A total of 25 novel viral proteins are identified in

this process, which together with their protein accession

number and literature-described functional indications and

related references are given in Table 1.

Computational method

SVMProt is based on a statistical learning method

support vector machines (SVM) (Burges, 1998). In addition

to the prediction of protein functional class (Cai et al., 2003,

2004; Han et al., 2004; Karchin et al., 2002), SVM has also

been used for a variety of protein classification problems

including fold recognition (Ding and Dubchak, 2001),

analysis of solvent accessibility (Yuan et al., 2002),

prediction of secondary structures (Hua and Sun, 2001),

and protein–protein interactions (Bock and Gough, 2001).

As a method that uses sequence-derived physicochemical

properties of proteins as the basis for classification, SVM

may be particularly useful for functional classification of

distantly related proteins and homologous proteins of

different functions (Cai et al., 2003, 2004).

There are 75 protein functional classes currently covered

by SVMProt. These include 46 enzyme families, 13

channel/transporter families, 4 RNA-binding protein fami-

lies, DNA-binding proteins, G-protein-coupled receptors,

nuclear receptors, Tyrosine receptor kinases, cell adhesion

proteins, coat proteins, envelope proteins, outer membrane



Table 1

Novel viral proteins, literature-described functional indications as suggested from experiment and/or sequence analysis, and SVMProt predicted functions

Protein (SwiMSProt

or NCBI accession

number)

Virus Literature-described

function (reference)

Function characterized by SVMProt

(probability of correct characterization

P value)

Predict on

status

ADOMetase

(P07693)

Bacteriophage T3 Adenosylmethionine

hydrolase (EC 3.3.1.2)

(Hughes et al., 1987)

EC 3.3: hydrolase of ether bonds (99.0%);

EC 2.7: transferase of phosphorus-containing

groups (71.3%); DNA-binding proteins (65.4%);

M

AGT (P04519) Enterobacteria

phage T4

DNA alpha-

glucosyltransferase

(EC 2.4.1.26)

(Miller et al., 2003)

EC 2.4: glycosyltransferase (80.4%);

EC 2.7: transferase of phosphorus-containing

groups (68.5%)

M

BGT (P04547) Enterobacteria

phage T4

DNA beta-

glucosyltransferase

(EC 2.4.1.27)

(Miller et al., 2003;

Tomaschewski et al., 1985)

EC 2.4: glycosyltransferases (95.7%);

EC 2.5: transferase of alkyl or aryl groups,

other than methyl groups (80.4 %)

M

DNA-directed RNA

polymerase

(P42488)

African swine

fever virus

(strain BA71V)

DNA-directed RNA

polymerase, subunit 10

homolog (EC 2.7.7.6)

(Yanez et al., 1995)

EC 2.7: transferase of phosphorus-containing

groups (99.0%)

M

DNK (P04531) Enterobacteria

phage T4

dNMPkinase (EC 2.7.4.13)

(Broida and Abelson, 1985)

EC 2.7: transferase of phosphorus-containing

groups (99.0%); EC 2.4: glycosyltransferase

(96.4%); EC 1.1: oxidoreductase of the

CH–OH group of donors (71.3%)

M

Endonuclease II

(P07059)

Enterobacteria

phage T4

Endonuclease II

(EC 3.1.21.1)

(Sjoberg et al., 1986)

EC 3.1: hydrolase of ester bonds (99.0%) M

Endonuclease IV

(P39250)

Enterobacteria

phage T4

Endonuclease IV

(EC 3.1.21.-)

(Miller et al., 2003)

No function predicted NM

Endonuclease V

(P04418)

Enterobacteria

phage T4

Endonuclease V

(EC 3.1.25.1)

(Valerie et al., 1984)

EC 3.1: hydrolase of ester bonds (99.0%) M

Exonuclease

(P03697)

Bacteriophage

lambda

Exonuclease

(EC 3.1.11.3)

(Sanger et al., 1982)

EC 3.1: hydrolase of ester bonds (99.0%);

EC 4.1: carbon–carbon lyases (88.1%);

EC 2.7: transferase of phosphorus-containing

groups (68.5%); EC 1.1: oxidoreductase of

the CH–OH group of donors (58.6%)

M

FALPE

(Q65010)

Amsacta moorei

Entomopoxvirus

Associated with unique

cytoplasmic structures,

filament-associated protein

(Alaoui-Ismaili and

Richardson, 1996)

No function predicted NM

Gp61.9 (P13312) Enterobacteria

phage T4

Ribonuclease (EC 3.1.-.-)

(Valerie et al., 1986)

EC 3.1: hydrolase of ester bonds (99.0%) M

IRF protein

(P13299)

Enterobacteria

phage T4

Intron-associated

endonuclease 1 (EC 3.1.-.-)

(Chu et al., 1986)

EC 3.1: hydrolase of ester bonds (99.0 %);

DNA-binding protein (83.9%)

M

I-TevII (P07072) Enterobacteria

phage T4

Intron-associated

endonuclease 2 (EC 3.1.-.-)

(Tomaschewski and Ruger,

1987)

EC 3.1: hydrolase of ester bonds (99.0%) M

MotA protein

(P22915)

bacteriophage T4 DNA-binding, transcription

regulation (Gerber and

Hinton, 1996)

DNA-binding proteins (99.0 %); EC 3.1:

hydrolase acting on ester bonds (68.5%)

M

ORF13 (P51715) Haemophilus

phage HP1

Putative adenine-specific

methylase (EC 2.1.1.72)

(Esposito et al., 1996)

EC 2.1: transferase of one-carbon groups

(99.0%); outer membrane (58.6%);

mRNA-binding protein (58.6%)

M

Outer capsid

protein VP4

(P35746)

Bovine rotavirus

(serotype 10/strain B223)

surface outer capsid protein

(Hardy et al., 1992)

Coat protein (99.0%) M

Possible CC

chemokine

(NP_042976)

Human herpesvirus 6 chemokine like

(Luttichau et al., 2003)

No function predicted NM

(continued on next page)
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Protein (SwiMSProt

or NCBI accession

number)

Virus Literature-described

function (reference)

Function characterized by SVMProt

(probability of correct characterization

P value)

Predict on

status

Protein kinase

(P00513)

Enterobacteria phage T7 Protein kinase (EC 2.7.1.37)

(Dunn and Studier, 1983)

EC 2.7: transferase of phosphorus-

containing groups (99.0 %)

M

Putative BARF0

protein (Q8AZJ4)

Epstein–Barr virus Membrane associated

and encodes three arginine-rich

motifs of RNA-binding

properties (Fries et al., 1997)

EC 4.1.-.-: carbon–carbon lyase (58.6%) NM

R.CviAII (P31117) Paramecium bursaria

Chlorella virus 1

Endonuclease CviAII

(EC 3.1.21.4)

(Zhang et al., 1992)

EC 3.1: hydrolase of ester bonds (99.0%) M

R.CviJI (P52283) Chlorella virus IL3A Type II restriction enzyme

CviJI (EC 3.1.21.4)

(Skowron et al., 1995)

EC 3.1: hydrolase of ester bonds (99.0%);

rRNA-binding proteins (98.8%); EC 3.4:

peptidase (68.5%)

M

SeMNPV

ORF18

(AAF33548)

Spodoptera exigua

nucleopolyhedrovirus

Transferase (Wilfred

et al., 2002)

No function predicted NM

SPLT13 (NP_258405) SpLtMNPV virus A noval envelope

protein (Yin et al., 2003)

No function predicted NM

TRL10 (AAL27474) Human

cytomegalovirus (HCMV)

Structural envelop

glycoprotein

(Spaderna et al., 2002)

Transmembrane (98.2%) NM

The SVMProt predicted functions are categorized in one of the four classes: The first class is M (matched), in which all of the literature-described functional

indications are predicted. The second is PM (partially matched), in which some of the literature-described functional indications are predicted. The third is WC

(weakly consistent), in which some of the predicted functions can be considered to be consistent with literature-described functional indications on an

inconclusive basis. The fourth is NM (not matched), in which No function predicted of the literature-described functions matched or consistent with a predicted

function.

Table 1 (continued )
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proteins, structural proteins, and growth factors. Two

broadly defined families of antigens and transmembrane

proteins are also included. The majority of known types of

viral proteins are included in these classes.

Representative proteins of a particular functional class

(positive samples) and those do not belong to this class

(negative samples) are needed to train a SVMProt classifier

for this class. The positive samples of a class are

constructed by using all of the known distinct protein

members in that class. Because of the enormous number of

proteins, the size of negative samples needs to be restricted

to a manageable level by using a minimum set of

representative proteins. One way for choosing representa-

tive proteins is to select one or a few proteins from each

protein domain family. The negative samples of a class are

selected from seed proteins of the 7316 curated protein

families (domain-based) in the Pfam database excluding

those families that have at least one member belong to the

functional class. Pfam families are constructed on the

basis of sequence similarity. The purpose of using Pfam

proteins is to ensure that the negative samples are evenly

distributed in the protein space. Sequence similarity is not

required for selecting positive samples. In this sense,

SVMProt is to some extent independent of sequence

similarity.

The SVMProt training system for each family is

optimized and tested by using separate testing sets of both

positive and negative samples. While possible, all the

remaining distinct proteins in each functional family (not
in the training set of that family) are used as positive samples

and all the remaining representative seed proteins in Pfam

curated families are used to construct negative samples in a

testing set. The performance of SVMProt classification is

further evaluated by using independent sets of both positive

and negative samples. There is no duplicate protein in each

training, testing, or independent evaluation set.

Data set construction can be demonstrated by an

illustrative example of viral coat proteins. The key word

bvirus coat proteinQ is used to search the Swissprot, which

finds 3012 entries. These entries are checked to remove non-

coat proteins, redundant entries, and putative proteins, which

gives 848 positive samples. These positive samples cover

140 Pfam families; thus, 14758 seed proteins of the

remaining 7176 Pfam families are used as the negative

samples. These positive and negative samples are further

divided into 346 and 1474 training, 305 and 8370 testing,

and 197 and 4914 independent evaluation sets using the

procedure described above.

Not all of the SVMProt classes are at the same

hierarchical level. These classes are mixtures of subfamilies,

families, and superfamilies. Some classes, such as antigen,

need to be more clearly defined into specific subclasses.

While it is desirable to define all of the classes at the same

level, this is not yet possible because of insufficient data for

the subhierarchies of some families and superfamilies.

Effort is being made to collect sufficient data so that

SVMProt classification systems can be constructed on the

basis of a more evenly distributed family structures.
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Nonetheless, prediction on the basis of the current structures

provides useful hint about the function of a protein.

SVMProt is trained for protein classification in the

following manner. First, every protein sequence is repre-

sented by specific feature vector assembled from encoded

representations of tabulated residue properties including

amino acid composition, hydrophobicity, normalized Van

der Waals volume, polarity, polarizability, charge, surface

tension, secondary structure, and solvent accessibility for

each residue in the sequence (Cai et al., 2003). The feature

vectors of the positive and negative samples are used to train

a SVMProt classifier. The trained SVMProt classifier can

then be used to classify a protein into either the positive

group (protein is predicted to be a member of the class) or

the negative group (protein is predicted to not belong to the

class).

The theory of SVM has been described in the literature

(Burges, 1998). Thus, only a brief description is given here.

SVM is based on the structural risk minimization (SRM)

principle from statistical learning theory (Burges, 1998). In

linearly separable cases, SVM constructs a hyperplane that

separates two different groups of feature vectors with a

maximum margin. A feature vector is represented by xi,

with physicochemical descriptors of a protein as its

components. The hyperplane is constructed by finding

another vector w and a parameter b that minimizes twt2

and satisfies the following conditions:

wdxi þ bzþ1; for yi ¼ þ1 Group1 positiveð Þ ð1Þ

wdxi þ bV�1; for yi ¼ �1 Group2 negativeð Þ ð2Þ

where yi is the group index, w is a vector normal to the

hyperplane, |b| / twt is the perpendicular distance from the

hyperplane to the origin and twt2 is the Euclidean norm of

w. After the determination of w and b, a given vector x can

be classified by:

sign wd xð Þ þ b½ � ð3Þ

In nonlinearly separable cases, SVM maps the input

variable into a high dimensional feature space using a kernel

function K(xi, xj). An example of a kernel function is the

Gaussian kernel that has been extensively used in different

protein classification studies (Bock and Gough, 2001;

Burges, 1998; Cai et al., 2002; Ding and Dubchak, 2001;

Hua and Sun, 2001; Karchin et al., 2002; Yuan et al., 2002):

K xi; xj
� �

¼ e�txj�xit
2
=2r2 ð4Þ

Linear support vector machine is applied to this feature

space and then the decision function is given by:

f xð Þ ¼ sign
X1
i¼1

a0i yiK x; xið Þ þ b

 !
ð5Þ
where the coefficients ai
0 and b are determined by max-

imizing the following Langrangian expression:

Xl
i¼1

ai �
1

2

Xl
i¼1

Xl
j¼1

aiajyiyjK xi; xj
� �

ð6Þ

under conditions:

aiz 0 and
Xl
i�1

aiyi ¼ 0 ð7Þ

A positive or negative value from Eq. (3) or Eq. (5)

indicates that the vector x belongs to the positive or negative

group, respectively. To further reduce the complexity of

parameter selection, hard margin SVM with threshold

instead of soft margin SVM with threshold is used in

SVMProt.

Scoring of SVM classification of proteins has been

estimated by a reliability index and its usefulness has been

demonstrated by statistical analysis (Cai et al., 2003; Hua

and Sun, 2001). A slightly modified reliability score, R

value, is used in SVMProt:

R� value ¼
1 if 0bd b0:2

d=0:2þ 1 if 0:2Vd b1:8
10 if dz1:8

8<
: ð8Þ

where d is the distance between the position of the vector of

a classified protein and the optimal separating hyperplane in

the hyperspace, d N 0 indicates the sample belongs to the

positive group and d b 0 the negative group. There is a

statistical correlation between R value and expected

classification accuracy (probability of correct classification)

(Cai et al., 2003; Hua and Sun, 2001). Thus, another

quantity, P value, is introduced to indicate the expected

classification accuracy. P value is derived from the

statistical relationship between the R value and actual

classification accuracy based on the analysis of 9932

positive and 45,999 negative samples of proteins (Cai et

al., 2003).
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