
the levels of their corresponding RNAs. It is
therefore a challenge to fully understand
tumour behaviour, based on a single type of
analysis. The factors that determine the con-
sequences of a particular event or alteration
can be highly context dependent, and are
governed by the spatial and temporal activity
of numerous interacting components. The
intricate nature of the contributions of many
factors ultimately determines the impact that
a particular alteration has on the properties of
a tumour or a precursor lesion.

There are two basic approaches to address
the complexity of cancer. One is to reduce
complexity through analysis of experimental
models, such as cell lines or animal models, to
characterize the fundamental processes of
tumour growth and to elucidate the effects of
single genes. Another is to integrate large data
sets, to yield a model for tumour development
and behaviour. Each approach has its own
advantages and disadvantages. The first
approach has been effective in many respects;
for example, the early stages of tumorigenesis
have been investigated using mouse models,
and transformation and metastasis have been
modelled in Drosophila1. However, in studying
animal models of cancer, many factors that are
relevant to human cancer are lost. The conclu-
sions reached from these models are therefore
not always applicable to human tumours2.
The second approach, involving integration of
large data sets, is challenging in part because
only a limited number of samples, such as
tumours or preneoplastic tissues, can be
analysed in a given study. This makes data
interpretation and model development diffi-
cult, given the large amount of heterogeneity
between human tumours.

Profiling strategies 
Improving our understanding of cancer and
developing theoretical models will require an
increased understanding of the contribu-
tions of and interactions between the
numerous components that contribute to
tumour formation and progression (FIG. 1).
Strategies are available to profile changes at
various levels, including the genome, tran-
scriptome and proteome (TABLE 1). The host
genome can be scanned for inherited varia-
tions such as mutations and polymorphisms
that might contribute to cancer risk. Tumour
cells and their precursors can be assayed for
genomic alterations, such as chromosomal
deletions or amplification, or changes in
DNA methylation status, that promote their
proliferation and survival. The cancer-cell
transcriptome can be examined for patterns
of gene expression, or its proteome analysed
to uncover alterations in proteins, that con-
tribute to tumour development or progres-
sion and would not be predicted by genome
or transcriptome analysis.

A challenge for global profiling is the
need to capture all the elements of the indi-
vidual compartments that are profiled, such
as the whole transcriptome or the whole pro-
teome. Although this is possible for the tran-
scriptome, other compartments, such as the
proteome and metabolome, have numerous
features that are difficult to capture, requir-
ing several different profiling approaches
(TABLE 1). For example, it is not possible to
assay for protein functional activity, profile
protein–protein interactions, and assess pro-
tein modifications all with the same plat-
form. In all, there remains a substantial need
to improve the breadth, sensitivity and
throughput of global-profiling technologies.

In addition to global profiling of DNA,
RNA or protein in normal, premalignant
and malignant tissues, and in biological 
fluids, a comprehensive analysis would
measure other characteristics from these
samples to detect changes in nutritional,
metabolic and immune status, as well as to
detect environmental exposures. These

Tumours are complex biological systems.
No single type of molecular approach fully
elucidates tumour behaviour, necessitating
analysis at multiple levels encompassing
genomics and proteomics. Integrated data
sets are required to fully determine the
contributions of genome alterations, host
factors and environmental exposures to
tumour growth and progression, as well as
the consequences of interactions between
malignant or premalignant cells and their
microenvironment. The sheer amount and
heterogeneous nature of data that need to
be collected and integrated are daunting,
but effort has already begun to address
these obstacles.

In the 1980s, at the dawn of the era of molec-
ular medicine, researchers believed that can-
cer was caused by dysregulation of a few
oncogenes or tumour-suppressor genes. The
identification of these genes would therefore
lead to effective approaches for preventing or
treating cancer. Substantial progress has been
made in uncovering cancer genes that are
altered through point mutations, deletions,
amplifications, rearrangements or other
events, and as a result effective targeted thera-
pies for certain cancers have been developed.
It has become clear, however, that human
tumours are more complex and heteroge-
neous than expected, and are caused by
defects in numerous pathways and factors
that operate at many levels. For example, a
gene can be amplified 100-fold in certain
tumours with no demonstrable effect on
RNA levels for that gene. Alternatively, pro-
tein levels can be increased, decreased or
modified with no demonstrable changes in
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included variables such as clinical and patholog-
ical characteristics of the study individuals and
their tumours, or mutations in cancer genes
such as TP53 and RAS. However limited in
scope, these studies illustrate the potential
impact of integrating data across numerous data
sets in elucidating certain features of cancer3–8.

Integrating gene-expression data from different
sources. Profiling gene expression using DNA
arrays has had a tremendous impact on bio-
medical research.Although the field is still in its
infancy, there is increasing emphasis on inte-
gration of diverse sets of data. From a cancer
research point of view, applications of global
profiling of gene expression include uncover-
ing unsuspected associations between genes, or
identifying specific clinical features of cancer
that result in novel molecular-based disease
classifications. For example, DNA microarray
analysis has been used to associate specific
gene-expression profiles with different clinical
outcomes of patients with the same types of
tumours (responders versus non-responders9),
or with cancer subtypes of the same lineage
(high-stage versus low-stage tumours). Specific
gene-expression signatures have also been
associated with tumours of different lineages10.

Lamb et al.3 performed a study that illus-
trates the merits of integrating gene-expression
data from several sources to develop a mecha-
nistic understanding. They integrated gene-
expression data from cell lines and human
tumours to uncover a cyclin-dependent kinase
(CDK)-independent mechanism of cyclin D1
function. Cyclin D1, which activates CDK, is
frequently overexpressed in human tumours,
but the mechanisms by which this promotes
tumorigenesis has been unclear. Cyclin D1 and
a cyclin-D1 mutant that was incapable of acti-
vating CDK4 were each ectopically expressed
in cultured human mammary epithelial cells.

the few large-scale integrated molecular-
profiling efforts undertaken have combined
data of a similar nature, notably combining
transcriptome data obtained from several
sources. Some studies have combined data
obtained through two different global-profil-
ing platforms (genomic and transcriptomic,
or transcriptomic and proteomic) for the
same set of study samples (such as lung
tumours). These integrated data sets have also

types of data come from metabolic and nutri-
tional profiles, immunohistochemical assays,
assays of host immunity to tumour antigens,
and patient questionnaires. Such data need to
be integrated with molecular profile data.

Integrating data sets
So far, very few cancer studies have attempted
to integrate data sets that were obtained by
several different profiling techniques. Rather,

Table 1 | Profiling strategies for genome-related components

Platform What we can learn What is detected Tools used for analysis

Genome The hereditary components to cancer, Chromosome structural changes; gene DNA sequencing; cytogenetics; 
as well as genome alterations in somatic copy-number changes; gene CGH; array CGH; SNP analysis; RLGS
cells that lead to cancer rearrangements; mutations/polymorphisms;

methylation changes

Transcriptome Changes in gene expression that are Changes in RNA abundance; alterations Differential-display analysis; SAGE;
associated with cancer in alternative splicing DNA microarray analysis; PCR- and

non-PCR-based gene-expression assays

Proteome How proteins are modified or how Protein levels; post-translational Sample-enrichment strategies
their levels change in tumours modifications; localization; (fractionation, protein tagging);

protein–protein interactions; separation-based profiling (2D gels, MS,
enzymatic activity LC, LC-MS); non-separation-based

strategies (protein microarrays, direct 
MS analysis); protein-detection 
strategies (immunohistochemistry, 
immunofluorescence)

2D, two dimensional; CGH, comparative genomic hybridization; LC, liquid chromatography; MS, mass spectrometry; PCR, polymerase chain reaction; RLGS, restriction
landmark genome scanning; SAGE, serial analysis of gene expression; SNP, single nucleotide polymorphism.

Heredity/polymorphisms
Host

Age

Environment

Tumour microenvironment Cancer-cell genome

Infiltrating cells
Stroma
Cytokines
Growth factors

DNA mutation/repair
Methylation
Amplification
Deletions/rearrangements

Dietary factors

Tumour development

Tumour sample

Microdissection

Extraction

DNA RNA Protein

Genomics Transcriptomics Proteomics

Figure 1 | Numerous components must be integrated to study the molecular basis of human
cancer. Several host factors contribute to tumorigenesis in humans, including diet, environmental factors,
polymorphisms and mutations in susceptibility genes, age and immunity. Cells undergo genomic changes
(DNA mutations and repair, methylation, amplification, deletions and rearrangements), leading to
tumorigenesis. Tumour development also depends on factors in the microenvironment — some of these
are produced locally, whereas others are produced systemically (growth factors, infiltrating cells and
cytokines). Reciprocal interactions between the premalignant and malignant cells, stromal cells,
extracellular-matrix components, various inflammatory cells and a range of soluble mediators therefore
contribute to tumour development and progression. Once tumour samples are obtained, genomic,
transcriptomic and proteomic tools can be used to profile specific compartments.
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comprising gene-expression measurements
from over 3,700 tumour samples were col-
lected and analysed. A common transcrip-
tional profile that is activated in most cancer
types, relative to corresponding normal tis-
sues, was delineated from some of the data
sets, providing a meta-signature of neoplastic
transformation (FIG. 2).

Integrating genomic and transcriptomic data.
Most tumours show numerous genomic alter-
ations, but it has been a challenge to identify
those that are required for different stages of
tumour development. As most genome alter-
ations — chromosomal gains and losses, dele-
tions, amplification and methylation — affect
the transcriptome, it would be useful to inte-
grate genome profiling with transcriptome
profiling. Several approaches are now available
to scan the genome for gains and losses.
These include fluorescence in situ hybridiza-
tion, comparative genomic hybridization,
hybridization of genomic DNA to various
types of DNA microarrays, and restriction
landmark genome scanning5–8. Additionally,
oligonucleotide arrays are now available that
can be used to detect single-nucleotide poly-
morphisms and that allow genome-wide loss-
of-heterozygosity maps to be developed from
tumours, including samples isolated by 
laser-capture microdissection12.

Pollack et al. profiled DNA copy-number
alterations across 6,691 mapped human genes
in 44 samples of predominantly advanced,
primary breast tumours and 10 breast cancer
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Twenty-one genes were found to be induced by
both wild-type and mutant cyclin D1, indicat-
ing that these genes are CDK4 independent.
Furthermore, the rapidity with which expres-
sion of these genes was induced indicated the
direct involvement of a transcription factor.A
database of gene-expression profiles from 190
primary human tumours was therefore also
analysed, to identify cyclin-D1 target genes.
The expression pattern of the set of 21 genes
uncovered from in vitro studies was correlated
with the levels of cyclin D1 in human tumours.
A ‘data-mining’ process was applied to several
human tumour gene-expression data sets, to
identify genes that had a pattern of expression
that matched the patterns of the genes that
comprised the cyclin-D1 signature pattern.
The transcription factor C/EBPβ was consis-
tently co-expressed with the set of cyclin-D1
target genes. Functional analyses confirmed
the involvement of C/EBPβ in the transcrip-
tional regulation of cyclin D1. This study 
illustrates the types of findings that can be
uncovered by integrating different sets of data.

Tumour gene-expression patterns are
modulated by many extrinsic factors and by
the microenvironment — these features
could be crucial factors in determining the
response to anticancer drugs. The gene-
expression profiles of in vitro cultures of
cancer cells have been compared with those
of tumours grown in vivo, to determine the
effects of the microenvironment on gene
expression. In one study4, two human cancer
cell lines (a lung adenocarcinoma and a

glioblastoma cell line) were transplanted
into immunodeficient mice and allowed to
form tumours, and the gene-expression pro-
files of these tumours were compared with
those of cells grown in culture. A bioinfor-
matics approach was used to associate genes
into functional classes. The classes of genes
that were expressed at higher levels in cells
grown in vitro were associated with
increased cell division and metabolism,
reflecting the more favourable environment
for cell proliferation. By contrast, in vivo
tumour growth resulted in upregulation of a
significant number of genes involved in
extracellular-matrix formation, cell adhe-
sion, cytokine and metalloproteinase activ-
ity, and neovascularization. When placed in
comparable in vivo tissue environments, the
lung cancer and the glioblastoma cells
expressed different sets of extracellular-
matrix- and cell-adhesion-related genes,
indicating different mechanisms of extracel-
lular interaction at work in the different
tumour types. Importantly, gene products
that are typically targeted by cancer thera-
pies, such as tyrosine kinases, showed varied
expression patterns when the same cancer
cells were grown in vitro versus in vivo. This
provides an indication of why therapeutics
that are effective in in vitro studies might not
always function in vivo.

A study that illustrates the merits of data
sharing among investigators is a meta-analysis
of cancer microarray data11. In this study,
40 published cancer microarray data sets 
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Figure 2 | Integrated gene-expression profile of neoplastic transformation. Public sharing of gene-expression data has led to the identification of 67 genes
that are commonly overexpressed in tumour samples, relative to normal tissue. This ‘meta-signature’ analysis compared ‘cancer versus normal’ gene-expression
signatures from 21 independent microarray data sets. Thirteen distinct cancer types were selected for this figure (listed on the right). White boxes signify genes for
which no changes in expression were observed between tumour and normal cells. Light and dark red boxes signify genes that were significantly overexpressed in
tumour cells, relative to normal tissue. Dark red indicates that the expression level was in the 90th percentile of all samples tested. Figure reproduced with
permission from REF. 11 © (2004) National Academy of Sciences.
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genes, such as the CRK oncogene, showed a
graded pattern of expression among the
tumours. A small number of genes, such as
ERBB2, were only overexpressed in a small
number of tumours, but were also correlated
with poor outcome.

In parallel, proteomic studies were under-
taken to identify proteins associated with
patient outcome20. A leave-one-out cross-
validation procedure that analysed proteins
associated with patient outcome — which
were identified by Cox modelling — indi-
cated that specific protein profiles can be
used to predict the likelihood of survival in
patients with stage-I tumours. Integration of
RNA and protein data from the same
tumours, and from an independent study,
showed that 11 of 27 mRNAs associated with
survival were represented in the profile of
survival-associated proteins. Interestingly,
combined analysis of protein and mRNA
data revealed that 11 components of the gly-
colysis pathway were associated with poor
outcome, either at the protein or RNA levels.
Phosphoglycerate kinase 1 expression was
associated with reduced patient survival
time, based on both RNA and protein stud-
ies, and also based on immunohistochem-
istry analysis using tissue microarrays in an
independent validation set of 117 lung
tumours. The relative abundance of this pro-
tein in tumours led to the assessment of its
levels in the sera of patients with lung cancer,
revealing a correlation between increased
serum levels of phosphoglycerate kinase 1
and poor outcome.

RNA and protein products that are encoded
by the same genes can tell us a lot about
tumour function. Nishizuka et al. analysed
gene-expression patterns of 60 human cancer
cell lines (NCI-60) used by the National
Cancer Institute to screen compounds for
anticancer activity, and measured levels of 52
cancer-related proteins in these cells18.
Clustered image maps of protein levels uncov-
ered two markers that could be used to distin-
guish colon from ovarian adenocarcinomas.
Integration of protein and mRNA data led to
the interesting observation that the levels of
structural proteins were highly correlated with
the levels of their corresponding mRNAs in
the NCI-60 cell lines, whereas the levels of
non-structural proteins were poorly correlated
with those of their corresponding mRNAs.

Gene-expression and proteomic data sets
from lung tumours have also been compared
and integrated, along with serum samples
from the same patients19–21. To determine
whether gene-expression profiles could be
used in prognosis, mRNA profiles in
tumours from 86 newly diagnosed patients,
including 67 with early-stage and 19 with
advanced-stage lung adenocarcinoma, were
measured by oligonucleotide microarray
analysis19. A gene-expression index, based on
expression of the genes that correlated with
survival of the 86 patients, was able to iden-
tify low-risk and high-risk groups among the
patients with stage-I lung adenocarcinomas.
The index included many novel genes that
were not previously associated with survival
in lung adenocarcinoma. A large number of

cell lines13. Parallel DNA microarray-based
measurements of mRNA levels allowed assess-
ment of the extent to which variation in gene
copy number contributes to variation in gene
expression in tumour cells. 62% of highly
amplified genes showed increased expression
levels. Additionally, DNA copy number corre-
lated with gene expression across a range of
DNA copy-number alterations, including
deletions. On average, a twofold change in
DNA copy number was associated with a cor-
responding 1.5-fold change in mRNA levels. It
was estimated that overall, at least 12% of all
the variation in gene expression among the
breast tumours analysed was attributable 
to underlying variation in gene copy number,
the remainder presumably attributable to a
multitude of other factors.

In another study14, restriction landmark
genomic scanning was used to detect ampli-
fied genomic DNA fragments in 47 primary
ovarian tumours. This approach uncovered
amplification of the LMYC oncogene in sev-
eral tumours. Transcriptome profiling of
these tumours using oligonucleotide microar-
rays demonstrated frequent overexpression of
LMYC in tumour cells, compared with cells of
the normal ovarian surface epithelium —
even in tumours without genomic amplifica-
tion of LMYC — indicating that tumours use
different mechanisms to upregulate LMYC
expression. This finding prompted an assess-
ment of the expression status of various
members of the MYC gene family in ovarian
tumours. Interestingly, a pattern was uncov-
ered in which deregulated expression of one
of the members of the MYC gene family was
observed in most of the tumours.

Integrating transcriptome and proteome 
profiling. There is a need to profile gene
expression at the level of the proteome and to
correlate changes in gene-expression profiles
with changes in proteomic profiles. The two
are not always linked — numerous alterations
occur in protein levels that are not reflected at
the RNA level15. Translational control is an
important cellular process that is regulated by
several genes with tumour-suppressor or
oncogenic properties16. For example, the pro-
teins encoded by the tumour-suppressor
genes tuberous sclerosis 1 (TSC1) and TSC2
form a functional complex that inhibits the
phosphorylation of S6 kinase and 4EBP1 —
two key regulators of mRNA translation.
TSC2 functions as a key regulator of the TOR
pathway, which regulates protein synthesis,
cell growth and viability in response to
changes in cellular energy levels17.

Given the distinct regulation of RNA and
protein levels, integration of data pertaining to

Cancer
models

Integrated data

CGAP NCBI NCICB

GOCaCore

Local genomic data Local proteomic data Local transcriptomic data Other local data

Public databases and resources

Model 
testing

Figure 3 | Path from data collection and integration to hypothesis testing. Data produced by one
research group can be combined with data in public databases such as the Cancer Genome Anatomy
Project (CGAP) and further processed through resources available through various web sites — for example,
the National Center for Biotechnology Information (NCBI), National Cancer Institute Center for Bioinformatics
(NCICB), CaCore and Gene Ontology (GO) web sites — to yield integrated data sets (for further information on
these web sites, see the online links box). This type of ‘data mining’ using statistical and informatics tools can
lead to models for tumour behaviours such as metastasis, recurrence or response to therapy. Models can
then be tested experimentally and/or through collection and analysis of additional data sets, and then refined.



reference diagrams can be readily integra-
ted with genomic and proteomic data.
GenMAPP (Gene MicroArray Pathway
Profiler) is a freely available program for
viewing and analyzing expression data on
‘microarray pathway profiles’ (MAPPs) repre-
senting biological pathways or any other
functional grouping of genes27. Over 50
MAPP files depicting various biological path-
ways and gene families are available.
GenMAPP includes gene annotation infor-
mation as described by the Gene Ontology
(GO) Consortium28. The GenMAPP program
identifies GO terms that seem to be over-rep-
resented in a data set, providing clues to rele-
vant biological processes. Transpath is an
online web database on signal transduction
and gene-regulatory pathways that lists over
15,000 protein–protein interactions involving
several thousand genes29. The Kinase Pathway
Database30 uses a natural language processing
algorithm to automatically extract protein
interaction information from the literature.

Other resources include public databases
of protein–protein interactions, namely the
Biomolecular Interaction Database (BIND)31

and the Database of Interacting Proteins32.
However, the organism most represented in
these databases is Saccharomyces cerevisiae,
for which substantial protein–protein inter-
action data have been generated. (For further
information on the resources discussed
above and in the following section, see the
online links box.)
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Challenges
The studies presented above, although rela-
tively simple from the point of view of extent
of integration of heterogeneous data sets, illus-
trate the merits of an integrated approach to
tumour profiling. However, collecting and
integrating sets of data that are quite diverse
represents a substantial undertaking that
necessitates resources not available to most
investigators. Experimental data must be
processed and stored in a manner that is com-
patible with integration with other external,
scattered data sources. Further complications
stem from the substantial variation in the
nomenclature used to identify the same object
and to designate its attributes. For example, the
protein encoded by a gene can be designated
differently from the gene itself. Annotation
with controlled vocabularies is required to
achieve comparability across data sets. Even
with adequate resources, the data generated is
not always sufficiently reliable for a meaningful
integrated analysis. For example, for genes that
are expressed at very low levels, mRNA and
protein levels can show a lack of correlation
simply because of the limited sensitivity of the
measurements.

Another serious challenge to studying can-
cer pathogenesis is the effectiveness of devel-
oping models capable of accounting for all
the data collected with different high-
throughput approaches. Although researchers
have attempted for many years to devise
mathematical models for many aspects of
cancer, such as for tumour growth22, tumour
drug delivery23 or gene–environment interac-
tions24, it is challenging to develop models
that integrate the numerous pathways and
factors that operate at various levels during
tumour growth. Development of a model
that would be able to predict the conse-
quences of a particular mutation for tumori-
genesis is more difficult than predicting the
consequences of a mutation for a simple sys-
tem, such as for a cultured microorganism.

Models of human cancer are also impaired
by the substantial lack of homogeneity among
study populations and, most importantly, by
the inability to manipulate components of the
system. Furthermore, numerous members of
the ‘parts list’ that is required to construct any
model can not be measured or manipulated,
or might not even have been identified.
Initially, models might therefore represent
approximations that generate hypotheses to 
be tested through further experimentation.
Further experiments could then yield addi-
tional data to allow a more robust model to be
developed (FIG. 3). For example, the finding that
upregulation of glycolytic enzymes correlates
with poor outcome in patients with lung 

cancer led to the finding that increased activity
of the transcription factor hypoxia-inducible
factor-1α (HIF1α), which is known to regulate
expression of glycolytic-pathway genes, was
also correlated with poor survival in patients
with lung cancer25. HIF1α has since been 
associated with numerous tumour types.

Resources 
An expanding array of resources, in the form
of databases and tools, is available to allow
experimental global profiling data and other
types of data to be integrated. Fortunately, a
large amount of data has become available on
gene expression in normal and cancer cells
through initiatives such as the Cancer
Genome Anatomy Project and the Director’s
Challenge initiative, funded by the National
Cancer Institute (NCI). There are also
numerous other relevant data repositories. So
an investigator who finds that a specific gene
is upregulated in a certain tumour type would
be able to learn more about the expression
pattern of this gene in other tumour types, as
well as in normal tissues, through various
gene-expression databases (BOX 1).

There are now numerous resources avail-
able for mining data from various global-
profiling techniques. One of the first publicly
available web databases of pathway informa-
tion is the Kyoto Encyclopedia of Genes and
Genomes (KEGG)26. Over 150 pathways are
represented with emphasis on well-defined
metabolic pathways. The KEGG pathway 

Box 1 | Some of the resources available for ‘data mining’ in cancer research

In addition to maintaining the GenBank nucleic-acid sequence database, the National Center
for Biotechnology Information (NCBI) provides data analysis and retrieval resources for the
data in GenBank and other biological data made available through the NCBI web site35.
Relevant NCBI resources include the Cancer Chromosome Aberration Project, Entrez
Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, the Clusters of
Orthologous Groups (COGs) database, SAGEmap, Gene Expression Omnibus (GEO) and the
Molecular Modeling Database (MMDB). There are also available custom implementations of
the BLAST program that are optimized to search specialized data sets. The National Cancer
Institute, through its Center for Bioinformatics, provides informatics infrastructure support to
advance translational cancer research. The centre provides open access to large and diverse data
sets that result from NCI-funded initiatives. It also provides a resource that integrates such data
with outside data and provides facilities for data management and distribution. The resource,
designated CaCore, consists of a series of component technologies and services36. Enterprise
Vocabulary Services provide controlled vocabulary, dictionary and thesaurus services. The
Cancer Data Standards Repository provides a meta-data registry for common data elements.
Cancer Bioinformatics Infrastructure Objects (caBIO) implements an object-oriented model of
the biomedical domain and provides Java, Simple Object Access Protocol and HTTP-XML
application programming interfaces.

Other resources include GoMiner, developed by Zeeberg et al.37. GoMiner is a resource
package that organizes lists of genes, such as under- and overexpressed genes from a range of
microarray experiments28. GoMiner provides quantitative and statistical output files and
visualization graph structures. Genes that are displayed in GoMiner are linked to the main
public bioinformatics resources. (For further information on the resources discussed above,
see the online links box.)
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models of gene regulation in cancer and
important cancer-related cell processes,
such as differentiation, proliferation, trans-
formation and metastasis. This will lead to
molecular-based classifications of cancer
that transcend organ and tissue types —
these should supercede classifications based
on histopathology or based on the expres-
sion patterns of genes with unknown func-
tional significance. New and important 
features of tumorigenesis and tumour pro-
gression will be uncovered in this manner,
leading to more effective screening strategies
and therapeutic targets.
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Future directions
Clearly, additional resources are needed to
facilitate integration of diverse data sets. The
NCI plans to deploy an integrating biomedical
informatics infrastructure called the Cancer
Biomedical Informatics Grid (CaBIG), which
will be developed in partnership with the can-
cer-research community. Around 50 cancer
centres have joined this NCI-led project. The
goals of CaBIG are to integrate data from
diverse sources and to support interoperable
analytic tools. The open-source, open-access
grid will allow different research groups to
search the expanding collection of cancer
research data together with locally generated
data.A similar and related effort is also under-
way in the United Kingdom, where the
National Cancer Research Institute, which
represents government, philanthropic and pri-
vate-sector organizations that fund cancer
research, has set up a unit to develop cancer
research informatics. This will facilitate inte-
gration of data generated by laboratories
across different organizations.

Apart from informatics considerations,
tumour-profiling technologies would benefit
from miniaturization of assays and increases
in throughput and sensitivity, given the lim-
ited availability of tumour tissues. For exam-
ple, the availability of proteome-scale capture
agents would facilitate the use of microarrays
in proteomic profiling, in a manner similar 
to transcriptome profiling. The availability 
of technologies for global profiling using 
formalin-fixed tissue would also be beneficial.

Understanding cancer as a complex dis-
ease, through systems-biology or systems-
pathology approaches, requires teams of
investigators from diverse fields such as 
biomedicine, chemistry, engineering, infor-
matics and computational modelling. Soon,
data obtained from molecular imaging
studies might also be integrated. The con-
tinued development of sensitive molecular-
imaging-based assays that do not require
tissue samples will be valuable for monitor-
ing molecular and cellular processes in both
animal models of cancer and in humans33.
Integration of molecular imaging with
other molecular approaches to tissue analy-
sis could add a spatial and a temporal per-
spective to our understanding of tumour
development and progression.

The need for multidisciplinary research
into cancer and other diseases has been recog-
nized by the National Institutes of Health
(NIH) with the implementation of the ‘NIH
roadmap’34. A systems-biology approach to
cancer that incorporates different genome-
scale global-profiling technologies is expected
to lead to the development of computational




