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1LTCI, TELECOM ParisTech & CNRS
46 rue Barrault

75634 Paris cedex 13, France

2Institut National de l’Audiovisuel
4 avenue de l’Europe

94366 Bry-sur-Marne cedex, France

ABSTRACT

We introduce a regularized kernel-based rule for unsupervised
change detection based on a simpler version of the recently proposed
kernel Fisher discriminant ratio. Compared to other kernel-based
change detectors found in the literature, the proposed teststatistic
is easier to compute and has a known asymptotic distributionwhich
can effectively be used to set the false alarm ratea priori. This
technique is applied for segmenting tracks from TV shows, both for
segmentation into semantically homogeneous sections (applause,
movie, music, etc.) and for speaker diarization within the speech
sections. On these tasks, the proposed approach outperforms other
kernel-based tests and is competitive with a standard HMM-based
supervised alternative.

Index Terms— Change detection, kernel methods, audio seg-
mentation.

1. INTRODUCTION

Monitoring changes in a continuously observed signal is oneof the
fundamental problems of signal processing. In the framework of
audio processing, for instance, the segmentation task consists in par-
titioning an audio stream into acoustically homogeneous segments.
Segmentation is an important preliminary task for archiving audio
or audiovisual content in databases while allowing for content-based
retrieval of the data [1]. In particular, a large body of workin the
field has focused on the identification of speech segments in radio
broadcast [2, 3]. A related application is speaker change detection,
also called speaker diarization, which is generally handled through
parametric modelling based on Gaussian Mixture Models (GMMs)
[4].

In this contribution, we clearly distinguish segmentationfrom
classification and focus on methods that can solve the formerprob-
lem in an unsupervised way, that is, with minimal knowledge of
the characteristics of the underlying segments. Unsupervised seg-
mentation is attractive because it may handle a variety of different
situations without requiring prior training on each of these. In the
experiments described in Section 5 below for instance, we will con-
sider segmenting soundtracks of TV shows that have been annotated
in terms of the following classes: applause, music, movie, speech.
In such a situation, trying to simultaneously solve the unsupervised
segmentation and classification tasks would be hard. The unsuper-
vised approach is also potentially useful for applicationsinvolving
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multimodal data, such as segmentation of video streams based on
joint audio and visual contents.

To provide the required flexibility to our unsupervised segmen-
tation method, we propose a kernel-based test statistic forchange
detection. Kernel-based approaches for change detection have been
introduced for audio processing by [5, 6] (see also [7]). Another
related approach, coined the Maximum Mean Discrepancy (MMD),
was also proposed by [8] for two-sample testing problems on mi-
croarray data. In contrast however to bothMMD and KCD, we
consider a test statistic based on the regularized kernel Fisher dis-
criminant ratio, introduced in [9], yet with a novel and simpler reg-
ularization strategy, which is properly normalized and hence has a
predictable false alarm rate. Note that, as in the other previously
mentioned methods, we consider here a sliding window approach
where the potential occurrence of asinglechange-point within the
window is tested. We do not adopt here the multiple change-point
estimation framework investigated in [10] both because of its com-
putational complexity (which is quadratic in the frame size) and of
the difficulty of assessing the statistical significance of the detected
change-points within this approach.

In Section 2, we introduce relevant aspects of reproducing ker-
nel Hilbert spaces (RKHS) theory so as to describe the proposed test
statistic. Then, in Section 3, we consider the computation of the
test statistic using the so-called kernel-trick as well as that of the
associated decision threshold for a specified false-alarm rate. Sec-
tion 4 is devoted to a discussion of the main features of the proposed
approach together with a comparison with theKCD andMMD algo-
rithms. Finally, in Section 5, we provide experimental results both on
segmentation of whole audio tracks from TV shows and on speaker
diarization within the interview segments.

2. REGULARIZED KERNEL FISHER DISCRIMINANT

Temporal segmentation is the problem of partitioning a sequence of
vector-valued observations(Xt)t=1,...,n into, say,K segments, de-
limited byK + 1 boundaries, as

[X1, . . . , Xn] =
[

k=0,...,K−1

[Xτk+1, . . . , Xτk+1
] , (1)

where each segment[Xτk+1, Xτk+1
], with boundaries [τk +

1, . . . , τk+1], is considered homogeneous in distribution (and
τ0 = 0, τK = n).



2.1. Test Statistic

Following the principle at the core of several recent development
in machine learning [11], the observations are mapped in an ab-
stract space, namely a reproducing kernel Hilbert space (RKHS)
H associated with a reproducing kernelk(·, ·) and a feature map
Φ(X) = k(X, ·).

We now describe how the kernel Fisher discriminant ratio, put
forth in [9] for testing the homogeneity of two samples, may be fur-
ther simplified to yield an efficient kernel-based change detection
algorithm. This is described in the operator-theoretic framework,
developed for the statistical analysis of kernel-based learning algo-
rithms in [12, 9].

Consider two samples of independent observations

X
(1)
1 , . . . , X(1)

n1
∼ P

(1) and X
(2)
1 , . . . , X(2)

n2
∼ P

(2) .

corresponding respectively to the first part and the second part of
the sliding window. The goal is to design a test statistic to decide
between

H0 : P
(1) = P

(1) and HA : P
(1) 6= P

(2) .

Define the corresponding empirical mean elements and covariance
operators associated toX(1)

1 , . . . , X
(1)
n1

as follows

µ̂1 =
1

n1

n1
X

ℓ=1

k(Xℓ, ·) ,

Σ̂1 =
1

n1

n1
X

ℓ=1

{k(Xℓ, ·) − µ̂1} ⊗ {k(Xℓ, ·) − µ̂1} ,

whereu ⊗ v for u, v ∈ H is defined for allf ∈ H as(u ⊗ v)f =

〈v, f〉
H

u The quantitiesµ̂2 and Σ̂2 are similarly defined for the

second sampleX(2)
1 , . . . , X

(2)
n2

with obvious changes.
Their population counterparts,i.e. the population mean element

and the population covariance operator, are defined for any prob-
ability measureP as 〈µP, f〉

H
= E[f(X)] for all f ∈ H, and

〈f, ΣPg〉
H

= CovP[f(X), g(X)] for f, g ∈ H. The (maximum)
regularized kernel Fisher discriminant ratio, which we abbreviate as
KFDR is defined as

KFDR(X
(1)
1 , . . . , X(1)

n1
; X

(2)
1 , . . . , X(2)

n2
)

=
n1n2

n1 + n2

D

µ̂2 − µ̂1, I(Σ̂W ; γ)(µ̂2 − µ̂1)
E

H
(2)

where

Σ̂W =
n1

n1 + n2
Σ̂1 +

n2

n1 + n2
Σ̂2

andI(Σ̂W ; γ) denotes a regularized version of the inverse within-
class covariance operator, with regularization parameterγ.

2.2. Spectral Truncation Regularization

Note that in contrast to the usual Fisher test on vector-valued data,
the kernel version of the test requires thatΣ̂W be regularized be-
fore inversion due to the infinite-dimensional nature of theRKHS
H. In [9], the authors propose to take

I(Σ̂W ; γ) = (Σ̂W + γI)−1 , (3)

which however gives rise to a complicated limiting distribution un-
der the null hypothesis (an infinite weighted sum ofχ2 random vari-
ables). Denote(λp, ep)p=1,...,∞ respectively the sequence of eigen-
values and eigenfunctions of the operatorΣ̂W . We propose to use
instead a spectral truncation type of regularization:

I(Σ̂W ; 1/d) =
d

X

p=1

λ−1
p (ep ⊗ ep) , (4)

which corresponds to the inverse of a finite-dimensional approxima-
tion on Span{e1, . . . , ed} of Σ̂W (see also [13]). As discussed be-
low in Section 3, the practical computation of the test statistics boils
down to performing a principal component analysis of a correctly
centered version of the Gram matrix.

2.3. Large-Sample Distribution Under The Null Hypothesis

In order to set the decision threshold for a prescribed false-alarm rate
α, we may use the limiting null distribution, that is the distribution
asn1, n2 → ∞, of the test statistic under the null hypothesisH0.
Using similar arguments as in [9], we may prove the followingresult.

Proposition 1 AssumeH0 holds. Under suitable assumptions
(cf. [9, Theorem 1])), we have asn1 + n2 → ∞

KFDRd(X
(1)
1 , . . . , X(1)

n1
; X

(2)
1 , . . . , X(2)

n2
)

D
−→ χ2

d .

Hereχ2
d denotes aχ2 random variables withd degrees of freedom.

Therefore, thanks to our spectral truncation regularization scheme,
for any degrees of freedomd > 1 of our test statistic, and for any
prescribed false-alarm rate0.0 < α < 0.5, we may readily compute
the associated decision thresholdc(1 − α; d), such that

PH0
(KFDRd > c(1 − α; d)) = α .
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Fig. 1. Comparison of the finite-sample distribution of the test statis-
tic against its large-sample distribution, based on 200 homogeneous
windows of length 128 of the data considered in Section 5.1.

As Figure 1 shows, the large-sample distribution provides area-
sonably accurate picture of the finite-sample behavior of our test
statistic under the null hypothesis.

In the next section, we provide details on the efficient computa-
tion of the test statistic for alld > 1, using a bi-centered KPCA, and
the computation of the corresponding decision thresholds.

3. COMPUTATION OF THE TEST STATISTIC

We first describe how to computeKFDRd using the kernel trick, and
a suitable variant of KPCA [14].



Let K = [K(Xi, Xj)]ij=1,...,n be the Gram matrix associated
to the pooled sample{X(1)

1 , . . . , X
(1)
n1

; X
(2)
1 , . . . , X

(2)
n2

}. Define
the projection matrixP1 = In1

− n−1
1 1n1

1T
n1

where1n1
is the

(n1×1) vector whose components are all equal to one andIn1
is the

(n1×n1) identity matrix. Define similarlyP2 = In2
−n−1

2 1n2
1T

n2
.

Introduce the “bi-centering” matrixPbi defined as

Pbi =

„

P1 0
0 P2

«

. (5)

DenoteK̃ = PbiKPbi the bi-centered Gram matrix. Denote by
Λ = diag(λ1, . . . , λd) andV = (v1, . . . ,vd)

T the matrix repre-
sentations of the firstd eigenvalues andd eigenvectors of the normal-
ized bi-centered Gram matrixN = 1

n1+n2−1
K̃. Λ andV may be

interpreted as the empirical estimates of the firstd eigenvalues and
d eigenvectors of the pooled covariance estimate. Now, definethe
vectormn = (mn,i)1≤i≤n with mn,i = −n−1

1 for i = 1, . . . , n1

andmn,i = n−1
2 for i = n1 + 1, . . . , n1 + n2. Then,

KFDRd = mKVΛ
−1

V
T
K

T
m

T .

It is worthwhile to emphasize that, to computeKFDRd for a large
range of valuesd = 1, . . . , N of the regularization parameterd, it
suffices to compute once for all the eigendecomposition ofN up to
N , and then compute all{KFDRd}d=1,...,N recursively using rank-
one updates. In order to obtain a decision rule with specifiedfalse-
alarm rateα for large samples, it suffices to choosec(1 − α; d) as
the(1 − α)-quantile of the limitingχ2-type distribution underH0.

4. DISCUSSION

4.1. Window Size

The choice of the size of the window on which the test statistic is
to be computed should take into account two important constraints.
First, if n is the sliding-window length, the computational complex-
ity of KFDR is O(n3) in time (eigenvalue problem) andO(n2) in
space. Hence, forn > 5000, the computational burden is substan-
tial, and one resorts to computing averages ofKFDR of subsamples
of sizem ≪ 5000 instead of the rawKFDR on the whole sample
of sizen. In the audio segmentation application, we may reduce
the computational burden elegantly by working on medium samples
coarse-scale statistical summaries of our features instead of working
on large samples with fine-scale features. We describe in detail these
“statistical summaries” later in Section 5.

Second, reducing change-detection on the whole signal to a se-
quence of single change-point detection on windows is validonly if
we are guaranteed that there isat most onechange-point within each
window. Again, physical considerations allow to alleviatethis issue
by setting the window-length to a sufficiently small length for being
guaranteed that no more than a single change-point occurs within
the window, and sufficiently large length for our decision rule to be
statistically significant (typicallyn > 50).

4.2. Choosing The Regularization Parameter

The spectral truncation regularization parameterd plays a role simi-
lar to that of1/γ in the Tikhonov-type version (3) ofKFDR. Indeed,
in order to effectively detect differences in distributionbetween two
samples, one has to setd (resp.γ) to a sufficiently large value (resp.
small value) to capture the first componentp in the eigen-expansion
ΣW on which 〈µ2 − µ1, ep〉H is significantly large. However, as
the degrees-of-freedomd gets higher than this optimal value, then

Nb. of sections Ave. duration (sec.)
applause 84 14
movie 29 155
music 38 194
speech 188 70
speaker turns 962 6

Table 1. Characteristics of the audio data.

the power slowly decreases. We recommend the following simple
strategy: takeN = max{p, λp > ǫ}, whereǫ = 10−10, and then
setd = N/2.

4.3. Comparison With Related Approaches

When compared toKFDR, the Maximum Mean Discrepancy
(MMD) test statistic of [8] is based on

MMD =
n1n2

n1 + n2
〈µ̂2 − µ̂1, µ̂2 − µ̂1〉H ,

instead of (2) inKFDR. The absence of renormalization by
[I(Σ̂W ; γ)]−1, the inverse of the regularized within-class covari-
ance operator̂ΣW , results in a substantial loss of power against
differences in distribution supported by higher components of ΣW ,
as described both theoretically and experimentally in [15]. This lack
of normalization also makes thea priori selection of a threshold
with desired false alarm rate difficult.

The Kernel Change Detection (KCD) algorithm of [5], consists
in, on the one hand, computing aν 1-class SVM on the first sample
{X

(1)
1 , . . . , X

(1)
n1

} yielding a dual vectorα1, and on the other hand,
aν one-class SVM on the second sample{X

(2)
1 , . . . , X

(2)
n2

} yielding
a dual vectorα2. Then, the “test statistic”, although not advertised
as a test statistic but rather as a similarity measure, is defined as

KCD =
αT

1 K12α
T
2

p

αT
1 K11αT

1

p

αT
2 K22αT

2

.

Whenν = 1 for both1-class SVMs, thenKCD simply writes as

KCD =
〈µ̂1, µ̂2〉H

p

〈µ̂1, µ̂1〉H
p

〈µ̂2, µ̂2〉H
.

Hence,KCD may be related to variant ofMMD, where empirical
mean elementŝµ1 and µ̂2 are replaced by sparse weighted means
µ̃1 = n−1

1

Pn1

ℓ=1 α1,ℓk(Xi, ·) andµ̃2 = n−1
2

Pn2

ℓ=1 α2,ℓk(Xi, ·).

5. EXPERIMENTAL RESULTS

Our dataset consists of the two soundtracks of the popular French
1980s entertainment TV-shows (“Le GrandÉchiquier”) of roughly
three hours each, whose main features are gathered in Table 1. Audio
tracks were extracted from MPEG video files, converted to mono
by averaging right and left channels, and downsampled to16 kHz.
Then, we extracted every 10 ms the first12 Mel Frequency Cepstral
Coefficients (MFCC), as well as the0-th order cepstral coefficient,
giving 13 features in total.

5.1. Semantic segmentation

As is obvious from Table 1, the “semantic” changes that are tobe
detected in this first setting are diverse with some of them (movie,



Semantic seg. Speaker seg.
Precision Recall Precision Recall

KFDR 0.72 0.63 0.89 0.90
MMD 0.71 0.58 0.76 0.73
KCD 0.65 0.63 0.78 0.74
HMM 0.73 0.65 0.93 0.96

Table 2. Best Precision and Recall for all benchmarked method, for
both semantic segmentation and speaker segmentation tasks.

music) corresponding to long segments. In order to detect only those
high-level changes, we worked on subsampled statistical summaries
of the above features instead of the raw features. This considerably
lightened the computational burden while significantly enhancing
the statistical power of our approach. Indeed, we computed pairs
of slope and intercept obtained by a linear regression over (non-
overlapping) windows of length33. Then, we chose as a kernel
a weighted linear combination of Gaussian rbf kernels on the0-
th order cepstral coefficient (kc0(·, ·)) and on the first12 MFCCs
(kc1−c12(·, ·)). Each specific kernel was actually a linear combi-
nation of a Gaussian RBF kernel on the slope and a kernel on the
intercept. The kernel bandwidths were optimized globally over a
fixed grid (hence, the same kernel bandwidth was used for all exper-
iments), and the spectral truncation regularization parameter was set
as described in Section 4. The test statistic was computed insliding
windows of length 128 overlapping by 20% and the performancewas
evaluated in terms of the number of windows with detection effec-
tively containing at least one annotated audio change. We also pro-
vide a comparison with a supervised Hidden Markov Model (HMM)
technique, where each state corresponds to a mixture of diagonal-
covariance Gaussians with16 components which is trained before-
hand from the first excerpt of each type of segment. The detection
threshold for each approach was chosen so as to maximize the pre-
cision/recallF -measure. Finally for KCD, we usedν = 0.5 for
the one-class SVM optimization. The experimental results are dis-
played in Table 5.2, in terms of precision and recall. Note that, while
our high-level features are not accurate enough to detect very small
segments, still, we outperform competing approaches in average in
terms precision and recall.

5.2. Speaker segmentation

As before for semantic segmentation, we worked on “statistical sum-
maries” of the above features instead of the raw features. Here,
we computed pairs ofslopeand interceptobtained by a linear re-
gression over (non-overlapping) windows of length15. The same
strategy was adopted for combining the different kernels and for set-
ting the spectral truncation regularization parameter. The test statis-
tic was computed in sliding windows of length64 overlapping by
20%. We also provide comparison with Hidden Markov Models
(HMM), trained similarly. The experimental results are displayed
in Table 5.2. Note thatHMM are much difficult to beat on this
task. However, one has to keep in mind that the training procedure
used here is rather unrealistic. We explicitly modelled beforehand all
speakers involved in the speech sections. Therefore, our results are
rather promising, since we obtained competitive performance results
with a completely unsupervised approach.

6. CONCLUSION

We proposed an efficient regularized kernel-based test statistic for
temporal segmentation of audio tracks. Thanks to a novel regular-
ization strategy, our test statistic has a simple limiting distribution
under the null hypothesis, which allows a straightforward calibra-
tion from a prescribed false-alarm rateα. Our method outperforms
previously proposed kernel-based approaches, and reach competitive
performance when compared to “supervised” methods on the same
tasks.
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