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ABSTRACT multimodal data, such as segmentation of video streamsib@se
We introduce a regularized kernel-based rule for unsupedvi J0intaudio and visual contents.
change detection based on a simpler version of the recemtbpped To provide the required flexibility to our unsupervised segm

kernel Fisher discriminant ratio. Compared to other kebsaled tation method, we propose a kernel-based test statistichfange
change detectors found in the literature, the proposedstatistic ~ detection. Kernel-based approaches for change detecionlieen
is easier to compute and has a known asymptotic distribuilioh ~ introduced for audio processing by [5, 6] (see also [7]). theo
can effectively be used to set the false alarm materiori. This  related approach, coined the Maximum Mean DiscrepaRtiD),
technique is applied for segmenting tracks from TV shows#hfiar ~ was also proposed by [8] for two-sample testing problems én m
segmentation into semantically homogeneous sectiondaf@ggy  croarray data. In contrast however to battMD and KCD, we
movie, music, etc.) and for speaker diarization within thbeexh ~ consider a test statistic based on the regularized kerséeFidis-
sections. On these tasks, the proposed approach outperéher ~ criminant ratio, introduced in [9], yet with a novel and sierpreg-
kernel-based tests and is competitive with a standard H\bed  ularization strategy, which is properly normalized anddeehas a
supervised alternative. predictable false alarm rate. Note that, as in the otheriquely
. . mentioned methods, we consider here a sliding window agproa
mer:tr;(:ieoanerms— Change detection, kemel methods, audio S€%Where the potential occurrence ofingle change-point within the
’ window is tested. We do not adopt here the multiple changetpo
estimation framework investigated in [10] both becauseétom-
1. INTRODUCTION putational complexity (which is quadratic in the frame $iaad of

o ) ] ) ] the difficulty of assessing the statistical significancehef tletected
Monitoring changes in a continuously observed signal isafrtee  change-points within this approach.

fundamental problems of signal processing. In the framkvadr
audio processing, for instance, the segmentation taskstems par-
titioning an audio stream into acoustically homogeneogsnsats.
Segmentation is an important preliminary task for arclgvaudio
or audiovisual content in databases while allowing for eattbased
retrieval of the data [1]. In particular, a large body of wankthe
field has focused on the identification of speech segmentadio r
broadcast [2, 3]. A related application is speaker changecten,
also called speaker diarization, which is generally hashdteough
parametric modelling based on Gaussian Mixture Models (GYIM
[4].

In this contribution, we clearly distinguish segmentatfoom
classification and focus on methods that can solve the fopmudr-
lem in an unsupervised way, that is, with minimal knowledde o 2. REGULARIZED KERNEL FISHER DISCRIMINANT
the characteristics of the underlying segments. Unsupetdvéeg-

mentation is attractive because it may handle a Val’ietyfﬁil’éht Tempora' segmentation is the prob'em of partitioning a eaqe of

situati_ons without requi_ring pri_or training on e_ach of taedn the vector-valued observations(; )1, . into, say,K segments, de-
experiments described in Section 5 below for instance, lecam-  |imited by K + 1 boundaries, as

sider segmenting soundtracks of TV shows that have beeraredo

in terms of the following classes: applause, music, mowegsh.

In such a situation, trying to simultaneously solve the pesvised [X1,..., Xn] = U (Xrpt1,0 Xrpa] 1)
segmentation and classification tasks would be hard. Thepens k=0,...,K—1

vised approach is also potentially useful for application®lving

In Section 2, we introduce relevant aspects of reproducérg k
nel Hilbert spaces (RKHS) theory so as to describe the pezptest
statistic. Then, in Section 3, we consider the computatibthe
test statistic using the so-called kernel-trick as well et ©f the
associated decision threshold for a specified false-alate rSec-
tion 4 is devoted to a discussion of the main features of tbpgwed
approach together with a comparison with K€D andMMD algo-
rithms. Finally, in Section 5, we provide experimental teslioth on
segmentation of whole audio tracks from TV shows and on sgeak
diarization within the interview segments.

This research was supported by the European Comission oadeact ~ Where each .segmer{.tXTk +1, X7y, |0 with boundaries [Tk +
FP6-027026-K-SPACENd by the Agence Nationale de la Recherche projectl; - - -, Tk+1], IS considered homogeneous in distribution (and
ANR-06-BLAN-0078-03 KERNSIG 70 = 0,7k = n).



2.1. Test Statistic

Following the principle at the core of several recent deweient

in machine learning [11], the observations are mapped inkan a
stract space, namely a reproducing kernel Hilbert spaceHRK
‘H associated with a reproducing kerrigl-, -) and a feature map
D(X) =k(X,).

We now describe how the kernel Fisher discriminant ratid, pu
forth in [9] for testing the homogeneity of two samples, mayfior-
ther simplified to yield an efficient kernel-based changeect&in
algorithm. This is described in the operator-theoretienieavork,
developed for the statistical analysis of kernel-basethieg algo-
rithms in [12, 9].

Consider two samples of independent observations
xM o oxWAaP® and xP X2 A p@
corresponding respectively to the first part and the secamtlgi
the sliding window. The goal is to design a test statistic eocide
between

Ho PL — p® P # P®

and Ha :

Define the corresponding empirical mean elements and emaai

operators associated 86", .. ., X{") as follows
L
H1 = — k(Xfy ) )
m =1
. 1 &
S1=— > {k(Xe,) =} @ (k(Xe,) =},
=1

whereu ® v for u,v € H is defined for allf € Has(u ®@ v)f =
(v, f)4, uw The quantitiesizz and 3, are similarly defined for the
second sampl&? .. X2 with obvious changes.

Their population counterpartse. the population mean element
and the population covariance operator, are defined for aoly-p
ability measureP as (up, f),, = E[f(X)] for all f € H, and
(f,Xpg)y = Cove[f(X),g(X)] for f,g € H. The (maximum)
regularized kernel Fisher discriminant ratiszvhich we abbreviate as
KFDR is defined as

KFDR(X™V, ..., xV x® o x()

ninz /. . o N N
= — — 1, Z(Xw; — > 2
. <M2 A1, Z(Xw ;) (fiz — 1) b 2
where
A ni N no A
Sw o=
W ni +ne ni +ne

andI(iW; ) denotes a regularized version of the inverse within-
class covariance operator, with regularization parameter

2.2. Spectral Truncation Regularization

Note that in contrast to the usual Fisher test on vectoredhliata,
the kernel version of the test requires that be regularized be-
fore inversion due to the infinite-dimensional nature of RI€HS
H. In [9], the authors propose to take

I(Swiy) = (SEw +9D) 7", (3)

which however gives rise to a complicated limiting disttiba un-
der the null hypothesis (an infinite weighted sumydfrandom vari-
ables). Denoté,, ep)p=1,...,00 respectively the sequence of eigen-
values and eigenfunctions of the operatar. We propose to use
instead a spectral truncation type of regularization:

I(2W§1/d) = Z)‘;l(ezﬂ@e@) )

p=1

(4)

which corresponds to the inverse of a finite-dimensionat@pma-
tion on Spafies, ..., eq} of Sy (see also [13]). As discussed be-
low in Section 3, the practical computation of the test stai$ boils
down to performing a principal component analysis of a ailye
centered version of the Gram matrix.

2.3. Large-Sample Distribution Under The Null Hypothesis

In order to set the decision threshold for a prescribed falaem rate
a, we may use the limiting null distribution, that is the dilstition
asni,n2 — oo, Of the test statistic under the null hypothesis.
Using similar arguments as in [9], we may prove the followiegult.

Proposition 1 AssumeH, holds. Under suitable assumptions
(cf. [9, Theorem 1])), we have as + nz — 0o

(1),

KFDRy (X, ..., x(s x® . x@) 23

Herex2 denotes a2 random variables witkd degrees of freedom.
Therefore, thanks to our spectral truncation regulawrascheme,
for any degrees of freedoni > 1 of our test statistic, and for any
prescribed false-alarm rabed < o < 0.5, we may readily compute

the associated decision thresheld — «; d), such that

P, (KFDRg > ¢(1 — a;d)) = o .
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Fig. 1. Comparison of the finite-sample distribution of the teatist
tic against its large-sample distribution, based on 200dgeneous
windows of length 128 of the data considered in Section 5.1.

As Figure 1 shows, the large-sample distribution providesaa
sonably accurate picture of the finite-sample behavior oftest
statistic under the null hypothesis.

In the next section, we provide details on the efficient cotapu
tion of the test statistic for all > 1, using a bi-centered KPCA, and
the computation of the corresponding decision thresholds.

3. COMPUTATION OF THE TEST STATISTIC

We first describe how to compukd=DR; using the kernel trick, and
a suitable variant of KPCA [14].



LetK = [K(Xi, X;)]ij=1,...,n be the Gram matrix associated
to the pooled samplé X" ..., x{V: x® . xZ7}. Define
the projection matrixd®; = I, — nj'1l,, 1, wherel,, is the
(n1 x 1) vector whose components are all equal to onelgnds the
(n1 xn1) identity matrix. Define similaryPs = I, —n5 '1,,17,.
Introduce the “bi-centering” matri®p; defined as

Po— ).

DenoteK = Py, KPy; the bi-centered Gram matrix. Denote by
A = diag\1,..., ) andV = (vi,...,vq)" the matrix repre-
sentations of the first eigenvalues and eigenvectors of the normal-
ized bi-centered Gram matri¥ = ——=XK. A andV may be
interpreted as the empirical estimates of the firsigenvalues and
d eigenvectors of the pooled covariance estimate. Now, défiee
vectorm,, = (my, ;)1<i<n, Withm,, ; = —ny7  fori =1,... n;
andm,, ; = ny ' fori =ni +1,...,n1 +n2. Then,

Py
0

0

P, )

KFDR; = mKVA 'VTK'mT .

It is worthwhile to emphasize that, to compW&DR, for a large
range of valuesl = 1,..., N of the regularization parameter it
suffices to compute once for all the eigendecompositiolN afp to
N, and then compute &fKFDR4}4=1,...,n recursively using rank-
one updates. In order to obtain a decision rule with specféibse-
alarm ratex for large samples, it suffices to choosd — «;d) as
the (1 — «)-quantile of the limitingy*-type distribution undeHo.

4. DISCUSSION

4.1. Window Size

The choice of the size of the window on which the test statisti
to be computed should take into account two important caimgs.
First, if n is the sliding-window length, the computational complex-
ity of KFDR is O(n?) in time (eigenvalue problem) and(n?) in
space. Hence, far > 5000, the computational burden is substan-
tial, and one resorts to computing averageKBDR of subsamples
of sizem < 5000 instead of the ravikKFDR on the whole sample

of sizen. In the audio segmentation application, we may reduce

the computational burden elegantly by working on mediumgam
coarse-scale statistical summaries of our features ithstieaorking

on large samples with fine-scale features. We describe &il de¢se
“statistical summaries” later in Section 5.

Second, reducing change-detection on the whole signalée a s
guence of single change-point detection on windows is \aiigt if
we are guaranteed that theratsmost onehange-point within each
window. Again, physical considerations allow to allevittes issue
by setting the window-length to a sufficiently small lengtin being
guaranteed that no more than a single change-point occtingnwi
the window, and sufficiently large length for our decisioterto be
statistically significant (typically. > 50).

4.2. Choosing The Regularization Parameter

The spectral truncation regularization paramdtptays a role simi-
lar to that of1 /~y in the Tikhonov-type version (3) &€FDR. Indeed,

in order to effectively detect differences in distributioetween two
samples, one has to s&fresp.v) to a sufficiently large value (resp.
small value) to capture the first componerih the eigen-expansion
Zw on which (u2 — p1, ep),, is significantly large. However, as
the degrees-of-freedomh gets higher than this optimal value, then

| Nb. of sections| Ave. duration (sec.)

applause 84 14
movie 29 155
music 38 194
speech 188 70
speaker turn 962 6

Table 1. Characteristics of the audio data.

the power slowly decreases. We recommend the following lsimp
strategy: takeV = max{p, \, > ¢}, wheree = 10™'°, and then
setd = N/2.

4.3. Comparison With Related Approaches

When compared toKFDR, the Maximum Mean Discrepancy
(MMD) test statistic of [8] is based on

- (fra — i, fla — fi1)4,

instead of (2) inKFDR. The absence of renormalization by
[Z(Sw;v)] ", the inverse of the regularized within-class covari-
ance operatoiyy, results in a substantial loss of power against
differences in distribution supported by higher composeait_y,

as described both theoretically and experimentally in.[THjs lack

of normalization also makes thee priori selection of a threshold
with desired false alarm rate difficult.

The Kernel Change DetectioKCD) algorithm of [5], consists
in, on the one hand, computing-al-class SVM on the first sample
{x® .., xV} yielding a dual vector;, and on the other hand,
av one-class SVM on the second samplé? | . .., X2} yielding
a dual vectorvz. Then, the “test statistic”, although not advertised
as a test statistic but rather as a similarity measure, inetbfis

T T
(e %} K12a2

KCD = .
VelKuaf Vel Kaxal

Whenv = 1 for both1-class SVMs, theiKCD simply writes as

(fi1, fi2) g ‘
Vi, i) 0/ (B2, fi2) 4

Hence,KCD may be related to variant dfiMD, where empirical
mean elementg; and ji» are replaced by sparse weighted means

fir =nyt S0 anek(Xa, ) andfiz = ny ' 3002 an k(X ).

KCD =

5. EXPERIMENTAL RESULTS

Our dataset consists of the two soundtracks of the populamdhr
1980s entertainment TV-shows (“Le Grakahiquier”) of roughly
three hours each, whose main features are gathered in Tahlelb
tracks were extracted from MPEG video files, converted to anon
by averaging right and left channels, and downsampletbtkHz.
Then, we extracted every 10 ms the fit8tMel Frequency Cepstral
Coefficients (MFCC), as well as tteth order cepstral coefficient,
giving 13 features in total.

5.1. Semantic segmentation

As is obvious from Table 1, the “semantic” changes that areeto
detected in this first setting are diverse with some of themvie



Semantic seg. Speaker seg. 6. CONCLUSION
Precision Recall Precision Recall
KFDR 0.72 0.63 0.89 0.90 We proposed an efficient regularized kernel-based tesstitafor
MMD 0.71 0.58 0.76 0.73 temporal segmentation of audio tracks. Thanks to a novellaeg
KCD 0.65 0.63 0.78 0.74 ization strategy, our test statistic has a simple limitingfrébution
HMM 0.73 0.65 0.93 0.96 under the null hypothesis, which allows a straightforwaatibca-

tion from a prescribed false-alarm rate Our method outperforms
Table 2. Best Precision and Recall for all benchmarked method, folreviously proposed kernel-based approaches, and reagfetitive
both semantic segmentation and speaker segmentation tasks  performance when compared to “supervised” methods on the sa
tasks.
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