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Multiple Change-Point Estimation With
a Total Variation Penalty

Z. HARCHAOUI and C. LÉVY-LEDUC

We propose a new approach for dealing with the estimation of the location of change-points in one-dimensional piecewise constant signals
observed in white noise. Our approach consists in reframing this task in a variable selection context. We use a penalized least-square criterion
with a �1-type penalty for this purpose. We explain how to implement this method in practice by using the LARS/LASSO algorithm. We
then prove that, in an appropriate asymptotic framework, this method provides consistent estimators of the change points with an almost
optimal rate. We finally provide an improved practical version of this method by combining it with a reduced version of the dynamic
programming algorithm and we successfully compare it with classical methods.

KEY WORDS: Change-point estimation; LARS; LASSO; �1-type penalty; Sparsity.

1. INTRODUCTION

Retrospective multiple change-point estimation consists in
partitioning a nonstationary series of observations into sev-
eral contiguous stationary segments of variable durations; see
Brodsky and Darkhovsky (1993, 2000). It is particularly ap-
propriate for analyzing a posteriori time series in which the
quantity driving the behavior of the time series jumps from one
level to another different level at random instants called change
points. Such a task, also known as temporal signal segmenta-
tion in signal processing, arises in many applications, ranging
from EEG to speech processing and network intrusion detection
(Basseville and Nikiforov 1993; Ruanaidh and Fitzgerald 1996;
Lévy-Leduc and Roueff 2009).

As argued by both Carlstein, Müller, and Siegmund (1994)
and Brodsky and Darkhovsky (2000), in most cases detecting
changes of a time-evolving statistical quantity may be reduced
to the detection of changes in the mean of a new sequence de-
rived from the initial one. Thus, we are interested in the estima-
tion of the change-point locations t�k in the following model:

Yt = μ�
k + εt,

t�k−1 ≤ t ≤ t�k − 1, k = 1, . . . ,K� + 1, t = 1, . . . ,n, (1)

with the convention t�0 = 1 and t�K�+1 = n + 1 and where the
{εt}0≤t≤n are iid zero-mean random variables, having a sub-
Gaussian distribution.

This problem has recently received much attention on the
theoretical side, both in a nonasymptotic and in an asymptotic
setting by Massart (2005) and Yao and Au (1989), Lavielle
and Moulines (2000), Boysen et al. (2009), respectively. From
a practical point of view, the standard approach for estimat-
ing the change-point locations is based on least-square fitting,
performed via a dynamic programming algorithm (DP), cou-
pled with an informational criterion such as the Schwarz cri-
terion (Yao and Au 1989) for choosing the unknown num-
ber of change points. Indeed, for a given number of change
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points K, the dynamic programming algorithm, proposed by
Fisher (1958) and Bellman (1961), takes advantage of the in-
trinsic additive nature of the least-square objective to recur-
sively compute the optimal change-points locations with a
complexity of O(Kn2) in time. Then selecting the number of
change points is usually performed thanks to a Schwarz-like
penalty λnK, where λn is often calibrated on data (Lavielle and
Moulines 2000; Lavielle 2005), or a penalty K(a + b log(n/K))

as in Lebarbier (2005), Massart (2005), where a and b are data-
driven as well. We should also mention that an abundant liter-
ature tackles both change-point estimation and model selection
issues from a Bayesian point of view; see Ruanaidh and Fitzger-
ald (1996), Fearnhead (2006), and references therein; we shall
not adopt such a point of view in this work.

While optimal from a maximum likelihood point of view
in the case of Gaussian noise, the application of the stan-
dard least-square approach, called LS in the remainder, is se-
riously harmed by a quadratic time complexity in the total du-
ration of the series of observations in its exact implementation.
Yet approximate dynamic programming procedures were de-
vised in other contexts, such as for Dynamic Time Warping
or the Viterbi algorithm (Kolesnikov and Fraenti 2003; Gales
and Young 2008). Moreover, as pointed in Hawkins (2001),
a computationally efficient dynamic programming algorithm
for change-point estimation may be devised when a prior as-
sumption of order structure between the segments is satisfied
and therefore consists in restricting the change-point locations
search to a prespecified set. Yet, designing a computationally
efficient dynamic programming algorithm for change-point es-
timation under general assumptions is still an open problem.

Therefore, an alternative formulation might be profitable
from a computational point of view, while keeping compara-
ble performance when compared to the least-square method.
A natural way to lower the time complexity of a �0-penalized
least-square problem is to relax the �0-penalty to an �1-penalty.
This strategy has proved to be appropriate in other statistical
problems such as sparse PCA, sparse LDA; see d’Aspremont,
Bach, and El Ghaoui (2008) and Moghaddam, Weiss, and Avi-
dan (2006). Hence, it boils down to estimating the change-point
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locations by solving

Minimize
u∈Rn

1

n

n∑
i=1

(Yi − ui)
2 + λn

n−1∑
i=1

|ui+1 − ui|, (2)

and recovering the change-point locations from the jumps in
the {ûi}i=1,...,n minimizing the criterion in Equation (2). This
alternative formulation yields a subquadratic time complexity
in the length of the sequence of observations, and still remains
asymptotically consistent in terms of change-point estimation.
Note that Tibshirani and Wang (2008) introduced the “fused
lasso,” which corresponds to a two-step procedure where the
first step is a least-square change-point estimation with a total-
variation penalty and the second is a thresholding one to discard
small jumps from the zero mean, a method specifically designed
for spatial smoothing and hot spot detection in CGH data.

This article is organized as follows. In Section 2, we describe
how Equation (2) is related to the the well-known Least Ab-
solute Shrinkage eStimatOr (LASSO) in least-square regression
of Tibshirani (1996), usually used for efficient variable selec-
tion. We show that it turns out to be also useful for change-
point estimation as well when used with a particular design
matrix. We take advantage of this relationship to devise a sub-
quadratic change-point estimation algorithm, called LS-TV for
Least-Square with Total Variation penalty. In Section 3, we give
theoretical results concerning the estimation of the underlying
piecewise constant function and the estimation of the change-
point locations. More precisely, we provide rates of conver-
gence for the underlying piecewise constant function and for
the change-point instants and we show that we can attain al-
most optimal rates of convergence in both cases. In Section 4,
we run numerical experiments to assess the empirical behav-
ior of LS-TV, and propose an enhanced version LS-TV* with
better empirical performance.

2. METHODOLOGY

In this section, we describe the least-square change-point es-
timation with a total variation penalty LS-TV. In Section 2.1,
we show how to recast the multiple change-point estimation
problem into a particular variable selection problem. Then in
Section 2.2, we describe a LAR-based implementation of LS-
TV, and derive its time complexity. The theoretical properties
of LS-TV are given in Section 3.

2.1 From Change-Point Estimation to Variable Selection

The multiple change-point estimation problem may be re-
laxed into a LASSO-type problem using appropriate auxiliary
variables.

Recall the multiple change-point model (Yao and Au 1989):

Yt = u�
t + εt, t = 1, . . . ,n, (3)

where u�
t = μ�

k for t�k−1 ≤ t ≤ t�k − 1, k = 1, . . . ,K� + 1. We
shall always assume in the remainder of this section that the true
number of change points K� is known. The issue of dealing with
an unknown number of change points will be addressed later in
Sections 3 and 4.

The least-square estimation method LS, which may also be
viewed as the maximum-likelihood approach in the case of
Gaussian white noise, solves the following problem:

Minimize
u∈Rn

1

n

n∑
i=1

(Yi − ui)
2

(4)

subject to
n−1∑
i=1

1{ui+1 − ui} = K�.

We propose here to relax the above �0 constraint into an �1
constraint on the magnitude of the jumps as follows:

Minimize
u∈Rn

1

n

n∑
i=1

(Yi − ui)
2

(5)

subject to
n−1∑
i=1

|ui+1 − ui| ≤ K�J�
max,

where J�
max = max1≤k≤K� |u�

k+1 − u�
k|. This alternative setting

was previously elusively mentioned several times, in, for ex-
ample, Mammen and Van De Geer (1997) and Boysen et
al. (2009). In order to further understand the behavior of the
solution û = (û1, . . . , ûn) of this criterion, let us denote by Xn
the n × n lower triangular matrix with nonzero elements equal
to one.

Then, by straightforward algebra, the problem in Equa-
tion (5) may be rewritten as

Minimize
β∈Rn

1

n

n∑
i=1

(Yi − (Xnβ)i)
2

(6)

subject to
n∑

i=1

|βi| ≤ K�J�
max.

The underpinning insight is the sparsity-enforcing property of
the �1-constraint, which is expected to give a sparse vector β̂n,
whose nonzero components would match with change-points
locations.

A major feature of Equation (6) is that it exactly corre-
sponds to the well-known Least Absolute Shrinkage eStima-
tOr (LASSO) in least-square regression of Tibshirani (1996),
used for efficient variable selection. However, as far as we
know, neither thorough practical implementation nor theoreti-
cal grounding has been given so far to support such an approach
for change-point estimation. Actually, the corresponding mini-
mization can be solved by using the LAR/LASSO algorithm de-
scribed in Efron, Hastie, and Tibshirani (2004) and Hesterberg
et al. (2008).

2.2 Implementation With Least-Angle Regression

In this section, we detail the process of the Least-Angle
Regression (LAR) algorithm of Efron, Hastie, and Tibshi-
rani (2004). For the sake of generality, we shall describe here
this algorithm when we look for Kmax change points, Kmax be-
ing a known upper bound on the true number of change points.
When implemented with care, we get a time complexity in
O(Kmaxn log(n)) of the LAR/LASSO algorithm in the partic-
ular case of our model. This substantial reduction of the com-
putational complexity has to be contrasted with the complexity
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O(Kmaxn2) of DP. We use in this section standard notation given
for instance in Cormen et al. (2001).

The process is described in Table 1, the different notations
involved being explained in the following in the description of
each step of the algorithm. It essentially involves four steps,
each of them being solved in subquadratic time complexity
with respect to the number of observations n. Suppose we
have performed k − 1 iterations in the main loop of the algo-
rithm, then the current set of estimated change points, that is,
the active set in the variable selection framework, is T̂n,k−1 =
{t̂1, . . . , t̂k−1} and the current set of estimated segment levels is
{û1(k − 1), . . . , ûn(k − 1)}. We are now describing the compu-
tational requirements of the kth iteration of the algorithm.

First, we look for the next change point t̂k to add to T̂n,k−1
yielding the largest discrepancy with the true signal. This re-
quires, given {û1(k − 1), . . . , ûn(k − 1)}, the computation of the
n cumulative sums {∑n

i=j ûi(k − 1)}j=1,...,n. These cumulative
sums may actually be computed in O(n) operations in time, us-
ing the simple recursion

∑n
i=j ûi(k − 1) =∑n

i=j+1 ûi(k − 1) +
ûj(k − 1). Besides, to be included in the current set of change-
point estimates (“active set”), we need to locate the new change-
point estimate with regard to the other change-point estimates,
which is formally equivalent to sort the set of observations.
Therefore, the “change-point addition” step in Table 1 has a
O(n + n log(n)) time complexity.

Second, we have to compute the descent direction, which in-
volves the multiplication of the inverse of a (k × k)-matrix by

Table 1. Description of the adaptation of LAR/LASSO algorithm for
solving the LS-TV problem

LS-TV with LAR/LASSO
Initialization, k = 0.
(a) Set T̂n,0 = ∅.
(b) Set ûi(0) = 0, for all i = 1, . . . ,n.
While k < Kmax.
(a) Change-point addition:
Find t̂k such that

t̂k = Arg max
t∈{1,...,n}\T̂n,k−1

∣∣∣∣∣
n∑

i=t

Yi −
n∑

i=t

ûi(k − 1)

∣∣∣∣∣.
(b) Descent direction computation:
Compute

wk = (XT
k Xk)

−11k.

(c) Descent step search:
Search for γ̂ such that

γ̂ = min
t∈{1,...,n}\T̂n,k

(∑n
i=t Yi −∑n

i=t ûi(k)

1 −∑n
i=t wk,i

,

∑n
i=t Yi +∑n

i=t ûi(k)

1 +∑n
i=t wk,i

)
.

(d) Zero-crossing check:
If

γ̂ > γ̃
def= min

j
(αjwk,j)

−1

( n∑
i=j

ûi(k)

)
,

then, decrease γ̂ down to γ̂ = γ̃ , and remove t̃ from T̂n,k, where

t̃
def= Arg min

j
(αjwk,j)

−1

( n∑
i=j

ûi(k)

)
.

a k-long vector. Indeed, Xk is a matrix which consists of the
columns of X indexed by the elements of T̂n,k and 1k denotes a
vector of dimension k with each component equal to one. Given
the current set of change points T̂n,k , the inverse may be com-
puted in O(k2) operations, since the entries of the inverse matrix
of size (k × k) are available in close form beforehand; see (A.2)
in the Appendix. Then, the multiplication of the (k × k)-inverse
by 1k is computed in O(k2) operations. If k < Kmax, then the
time complexity of “descent direction computation” step is up-
per bounded by O(K2

max).
Third, we search for the descent step. For similar reasons as

for the first step, the “descent step search” step may be per-
formed in linear time O(n) time complexity. Indeed, again, this
step involves the computation of n cumulative sums, which may
be computed recursively.

Fourth, we check the zero crossing of the coefficients to ex-
actly track the regularization path of the LASSO. In this step,
αj = sign(ûj+1(k) − ûj(k)). Again, all computations involved in
this step hinge on cumulative sums as previously in the first
step, and therefore may be performed in O(n) time complexity.
Note that the maximum number of iterations N needed in prac-
tice to decrease γ̂ to a small enough value to satisfy γ̂ = γ̃ is
unknown in general, and no theoretically grounded upper bound
on N was provided in the literature so far. In practice, we set
N < Kmax in our implementation, and we never encountered
any numerical issue which demanded a different (larger) setting
of N. Hence, the “zero-crossing” step has at most O(Kmaxn)

time complexity.
Thus, the implementation of LS-TV based upon the LAR/

LASSO algorithm runs in at most O(K3
max + Kmaxn log(n)) in

time.

3. THEORETICAL RESULTS

In this section, we give some theoretical results providing
justification on the relevance of LS-TV for multiple change-
point estimation. First, in Section 3.1, we prove that LS-TV is
consistent in terms of estimation of the underlying signal. Sec-
ond, in Section 3.2, we show that LS-TV is also consistent in
terms of change-point estimation.

The main point of both Section 3.1 and Section 3.2 is the fol-
lowing. While the equivalence of LS-TV to a particular LASSO
problem is fruitful from a computational point of view, it turns
out to be less relevant for theoretical analysis. To get optimal
results for LS-TV both in terms of means and change-points
estimation, the original formulation (2) is more useful than the
LASSO formulation.

3.1 Estimation of the Means

We consider here the multiple changes in the mean problem
as described in (1). Our purpose is to estimate the unknown
means μ�

1, . . . ,μ
�
K�+1 together with the change points from ob-

servations Y1, . . . ,Yn.
Let us first work with the LASSO formulation to establish

the consistency in terms of means estimation. The model (1)
can be rewritten as

Yn = Xnβ
n + εn, (7)

where Yn = (Y1, . . . ,Yn)
T is the n × 1 vector of observations,

Xn the n × n lower triangular matrix with nonzero elements
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equal to one and εn = (εn
1, . . . , ε

n
n)

T is a zero mean random vec-
tor such that the εn

1, . . . , ε
n
n are iid random variables with finite

variance equal to σ 2. As for βn, it is a n × 1 vector having all
its components equal to zero except those corresponding to the
change-points instants.

Let us denote by A the set of nonzero components of βn and
by Ā its complementary set defined as follows:

A = {k, βn
k �= 0} and Ā = {1, . . . ,n} \ A. (8)

With the reformulation (7), the evaluation of the means es-
timation rate amounts to finding the rate of convergence of
‖Xn(β̂

n(λn) − βn)‖n to zero, β̂n(λn) satisfying:

β̂n(λn) = (β̂1(λn), . . . , β̂n(λn))
T

= Arg min
β∈Rn

{‖Yn − Xnβ‖2
n + λn‖β‖1}, (9)

where ‖u‖n and ‖u‖1 are defined for a vector u = (u1, . . . ,un) ∈
Rn by ‖u‖n = n−1∑n

j=1 u2
i and ‖u‖1 =∑n

j=1 |uj|, respectively.
Hence, within this framework, we are able to prove the fol-
lowing result regarding the consistency in means estimation of
LS-TV.

Proposition 1. Consider Y1, . . . ,Yn a set of observations fol-
lowing the model described in (7). Assume that the εn

1, . . . , ε
n
n

are centered iid Gaussian random variables with variance
σ 2 > 0. Assume also that there exists βmax such that for all k
in A, |βn

k | ≤ βmax, the set A being defined in (8). Then, for all
n ≥ 1 and C > 2

√
2, we obtain that with a probability larger

than 1 − n1−C2/8, if λn = Cσ
√

log n/n,

∥∥Xn(β̂
n(λn) − βn)

∥∥
n ≤ (2CσβmaxK�)1/2

(
log n

n

)1/4

.

The proof, which follows similar lines as Bickel, Ritov, and
Tsybakov (2009), is postponed to Section 7. Note that in Propo-
sition 1, where no upper bound on the number of change points
is assumed to be known, we do not attain the known (paramet-
ric) optimal rate which is of order 1/

√
n derived by Yao and

Au (1989) where an upper bound for the number of change
points is available. But, as we shall see in Proposition 2, the
rate of Proposition 1 can be improved if the model and the cri-
terion are rewritten in a different way and if an upper bound for
the number of change points is available.

Indeed, let us now work in the standard formulation of LS-
TV instead of its LASSO counterpart, and write model (1) as

Yt = u�
t + εt, t = 1, . . . ,n, (10)

where u�
t = μ�

k for t�k−1 ≤ t ≤ t�k − 1, k = 1, . . . ,K� + 1 and
estimate the vector (u�

1, . . . ,u�
n) by using a criterion based on a

total variation penalty as in Mammen and Van De Geer (1997):

û(λn) = (û1(λn), . . . , ûn(λn))

= Arg min
u∈Rn

{
‖Yn − u‖2

n + λn

n−1∑
i=1

|ui+1 − ui|
}

. (11)

The following proposition gives the rate of convergence of
û(λn) when an upper bound for the number of change points is
known and equal to Kmax.

Proposition 2. Consider Y1, . . . ,Yn a set of observations
following the model described in (10) where the ε1, . . . , εn

are zero-mean iid Gaussian random variables with a variance
σ 2 > 0. Assume also that û defined in (11) belongs to a set of
dimension at most Kmax − 1. Then, for all n ≥ 1, A in (0,1) and
B > 0, if λn = σ(A

√
B/2)(Kmax log n)1/2n−3/2 − σ(2Kmax +

1)1/2n−3/2,

P
(‖û − u�‖n ≥ σ(BKmax log n/n)1/2)

≤ Kmaxn{1−B(1−A)2/8}Kmax . (12)

The proof of this proposition is postponed to Section 7. The
rate of convergence that we obtain for the estimation of the
means is almost optimal up to a logarithmic factor since the
optimal rate derived by Yao and Au (1989) is O(n−1/2).

Let us now study the consistency in terms of change-point
estimation, which is more of interest in this article. Again, we
shall see that the LASSO formulation is less relevant than the
standard formulation for establishing the change-point estima-
tion consistency.

3.2 Estimation of the Change-Point Locations

In this section, we aim at estimating the change-point loca-
tions from the observations (Y1, . . . ,Yn) satisfying Model (7).
The change-point estimates that we propose to study are ob-
tained from the β̂i(λn)’s satisfying the criterion (9) as follows.
Let us define the set of active variables by

Â(λn) = {i ∈ {1, . . . ,n}, β̂i(λn) �= 0}. (13)

Then, we define the change-point estimates by t̂i(λn) satisfying

Â(λn) = {t̂1(λn), . . . , t̂|Â(λn)|(λn)
}
,

where t̂1(λn) < · · · < t̂|Â(λn)|(λn), (14)

|Â(λn)| denoting the cardinal of the set Â(λn).

Discussion and Related Works. With such a reformulation
of the change point in the mean problem, the change-point es-
timates can be seen as Lasso-type estimates in a sparse frame-
work. But, many classical assumptions under which the asymp-
totic properties of the Lasso estimates have been studied are not
satisfied.

For instance, the irrepresentable condition as defined in
(Meinshausen and Yu 2009, p. 5) which ensures the sign con-
sistency as defined in Zhao and Yu (2006) is not satisfied in the
change point in the mean problem. More precisely, sign consis-
tency ensures that P(sign(β̂n(λn)) = sign(βn)) tends to one as n
tends to infinity and the irrepresentable condition is a condition
on the covariance matrix Cn defined by

Cn = n−1XT
n Xn,

which requires that the following inequality holds element-
wise:

|Cn
ĀA(Cn

AA)−1 sign(βn
A)| < 1, (15)

where Cn
IJ is a submatrix of Cn obtained by keeping rows with

index in the set I and columns with index in J. The vector βn
A

is defined by βn
A = (βn

k )k∈A and sign denotes a function map-
ping positive entries of a vector to 1, negative entries to −1 and



Harchaoui and Lévy-Leduc: Multiple Change-Point Estimation With a Total Variation Penalty

JASA jasa v.2009/05/18 Prn:2010/10/25; 10:18 F:jasatm09181.tex; (Svajune) p. 5

5

1 60

2 61

3 62

4 63

5 64

6 65

7 66

8 67

9 68

10 69

11 70

12 71

13 72

14 73

15 74

16 75

17 76

18 77

19 78

20 79

21 80

22 81

23 82

24 83

25 84

26 85

27 86

28 87

29 88

30 89

31 90

32 91

33 92

34 93

35 94

36 95

37 96

38 97

39 98

40 99

41 100

42 101

43 102

44 103

45 104

46 105

47 106

48 107

49 108

50 109

51 110

52 111

53 112

54 113

55 114

56 115

57 116

58 117

59 118

null entries to zero. In our case, there exists at least one compo-
nent i0 such that(|Cn

ĀA(Cn
AA)−1 sign(βn

A)|)i0 = 1.

This can be proved by computing explicitly the matrices Cn
ĀA

and (Cn
AA)−1, see the Appendix for further details. In terms of

change-point estimation, it means, as already known; see, for
example, Yao and Au (1989) or Lavielle and Moulines (2000),
that we cannot have a perfect estimation of the change points.

Note that Meinshausen and Yu (2009) brought to light some
less restrictive conditions than the irrepresentable condition on
the matrix Cn under which the Lasso estimates can be proved
to be consistent in the �2-norm sense. The main assumption
consists in assuming a mn-incoherent design which means

lim inf
n→∞ φmin(mn) > 0,

where φmin(m) = min
β:‖β‖�0 ≤m

βTCnβ

βTβ
, (16)

with mn = sn log n, sn being the sparsity of the model that is
the number of nonzero coefficients. In other words, a design is
called mn-incoherent if the minimal eigenvalue of a collection
of mn variables is bounded from below by a positive constant.
In our setting, if the distance between two consecutive indices
of nonnull coefficients is equal to one, then for all n ≥ 1

φmin(mn) ≤ 1/n,

this making the condition (16) not satisfied in our case. A justi-
fication of this statement is given in the Appendix.

These particularities of the change point in the mean model
prevent us from using the techniques recently devised to study
the asymptotic properties of the Lasso estimates in a general
regression framework. However, the consistency of the t̂i(λn)

defined in (14) is established in Proposition 3.
Let us now detail the assumptions under which our theoreti-

cal results are established. Define

I�
min = min

1≤k≤K�
|t�k+1 − t�k |, J�

min = min
1≤k≤K�

|μ�
k+1 − μ�

k|,

J�
max = max

1≤k≤K�
|μ�

k+1 − μ�
k|,

which are respectively the minimum interval length, the mini-
mum and maximum jump sizes. From now on, we shall work
under the following assumptions:

(A1) The ε1, . . . , εn are iid zero-mean random variables with
var[ε1] = σ 2 satisfying: there exists a positive constant β such
that for all ν ∈ R, E{exp(νε1)} ≤ exp(βν2).

(A2) The sequence {δn}n≥1 is a nonincreasing and positive
sequence tending to zero as n tends to infinity and satisfying
nδn(J�

min)
2/ log(n) → ∞.

(A3) The change points t�1, . . . , t�K� satisfy I�
min ≥ nδn, for all

n ≥ 1.
(A4) The sequence of regularization parameters {λn}n≥1 is

such that (nδnJ�
min)

−1nλn → 0, as n tends to infinity.

We first state a lemma arising from the Karush–Kuhn–Tucker
conditions of the optimization problem stated in (9) which will
be useful in the proof of the consistency of our procedure.

Lemma 1. Consider Y1, . . . ,Yn a set of observations follow-
ing the model described in (10). Then, (t̂1(λn), . . . , t̂n(λn)) de-
fined by (14) and (û1(λn), . . . , ûn(λn)) defined by ûi(λn) =
(Xnβ̂

n(λn))i, where Xn is a n × n lower triangular matrix with
nonzero elements equal to one and the (β̂i(λn))1≤i≤n are ob-
tained in (9), satisfy

n∑
i=t̂�(λn)

Yi −
n∑

i=t̂�(λn)

ûi = nλn

2
α̂� for all � = 1, . . . , |Â(λn)|

(17)

and ∣∣∣∣∣
n∑

i=j

Yi −
n∑

i=j

ûi

∣∣∣∣∣≤ nλn

2
for all j = 1, . . . ,n, (18)

using the convention α̂� = +1, if ût̂�(λn)
> ût̂�(λn)−1 and α̂� =

−1, otherwise. The vector (û1(λn), . . . , ûn(λn)) has the follow-
ing additional property:

ût(λn) = μ̂k for t̂k−1(λn) ≤ t ≤ t̂k(λn) − 1,

k = 1, . . . , |Â(λn)| + 1, (19)

where |A(λn)| denotes the cardinal of the set A(λn) defined
in (14).

The proof of Lemma 1 is given in Section 7. Then, we state
a lemma which allows us to control the supremum of the aver-
age of the noise and which will also be useful for proving the
consistency of our estimation criterion.

Lemma 2. Let (εi)1≤i≤n be a sequence of random variables
satisfying Assumption (A1). If {vn}n≥1 and {xn}n≥1 are two pos-
itive sequences such that vnx2

n/ log(n) → ∞, then

P

(
max

1≤rn<sn≤n|rn−sn|≥vn

∣∣∣∣∣(sn − rn)
−1

sn−1∑
i=rn

εi

∣∣∣∣∣≥ xn

)
→ 0, as n → ∞.

The proof of Lemma 2 is postponed to Section 7.

Proposition 3. Let Y1, . . . ,Yn be a set of observations sat-
isfying Model (1) then under Assumptions (A1)–(A4), the
change-points estimators {t̂1(λn), . . . , t̂|Â(λn)|(λn)}n≥1 defined

by (14), satisfy, if |Â(λn)| = K� with probability tending to one:

P
(

max
1≤k≤K�

|t̂k − t�k | ≤ nδn

)
→ 1, as n → ∞. (20)

The proof of Proposition 3 is given in Section 7.
Under the assumptions of Proposition 3, the τ̂k’s defined for

all k ∈ {1, . . . ,K�} by t̂k = [nτ̂k] are consistent estimators of
the τ �

k ’s defined by t�k = [nτ �
k ], for all k ∈ {1, . . . ,K�} with the

rate δn.
Note that with δn = (log n)2/n, J�

min ≥ (log n)1/4, λn =√
log n/n or λn = √

log n/n3/2, the Assumptions (A2)–(A4) are
satisfied leading thus to a rate of order (log n)2/n for the esti-
mation of the τ̂k. With this choice of parameters, we obtain an
almost optimal rate for the estimation of the τ �

k (up to a loga-
rithmic factor) since the optimal rate is of order 1/n according
to Yao and Au (1989).

This result has also to be compared with the work by Lavielle
and Moulines (2000). They also obtained a rate in 1/n us-
ing a least-square approach in the case where the (εt) are not
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Figure 1. The Blocks dataset, subsampled to 1000 observations, and rescaled to mean zero and variance one, displayed without noise (on the
far left) and with, respectively, low noise, medium noise, and high noise (from left to right).

necessarily independent random variables but with more re-
strictive assumptions than ours on I�

min and J�
min. Indeed, it is

assumed in theorem 7 of Lavielle and Moulines (2000), that
min1≤k≤K� |τ �

k+1 − τ �
k | = ��

τ where ��
τ is a positive constant

and that J�
min is a positive constant.

In Proposition 3, the number of estimated change points is
assumed to be equal to the true number of change points. Since
this information is not in general available, we propose to eval-
uate the distance between the set T̂n,K = {t̂1, . . . , t̂K} of K es-
timated change points and the set of the true change points
T �

n = {t�1, . . . , t�K�} by using as in Boysen et al. (2009) the two

quantities E (T̂n,K ‖ T �
n ) and E (T �

n ‖ T̂n,K), where E (· ‖ ·) is de-
fined for two sets A and B by

E (A ‖ B) = sup
b∈B

inf
a∈A

|a − b|. (21)

Note that we recover the Hausdorff distance between the
sets A and B with

�(A,B) = sup{E (A ‖ B); E (B ‖ A)}.
Obviously, when K = K�, Proposition 3 implies that, un-

der the same assumptions, E (T̂n,K� ‖ T �
n ) ≤ nδn and E (T �

n ‖
T̂n,K� ) ≤ nδn with probability tending to one as n tends to in-
finity. In the case where K > K�, we prove in Proposition 4 that
E (T̂n,K ‖ T �

n ) ≤ nδn with probability tending to one as n tends
to infinity.

Proposition 4. Let Y1, . . . ,Yn be a set of observations sat-
isfying Model (1) then under Assumptions (A1), (A3), (A4)
and if nδnJ�2

min/ log(n3/λ2
n) → ∞, the change-points estima-

tors {t̂1(λn), . . . , t̂|Â(λn)|(λn)}n≥1 defined by (14), satisfy, if

|Â(λn)| ≥ K� with probability tending to one:

P
(

E
(

T̂n,|Â(λn)| ‖ T �
n

)≤ nδn
)→ 1, as n → ∞. (22)

Note that with δn = (log n)2/n, J�
min ≥ (log n)1/4, λn =√

log n/n or λn = √
log n/n3/2, the Assumptions (A3), (A4),

and nδnJ�2
min/ log(n3/λ2

n) → ∞ of Proposition 4 are fulfilled.
Now, we shall investigate the empirical behavior of LS-TV

on simulated data. In the remainder, we focus on the so-called
Blocks dataset introduced in Donoho and Johnstone (1995)
which contains K� = 11 change points. One may indeed con-
sider the Blocks dataset as a typically difficult dataset for multi-
ple change-point estimation, since both segment levels and seg-
ment lengths are highly heterogeneous.

4. EXPERIMENTAL RESULTS

4.1 Specified Number of Change Points

The Blocks dataset introduced in the article (Donoho and
Johnstone 1995, page 1201, table 1) was subsampled down
to 1000 points as depicted in Figure 1, and corrupted with
Gaussian white noise at three different levels: low-noise when
σ = 0.05, medium-noise when σ = 0.10, and high-noise when
σ = 0.50.

To assess our large-sample consistency result which stated
that n−1 E (T̂n,K� ‖ T �) = oP(1), as n tends to infinity, we ran
Monte Carlo simulations to investigate the empirical perfor-
mance of LS-TV in terms of n−1 E (T̂n,K� ‖ T �) =
n−1 maxk=1,...,K� |t̂k − t�k | in the three different noise settings.
For each noise setting, we generated 100 replications of the
Blocks dataset corrupted with Gaussian white noise. The re-
sults are displayed in Table 2. In all noise conditions, the large-
sample change-point estimation consistency of LS-TV is con-
firmed. In high-noise conditions, even for medium-scale sam-
ples, that is for n = 1000, the change-point detection ability of
LS-TV remains satisfactory. For large-scale samples, that is, for
n = 5000, the performance continue improving both on average
and standard deviation.

Since, in general, the number of change points is un-
known, we shall investigate in the next section the impact
of misspecifying the number of change points. For this pur-
pose, we study the evolution of both {E (T̂n,K ‖ T �), E (T � ‖

T̂n,K)}, as K = 1, . . . ,3K� in the three different noise set-
tings.

4.2 Unspecified Number of Change Points

4.2.1 Performance of LS-TV. We consider here the perfor-
mance of LS-TV on the Blocks dataset corrupted with three dif-
ferent levels of noise, when the true number of change points is
unknown. For each noise level, we generated 100 replications of

Table 2. Performance in terms of E (T̂n,K� ‖ T �) of LS-TV on the
Blocks dataset corrupted with low noise (σ = 0.05), medium

noise (σ = 0.10), and high noise (σ = 0.50). The values
after ± correspond to the standard deviations

Low noise Medium noise High noise

n = 1000 0.0200 ± 0.0068 0.0200 ± 0.0098 0.0230 ± 0.0185
n = 5000 0.0127 ± 0.0059 0.0127 ± 0.0082 0.0127 ± 0.0169
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Figure 2. The evolution of the two types of error as K = 1, . . . ,3K�, that is, {E (T̂ LS-TV
n,K ‖ T �)}K=1,...,3K� (“o”) and {E (T � ‖

T̂ LS-TV
n,K )}K=1,...,3K� (“×”), in different noise settings (low, medium, high noise from left to right).

corrupted versions of the Blocks dataset. For each noise repli-
cation, we measured both E (T̂n,K ‖ T �) and E (T � ‖ T̂n,K) for
all K = 1, . . . ,3K�. We display in Figure 2 the results averaged
over all replications for both errors. Also, note that the optimal
trade-off between the two types of error is reached almost ex-
actly at the true number of change points K = K�.

4.2.2 Comparison With the Standard Least-Square (LS) Ap-
proach. Let us now compare the performance of LS-TV with
the performance of the standard least-square estimation of mul-
tiple change points theoretically studied by Yao and Au (1989).
The latter criterion provides a number of K change points for
the model (1) by

Minimize
t1<···<tK

K∑
k=1

tk∑
i=tk−1+1

(Yi − μ̄k)
2,

where μ̄k
def= (tk − tk−1)

−1
tk∑

i=tk−1+1

Yi.

A computationally efficient way of solving this minimization
is based on a dynamic programming algorithm (DP), originally
proposed by Fisher (1958); Bellman (1961) and described in
Kay (1993), chapter 12. While a naive approach would require
a O(2n) time complexity, DP has a time complexity of O(Kn2)

if we look for at most K change points within the signal. For
a fair comparison, we used exactly the same settings for both
methods LS-TV and LS.

From Table 3 displayed in Section 5, we can see that LS-
TV reaches satisfactory performance, in terms of both types of
errors, in all noise settings as well as LS. It is worthwhile to
emphasize that, while LS has a O(Kn2) time complexity when
implemented with the DP algorithm, our method LS-TV has at

most O(Kn log(n)) time complexity. We can also remark that
the variance of E (T � ‖ T̂ LS-TV

n,K ) is larger than the variance of

E (T � ‖ T̂ LS
n,K). It is then interesting to remedy this issue, without

harming the subquadratic time complexity of LS-TV.
In the next section, we show how LS-TV may be further en-

hanced, both in mean and variance in both types of errors, when
combined with an additional step based on a reduced-search dy-
namic programming algorithm.

5. AN ENHANCED VERSION OF LS–TV: LS–TV∗

We now propose an enhanced version of LS-TV, called LS-
TV*, which combines two steps. First, we run LS-TV with K =
Kmax larger than K�, and get a set of change-point estimates
T̂n,Kmax . Second, we run a reduced version of DP searching L <

Kmax change points over the set T̂n,Kmax , instead of {1, . . . ,n}
as in the raw DP algorithm, which finally yields a new set of
change-point estimates Sn,L � T̂n,Kmax .

From Table 3, we observe that for K = 30 the error
E (T � ‖ T̂ LS

n,K) becomes larger than E (T � ‖ T̂ LS-TV
n,K ) in all noise

settings. This suggests that one type of error made by LS-
TV stabilizes in the over-segmentation regime, that is, when
K � K�, whereas the same type of error made by LS still in-
creases. Therefore, one might think of running LS-TV to look
for an a priori much larger set of change points than the true
number of change points, that is, to look for Kmax � K� change
points with Kmax  n, and then propose a way of selecting the
best change-point estimates within the large set of change-point
estimates obtained by LS-TV.

We suggest running a dynamic programming algorithm to
perform this postselection. More precisely, we aim at minimiz-

Figure 3. The evolution of the two types of error as K = 1, . . . ,3K�, that is, {E (T̂ LS-TV∗
n,K ‖ T �)}K=1,...,3K� displayed with squares and

{E (T � ‖ T̂ LS-TV∗
n,K )}K=1,...,3K� (“+”), in different noise settings (low, medium, and high noise from left to right).
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Table 3. Performance in terms of E (T̂n,K ‖ T �) and E (T � ‖ T̂n,K) for different values of K of LS, LS-TV and LS-TV* on the Blocks dataset
corrupted with low noise (σ = 0.05), medium noise (σ = 0.10), and high noise (σ = 0.50). For each method, the first and second lines

correspond to the mean and standard deviation of E (T̂n,K ‖ T �), respectively, and the third and fourth lines correspond to the mean
and standard deviation of E (T � ‖ T̂n,K), respectively. Kmax was set to 30 in all experiments

K = 1 K = 11 K = 20 K = 30

Low Medium High Low Medium High Low Medium High Low Medium High

LS 0.169 0.169 0.169 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001
(0.014) (0.033) (0.041) (0.000) (0.000) (0.001) (0.000) (0.000) (0.001) (0.000) (0.000) (0.001)
0.000 0.000 0.000 0.023 0.023 0.027 0.072 0.072 0.072 0.086 0.086 0.086

(0.000) (0.000) (0.001) (0.025) (0.025) (0.025) (0.018) (0.018) (0.017) (0.014) (0.014) (0.014)

LS-TV 0.250 0.250 0.250 0.020 0.020 0.040 0.000 0.000 0.020 0.000 0.000 0.019
(0.000) (0.000) (0.042) (0.006) (0.006) (0.009) (0.000) (0.000) (0.007) (0.000) (0.000) (0.009)
0.000 0.000 0.001 0.034 0.041 0.042 0.071 0.071 0.075 0.081 0.081 0.081

(0.000) (0.000) (0.002) (0.030) (0.031) (0.028) (0.025) (0.025) (0.022) (0.020) (0.020) (0.020)

LS-TV* 0.169 0.169 0.169 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001
(0.014) (0.033) (0.041) (0.000) (0.000) (0.005) (0.000) (0.000) (0.001) (0.000) (0.000) (0.001)
0.000 0.000 0.000 0.029 0.029 0.033 0.071 0.071 0.072 0.082 0.082 0.082

(0.000) (0.000) (0.001) (0.023) (0.023) (0.024) (0.015) (0.015) (0.014) (0.013) (0.013) (0.013)

ing, for each K in {1, . . . ,Kmax}:

Minimize
t1<···<tK

s.t. t1,...,tK∈T̂n,Kmax

K∑
k=1

tk∑
i=tk−1+1

(Yi − μ̄k)
2,

where μ̄k
def= (tk − tk−1)

−1
tk∑

i=tk−1+1

Yi. (23)

The above algorithm, subsequently called rDP, outputs for each
K = 1, . . . ,Kmax a new set of change-point estimates Sn,K �

T̂n,Kmax . We call LS-TV* the method which combines LS-TV
with a postselection based on rDP.

First, we investigate how LS-TV* improves on LS-TV in
terms of error variance. The settings are the same as previously.
We observe in Table 3 that the postselection step indeed consis-
tently reduces the variance of both errors obtained by LS-TV.

Second, we check whether LS-TV* improves, on average,
the performance of LS-TV. As Figures 2, 4, and Table 3 show,
not only LS-TV* yields much lower error rates than LS-TV in
both types of errors, but LS-TV* also obtains similar error rates
when compared to LS. Since the overall time complexity of
LS-TV* is O(K3

max + Kmaxn log(n)), and the overall time com-
plexity of LSis O(Kmaxn2), then, as long as K� < Kmax  n,
LS-TV* obtains the same performance results as LS at a much

lower computational cost. In order to give an idea to the reader
of the actual computation times of LS-TV* and LS, we give in
Table 4 the computation times of both methods when they are
applied to the Blocks dataset for several values of n and Kmax.

Note that Figure 4 gives an appealing intuitive understanding
of the statistical behavior of multiple change-point estimation
methods. While the first type of error E (T̂ ‖ T �) may be inter-
preted as the maximum error in the change-point location from
estimated change points to true change points, the second type
of error E (T � ‖ T̂ ) may be interpreted as the maximum error in
the change-point location from true change points to estimated
change points. As the number of estimated change points in-
creases, the first type of error E (T̂ ‖ T �) decreases while the
second type of error E (T � ‖ T̂ ) increases. Finally, E (T̂ ‖ T �)

quantifies the over-segmentation error while E (T � ‖ T̂ ) quanti-
fies the under-segmentation error.

As presented here LS-TV* does not include a model selec-
tion part. A thorough practical version of LS-TV* should in-
corporate a data-driven way of choosing the optimal number of
change points K̂, and hence the optimal set of change-point es-
timates Sn,K̂ . For interested readers, we proposed in Harchaoui
and Lévy-Leduc (2008) an efficient practical approach to ad-
dress this issue.

Figure 4. The evolution of the two types of error as K = 1, . . . ,3K�, that is, {E (T̂ LS-TV∗
n,K ‖ T �)}K=1,...,3K� (“♦”) and {E (T � ‖

T̂ LS-TV∗
n,K )}K=1,...,3K� (“∗”), in different noise settings (low, medium, and high noise from left to right).
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Table 4. Computation times in seconds of LS and
LS-TV* for several values of n and Kmax

(n,Kmax) (100, 5) (500, 15) (1000, 30)

LS 0.021 s 0.466 s 2.464 s
LS-TV* 0.005 s 0.119 s 0.689 s

6. CONCLUSION AND PROSPECTS

The standard least-square estimation approach LS suffers
from an overwhelming time complexity for performing change-
point estimation in long time series of observations. We
showed, both theoretically and practically, that an alterna-
tive solution to the multiple change-point estimation problem,
solved by a least-square fitting with a total variation penalty LS-
TV, allowed us to get a lower time complexity while keeping
competitive performance in terms of change-point estimation,
even in high-noise settings.

We see several future research directions for this work. In
the last section of the article, we proposed an enhanced version
of LS-TV called LS-TV*, with better empirical performance
and similar time complexity. We would like to provide thorough
theoretical support to this method, which would involve a sta-
tistical analysis of the two steps LS-TV and reduced DP (rDP).
Besides, since a lot of real datasets include a nonnegligible pro-
portion of outliers, we would like to derive a robust version of
both LS-TV and LS-TV*, and establish the corresponding the-
oretical results.

7. PROOFS

Proof of Proposition 1. By definition of β̂n(λn) given by (9),
we have

‖Yn −Xnβ̂
n(λn)‖2

n +λn‖β̂n(λn)‖1 ≤ ‖Yn −Xnβ
n‖2

n +λn‖βn‖1.

Using (7), we get∥∥Xn(β
n − β̂n(λn))

∥∥2
n + 2

n
(βn − β̂n(λn))

T XT
n εn

+ λn

n∑
k=1

|β̂k(λn)| ≤ λn

n∑
k=1

|βn
k |.

Thus, ∥∥Xn(β
n − β̂n(λn))

∥∥2
n

≤ 2

n
(β̂n(λn) − βn)TXT

n εn

+ λn

∑
j∈A

(|βn
j | − |β̂j(λn)|

)− λn

∑
j∈Ā

|β̂j(λn)|.

Observe that

2

n
(β̂n(λn) − βn)TXT

n εn = 2
n∑

j=1

(β̂j(λn) − βn
j )

(
1

n

n∑
i=j

εn
i

)
.

Let us define the event E =⋂n
j=1{n−1|∑n

i=j ε
n
i | ≤ λn/2}. Then,

given that the εn
1, . . . , ε

n
n are iid zero-mean Gaussian random

variables with variance σ 2, we obtain that

P(Ē) ≤
n∑

j=1

P

(
n−1

∣∣∣∣∣
n∑

i=j

εn
i

∣∣∣∣∣> λn/2

)

≤
n∑

j=1

exp

(
− n2λ2

n

8σ 2(n − j + 1)

)
.

Thus, if λn = Cσ
√

log n/n,

P(Ē) ≤ n1−C2/8.

With a probability larger than 1 − n1−C2/8, we get∥∥Xn(β
n − β̂n(λn))

∥∥2
n

≤ λn

n∑
j=1

|β̂j(λn) − βn
j |

+ λn

∑
j∈A

(|βn
j | − |β̂j(λn)|

)− λn

∑
j∈Ā

|β̂j(λn)|,

where A and Ā are defined in (8). Given that

n∑
j=1

|β̂j(λn) − βn
j | =

∑
j∈A

|β̂j(λn) − βn
j | +

∑
j∈Ā

|β̂j(λn)|,

we obtain that, with a probability larger than 1 − n1−C2/8,

∥∥Xn(β
n − β̂n(λn))

∥∥2
n ≤ 2λn

∑
j∈A

|βn
j | = 2Cσ

√
log n

n

∑
j∈A

|βn
j |

≤ 2CσβmaxK�

√
log n

n
.

Proof of Proposition 2. For notational simplicity, we shall
remove the dependence of û in λn. By definition of û as a min-
imizer of the criterion (11), we get:

‖Yn − û‖2
n + λn

n−1∑
i=1

|ûi+1 − ûi|

≤ ‖Yn − u�‖2
n + λn

n−1∑
i=1

|u�
i+1 − u�

i |.

Using Model (10), the previous inequality can be rewritten as
follows:

‖û − u�‖2
n ≤ λn

(
n−1∑
i=1

|u�
i+1 − u�

i | −
n−1∑
i=1

|ûi+1 − ûi|
)

+ 2

n

n∑
i=1

εi(ûi − u�
i ).

Using the Cauchy Schwarz inequality, we obtain

‖û − u�‖2
n ≤ 2nλn‖û − u�‖n + 2

n

n∑
i=1

εi(ûi − u�
i ).
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Thus, defining G(·) for v in Rn by G(v) = (
∑n

i=1 εi(vi −
u�

i ))/(σ
√

n‖v − u�‖n), we get

‖û − u�‖2
n ≤ 2nλn‖û − u�‖n + 2σ√

n
‖û − u�‖nG(û).

Let {SK}1≤K≤Kmax be the collection of linear spaces to which û
may belong, SK denoting a space of dimension K. Then, given
that the number of sets of dimension K is bounded by nK , we
obtain

P(‖û − u�‖n ≥ αn)

≤ P
(
nλn + σn−1/2G(û) ≥ αn/2

)
≤

Kmax∑
K=1

nKP
(

sup
v∈SK

G(v) ≥ n1/2σ−1αn/2 − n3/2σ−1λn

)
. (24)

Using that, var(G(v)) = 1, for all v in Rn, we obtain by using an
inequality due to Cirel’son, Ibragimov, and Sudakov in the same
way as in the proof of theorem 1 in Birgé and Massart (2001),
that for all β > 0,

P
(

sup
v∈SK

G(v) ≥ E
[

sup
v∈SK

G(v)
]
+ β

)
≤ exp(−β2/2). (25)

Let us now find an upper bound for E[supv∈SK
G(v)]. Denoting

by W the D-dimensional space to which v − u� belongs and
some orthogonal basis ψ1, . . . ,ψD of W , we obtain

sup
v∈SK

G(v) ≤ sup
w∈W

∑n
i=1 εiwi

σ
√

n‖w‖n
= sup

α∈RD

∑n
i=1 εi(

∑D
j=1 αjψj,i)

σ
√

n‖∑D
j=1 αjψ j‖n

= sup
α∈RD

∑n
i=1 εi(

∑D
j=1 αjψj,i)

σ
√

n(
∑D

j=1 α2
j )1/2

.

Using the Cauchy Schwarz inequality, we derive

sup
v∈SK

G(v) ≤ sup
α∈RD

∑D
j=1 αj(

∑n
i=1 εiψj,i)

σ
√

n(
∑D

j=1 α2
j )1/2

≤ (σ 2n)−1/2

{
D∑

j=1

(
n∑

i=1

εiψj,i

)2}1/2

.

By the concavity of the square-root function and by using that
D ≤ Kmax + K� + 1 ≤ 2Kmax + 1, we get

E
[

sup
v∈SK

G(v)
]

≤ (2Kmax + 1)1/2. (26)

Using (24), (25), and (26) with β = n1/2σ−1αn/2 − n3/2σ−1 ×
λn − (2Kmax + 1)1/2, we get

P(‖û − u�‖n ≥ αn)

≤ Kmax exp

{
Kmax log n

− 1

2

(
n1/2αn

2σ
− n3/2σ−1λn − (2Kmax + 1)1/2

)2}
,

which is valid only if β = n1/2σ−1αn/2 − n3/2σ−1λn −
(2Kmax + 1)1/2 is positive. Thus, writing for a constant A in
(0,1),

n3/2σ−1λn + (2Kmax + 1)1/2 = An1/2σ−1αn/2,

gives

P(‖û − u�‖n ≥ αn) ≤ Kmax exp

{
Kmax log n − (1 − A)2

8

nα2
n

σ 2

}
.

Thus, if αn = (Bσ 2Kmax log n/n)1/2, we obtain the expected re-
sult.

Proof of Lemma 1. A necessary and sufficient condition for
a vector β̂ in Rn to minimize � defined by �(β) =∑n

i=1(Yi −
(Xnβ)i)

2 + nλn
∑n

i=1 |βi|, is that the zero vector in Rn belongs
to the subdifferential of � at point β̂ , that is,

(XT
n (Yn − Xnβ̂))j = nλn

2
sign(β̂j), if β̂j �= 0,

∣∣(XT
n (Yn − Xnβ̂))j

∣∣ ≤ nλn

2
, if β̂j = 0.

Using that (XT
n Yn)j = ∑n

k=j Yk and that (XT
n û)j = ∑n

k=j ûk,
since Xn is a n×n lower triangular matrix having all its nonzero
elements equal to one, we obtain the expected result.

In the remainder, for any sequence of random variables, say,
Z1, . . . ,Zn, we shall use the following notation:

Z(r; s)
def=

s∑
i=r

Zi for any 1 ≤ r < s ≤ n. (27)

Proof of Lemma 2. Using the notation introduced in (27), we
obtain

P

(
max

1≤rn<sn≤n|rn−sn|≥vn

∣∣∣∣ε(rn; sn − 1)

sn − rn

∣∣∣∣≥ xn

)

≤
∑

1≤rn<sn≤n|rn−sn|≥vn

P

(∣∣∣∣ε(rn; sn − 1)

sn − rn

∣∣∣∣≥ xn

)
.

Using Assumption (A1), we get that for all η > 0,

P

(
ε(rn; sn − 1)

sn − rn
≥ xn

)
≤ exp[−η(sn − rn)xn]

[
E{exp(ηε)}](sn−rn)

≤ exp[−η(sn − rn)xn + βη2(sn − rn)].
Since the sharpest bound holds for η = xn/2β , we get

P

(
ε(rn; sn − 1)

sn − rn
≥ xn

)
≤ exp[−x2

n(sn − rn)/4β].

Since the same bound is valid when εi is replaced by −εi, we
get that

P

(∣∣∣∣ε(rn; sn − 1)

sn − rn

∣∣∣∣≥ xn

)
≤ 2 exp[−x2

n(sn − rn)/4β].

Hence, we obtain that

P

(
max

1≤rn<sn≤n|rn−sn|≥vn

∣∣∣∣ε(rn; sn − 1)

sn − rn

∣∣∣∣≥ xn

)
≤ 2n2 exp[−vnx2

n/4β],

which completes the proof.

Proof of Proposition 3. In this proof, we shall use the nota-
tion introduced in (27). Since P(max1≤k≤K� |t̂k − t�k | > nδn) ≤∑K�

k=1 P(|t̂k − t�k | > nδn), it suffices to prove that for all k =
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1, . . . ,K�, P(An,k) → 0, where An,k = {|t̂k − t�k | ≥ nδn}. Defin-
ing the set Cn by

Cn =
{

max
0≤k≤K�

|t̂k − t�k | < I�
min/2

}
, (28)

it is enough to prove that P(An,k ∩ Cn) → 0, and that P(An,k ∩
Cn) → 0. Let us first prove the first statement. Note that (28)
implies that

t�k−1 < t̂k < t�k+1 for all k ∈ {1, . . . ,K�}.
Let us first consider the case where t̂k ≤ t�k . Applying (18) in

Lemma 1 with j = t�k and (17) in Lemma 1 with � = k gives,
respectively, ∣∣∣∣∣

n∑
i=t�k

Yi −
n∑

i=t�k

ûi

∣∣∣∣∣ ≤ nλn/2 and

n∑
i=t̂k

Yi −
n∑

i=t̂k

ûi = nα̂kλn/2.

This yields, using (19) in Lemma 1, that the event Cn,k defined
as follows, occurs with probability one:

Cn,k = {|(t̂k − t�k)(μ
�
k+1 − μ�

k)

+ (t̂k − t�k)(μ̂k+1 − μ�
k+1) + ε(t̂k; t�k − 1) ≤ nλn

}
.

Using that P(An,k ∩ Cn) = P(An,k ∩ Cn,k ∩ Cn), we get

P(An,k ∩ Cn)

≤ P(nλn/nδn ≥ |μ�
k+1 − μ�

k|/3)

+ P
({|μ̂k+1 − μ�

k+1| ≥ |μ�
k+1 − μ�

k|/3} ∩ Cn
)

+ P

({∣∣∣∣ε(t̂k; t�k − 1)

t�k − t̂k

∣∣∣∣≥ |μ�
k+1 − μ�

k|/3

}
∩ An,k

)
def= P(An,k,1) + P(An,k,2) + P(An,k,3).

By Assumption (A4), nλn/(nδnJ�
min) < 1/3, for n large

enough, leading to P(An,k,1) → 0. By Lemma 2 with xn =
J�

min/3, vn = nδn and Assumption (A2), P(An,k,3) → 0. Let
us now address P(An,k,2). Using (18) in Lemma 1 with j =
(t�k + t�k+1)/2 and with j = t�k , and using the triangle inequality,
we get ∣∣∣∣∣

(t�k+t�k+1)/2−1∑
i=t�k

Yi −
(t�k+t�k+1)/2−1∑

i=t�k

ûi

∣∣∣∣∣≤ nλn.

Since we are in the event Cn and t̂k ≤ t�k , ûi ≡ μ̂k+1 within the
interval [t�k, (t�k + t�k+1)/2 − 1], which gives |(t�k+1 − t�k)(μ

�
k+1 −

μ̂k+1)/2 + ε(t�k; (t�k + t�k+1)/2 − 1)| ≤ nλn. This implies that

(t�k+1 − t�k)|μ�
k+1 − μ̂k+1|/2 ≤ nλn + ∣∣ε(t�k; (t�k + t�k+1)/2 − 1)

∣∣.
Therefore, we may upper bound P(An,k,2) as follows:

P
({|μ̂k+1 − μ�

k+1| ≥ |μ�
k+1 − μ�

k|/3} ∩ Cn
)

≤ P(nλn ≥ (t�k+1 − t�k)|μ�
k+1 − μ�

k|/12)

+ P

(∣∣∣∣ε(t�k; (t�k + t�k+1)/2 − 1)

t�k+1 − t�k

∣∣∣∣≥ |μ�
k+1 − μ�

k|/6

)
,

which is arbitrarily small if nλn < I�
min · J�

min/12 for n large
enough, and, by Lemma 2, if I�

min(J
�
min)

2/ log(n) → ∞, as n
tends to infinity. The last two conditions hold thanks to As-
sumptions (A2), (A3), and (A4). Since the proof in the case
t̂k ≥ t�k follows from similar reasoning, we have proved that
P(An,k ∩ Cn) → 0, as n tends to infinity.

We now prove that P(An,k ∩ Cn) → 0. Recall that by defini-
tion of Cn given in (28), Cn = {maxk∈{1,...,K�} |t̂k − t�k | ≥ I�

min/2}.
We now split P(An,k ∩ Cn) into three terms:

P(An,k ∩ Cn) = P
(
An,k ∩ D(l)

n

)+ P
(
An,k ∩ D(m)

n

)
+ P
(
An,k ∩ D(r)

n

)
.

where

D(�)
n

def= {there exists p ∈ {1, . . . ,K�}, t̂p ≤ t�p−1} ∩ Cn,

D(m)
n

def= {for all k ∈ {1, . . . ,K�}, t�k−1 < t̂k < t�k+1} ∩ Cn,

D(r)
n

def= {there exists p ∈ {1, . . . ,K�}, t̂p ≥ t�p+1} ∩ Cn.

Let us first focus on P(An,k ∩ D(m)
n ) and consider the case

where t̂k ≤ t�k , since the other case can be addressed in a similar
way. Note that

P
(
An,k ∩ D(m)

n

)≤ P
(
An,k ∩ Bk+1,k ∩ D(m)

n

)
+

K�∑
l=k+1

P
(
Cl,l ∩ Bl+1,l ∩ D(m)

n

)
, (29)

where Bp,q = {(t̂p − t�q) ≥ I�
min/2} with the convention

BK�+1,K� = {(n − t�K� ) ≥ I�
min/2} and Cp,q = {(t�p − t̂q) ≥

I�
min/2}. Let us now prove that the first term in the right-hand

side of (29) tends to zero as n tends to infinity, the arguments for
addressing the other terms being similar. Using (18) and (17)
in Lemma 1 with j = t�k and � = k, on the one hand and (18) in
Lemma 1 with j = t�k and (17) in Lemma 1 with � = k + 1 on
the other hand, we obtain, respectively:

|t̂k − t�k ||μ̂k+1 − μ�
k| ≤ nλn + |ε(t̂k; t�k − 1)| and

(30)
|t̂k+1 − t�k ||μ̂k+1 − μ�

k+1| ≤ nλn + |ε(t�k; t̂k+1 − 1)|.
Defining En by

En = {|μ�
k+1 − μ�

k| ≤ nλn/(nδn) + 2nλn/I�
min

+ (t�k − t̂k)
−1|ε(t̂k; t�k − 1)|

+ (t̂k+1 − t�k)
−1|ε(t�k; t̂k+1 − 1)|},

we obtain

P
(
An,k ∩ Bk+1,k ∩ D(m)

n

)
≤ P
(
En ∩ {(t�k − t̂k) ≥ nδn} ∩ {(t̂k+1 − t�k) ≥ I�

min/2})
≤ P(nλn/(nδn) ≥ |μ�

k+1 − μ�
k|/4)

+ P(2nλn/I�
min ≥ |μ�

k+1 − μ�
k|/4)

+ P
({

(t�k − t̂k)
−1|ε(t̂k; t�k − 1)| ≥ |μ�

k+1 − μ�
k|/4

}
∩ {(t�k − t̂k) ≥ nδn}

)
+ P
({

(t̂k+1 − t�k)
−1|ε(t�k; t̂k+1 − 1)| ≥ |μ�

k+1 − μ�
k|/4

}
∩ {(t̂k+1 − t�k) ≥ I�

min/2}).
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By Assumptions (A2), (A3), and (A4), P(An,k ∩ Bk+1,k ∩
D(m)

n ) → 0, as n tends to infinity, which concludes that P(An,k ∩
D(m)

n ) → 0.
Let us now focus on P(An,k ∩D(�)

n ). The latter probability can
be upper bounded by

P
(
D(�)

n

) ≤
K�∑

k=1

2k−1P(max{1 ≤ l ≤ K�, t̂l ≤ t�l−1} = k)

≤ 2K�−1
K�−1∑
k=1

K�−1∑
m≥k

P
({t�m − t̂m > I�

min/2}

∩ {t̂m+1 − t�m > I�
min/2})

+ 2K�−1P({t�K� − t̂K� > I�
min/2}). (31)

Consider one term of the sum in the right-hand side of (31).
Using (30) with k = m, we get

P({t�m − t̂m > I�
min/2} ∩ {t̂m+1 − t�m > I�

min/2})
≤ P(4nλn/I�

min ≥ |μ�
m+1 − μ�

m|/3)

+ P
({

(t�m − t̂m)−1|ε(t̂m; t�m − 1)| ≥ |μ�
m+1 − μ�

m|/3
}

∩ {(t�m − t̂m) ≥ I�
min/2})

+ P
({

(t̂m+1 − t�m)−1|ε(t�m; t̂m+1 − 1)| ≥ |μ�
m+1 − μ�

m|/3
}

∩ {(t̂m+1 − t�m) ≥ I�
min/2}).

By Assumptions (A2), (A3), and (A4), P({t�m − t̂m > I�
min/2} ∩

{t̂m+1 − t�m > I�
min/2}) → 0, as n tends to infinity. Let us now

consider the last term in the right-hand side of (31). Using (30)
with k = K� leads to

P({t�K� − t̂K� > I�
min/2})

≤ P(3nλn/I�
min ≥ |μ�

K�+1 − μ�
K� |/3)

+ P
({

(t�K� − t̂K� )−1|ε(t̂K�; t�K� − 1)| ≥ |μ�
K�+1 − μ�

K� |/3
}

∩ {(t�K� − t̂K�) ≥ I�
min/2})

+ P
({(n − t�K� + 1)−1|ε(t�K�;n)| ≥ |μ�

K�+1 − μ�
K� |/3}).

By Assumptions (A2), (A3), and (A4), P({t�K� − t̂K� > I�
min/

2}) → 0, as n tends to infinity, which gives P(D(�)
n ) → 0. In

a similar way, we can prove that P(D(r)
n ) → 0, as n tends to

infinity which gives that P(An,k ∩ Cn) → 0 and concludes the
proof.

Proof of Proposition 4. In this proof, we shall use the no-
tation introduced in (27). By lemma 2 of Meinshausen and
Yu (2009), we get that with probability tending to one

|Â(λn)| ≤ C
n

λ2
n
, (32)

where C is a positive constant equal to σ 2 + K�2J�2
max. In order

to prove that

P
({

E
(

T̂n,|Â(λn)| ‖ T �
n

)≥ nδn
}∩ {|Â(λn)| ≥ K�})

→ 0, as n → ∞,

it is enough to prove that

P
({

E
(

T̂n,|Â(λn)| ‖ T �
n

)≥ nδn
}∩ {K� ≤ |Â(λn)| ≤ Cn/λ2

n}
)

→ 0, as n → ∞.

Note that

P
({

E
(

T̂n,|Â(λn)| ‖ T �
n

)}∩ {K� ≤ |Â(λn)| ≤ Cn/λ2
n}
)

≤ P(E (T̂n,K� ‖ T �
n ) ≥ nδn)

+
Cn/λ2

n∑
K>K�

P(E (T̂n,K ‖ T �
n ) ≥ nδn). (33)

The first term of the right-hand side of (33) tends to zero as
n → ∞ since it is upper bounded by P(max1≤k≤K� |t̂k − t�k | >

nδn) which tends to zero by Proposition 3. Let us now focus on
the second term on the right-hand side of (33). Note that

Cn/λ2
n∑

K>K�

P(E (T̂n,K ‖ T �
n ) ≥ nδn)

≤
Cn/λ2

n∑
K>K�

K�∑
k=1

P(∀1 ≤ l ≤ K, |t̂l − t�k | ≥ nδn)

def=
Cn/λ2

n∑
K>K�

K�∑
k=1

P(En,k,1) + P(En,k,2) + P(En,k,3),

where

En,k,1 = {∀1 ≤ l ≤ K, |t̂l − t�k | ≥ nδn and t̂l < t�k},
En,k,2 = {∀1 ≤ l ≤ K, |t̂l − t�k | ≥ nδn and t̂l > t�k},
En,k,3 = {∃1 ≤ l ≤ K − 1, |t̂l − t�k | ≥ nδn,

|t̂l+1 − t�k | ≥ nδn, and t̂l < t�k < t̂l+1
}
.

Let us first upper bound P(En,k,1). Remark that

P(En,k,1) = P(En,k,1 ∩ {t̂K > t�k−1}) + P(En,k,1 ∩ {t̂K ≤ t�k−1}).
Applying (18) in Lemma 1 with j = t�k and (17) in Lemma 1
with � = K in the case where t̂K > t�k−1 gives with probability
one∣∣(t�k − t̂K){(μ�

k − μ�
k+1) + (μ�

k+1 − μ̂K+1)}
+ ε(t̂K; t�k − 1)

∣∣≤ nλn.

Thus,

P(En,k,1 ∩ {t̂K > t�k−1})
≤ P(nλn/(nδn) ≥ |μ�

k − μ�
k+1|/3)

+ P(|μ�
k+1 − μ̂K+1| ≥ |μ�

k − μ�
k+1|/3)

+ P
({|(t�k − t̂K)−1ε(t̂K; t�k − 1)| ≥ |μ�

k − μ�
k+1|/3

}
∩ {|t�k − t̂K | ≥ nδn}

)
def= P

(
E(1)

n,k,1

)+ P
(
E(2)

n,k,1

)+ P
(
E(3)

n,k,1

)
.

By Assumption (A4), nλn/(nδnJ�
min) < 1/3, for n large

enough, leading to CnK�/λ2
nP(E(1)

n,k,1) → 0. By Lemma 2
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with xn = J�
min/3, vn = nδn and using that nδnJ�2

min/ log(n3/

λ2
n) → ∞, CnK�/λ2

nP(E(3)
n,k,1) → 0. Let us now address

P(E(2)
n,k,1). Using (18) in Lemma 1 with j = t�k and with j = t�k+1,

we get

(t�k+1 − t�k)|μ�
k+1 − μ̂K+1| ≤ nλn + |ε(t�k; t�k+1 − 1)|.

Therefore, we may upper bound P(E(2)
n,k,1) as follows:

P(|μ�
k+1 − μ̂K+1| ≥ |μ�

k − μ�
k+1|/3)

≤ P(nλn ≥ (t�k+1 − t�k)|μ�
k − μ�

k+1|/6)

+ P
(|(t�k+1 − t�k)

−1ε(t�k; t�k+1 − 1)| ≥ |μ�
k − μ�

k+1|/6
)
.

By using Assumptions (A2), (A3), and nδnJ�2
min/ log(n3/

λ2
n) → ∞, we conclude as previously that CnK�/

λ2
nP(E(2)

n,k,1) → 0. The same arguments can be used for address-
ing P(En,k,1 ∩{t̂K ≤ t�k−1}). We can address in the same way the
term P(En,k,2).

Let us now focus on P(En,k,3). Note that P(En,k,3) can be
split into four terms as follows:

P(En,k,3) = P
(
E(1)

n,k,3

)+ P
(
E(2)

n,k,3

)+ P
(
E(3)

n,k,3

)+ P
(
E(4)

n,k,3

)
,

where

E(1)
n,k,3 = En,k,3 ∩ {t�k−1 < t̂l < t̂l+1 < t�k+1},

E(2)
n,k,3 = En,k,3 ∩ {t�k−1 < t̂l < t�k+1, t̂l+1 ≥ t�k+1},

E(3)
n,k,3 = En,k,3 ∩ {t̂l ≤ t�k−1, t�k−1 < t̂l+1 < t�k+1},

E(4)
n,k,3 = En,k,3 ∩ {t̂l ≤ t�k−1, t�k+1 ≤ t̂l+1}.

As for addressing P(En,k,1 ∩ {t̂K > t�k−1}), we have to use

twice Lemma 1. For P(E(1)
n,k,3), we first use (18) and (17) in

Lemma 1 with j = t�k and � = l, respectively. Second, we use
(18) and (17) in Lemma 1 with j = t�k and � = l+1, respectively.
For P(E(2)

n,k,3), we first use Lemma 1 with j = t�k and � = l. Sec-
ond, we use Lemma 1 with j = t�k and j = t�k+1. For P(E(3)

n,k,3),
we first use Lemma 1 with j = t�k−1 and j = t�k . Second, we use

Lemma 1 with j = t�k and � = l + 1. Finally, for P(E(4)
n,k,3), we

first use Lemma 1 with j = t�k−1 and j = t�k . Second, we use
Lemma 1 with j = t�k and j = t�k+1.

APPENDIX

Discussion About Condition (15)

Let us compute the different matrices arising in (15). The matrix
Cn

AA is a K� × K� matrix defined by

nCn
AA

=

⎛⎜⎜⎜⎜⎜⎜⎝

n − t�1 + 1 n − t�2 + 1 n − t�3 + 1 · · · n − t�K� + 1

n − t�2 + 1 n − t�2 + 1 n − t�3 + 1 · · · n − t�K� + 1

n − t�3 + 1 n − t�3 + 1 n − t�3 + 1 · · · n − t�K� + 1
...

...
...

...

n − t�K� + 1 n − t�K� + 1 n − t�K� + 1 · · · n − t�K� + 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

(A.1)

As for (Cn
AA)−1, it is a K� × K� symmetric tridiagonal matrix sat-

isfying

n−1(Cn
AA)−1

=

⎛⎜⎜⎜⎜⎜⎜⎝

d2,1 −d2,1 0 0 · · ·
−d2,1 d2,1 + d3,2 −d3,2 0 · · ·

0 −d3,2 d3,2 + d4,3 −d4,3 0

0 0
. . .

. . .
. . .

0 0 · · · 0 0

· · · 0
· · · 0

· · · 0
...

−dK�,K�−1 dK�+1,K� + dK�,K�−1

⎞⎟⎟⎟⎟⎟⎠ , (A.2)

where dk,l = (t�k − t�l )−1, for 1 ≤ k, l ≤ K� and dK�+1,K� = (n− t�K� +
1)−1.

Since a1,1 = 1 where A = (ai,j)1≤i≤n−K�,1≤j≤K� = Cn
ĀA ×

(Cn
AA)−1 and a1,j = 0, for all 2 ≤ j ≤ K�, the irrepresentable con-

dition (15) is clearly not satisfied.

Discussion About Condition (16)

Let M = {t1, . . . , tm} be a set of indices of cardinal m. Using (A.2),
one can see that, as soon as M is such that tj − ti = 1 for all i and j
such that j− i = 1, n−1(Cn

AA)−1 is a tridiagonal matrix with diagonal
terms equal to 2 except the first one which is equal to 1 and extra diag-
onal terms equal to −1. Such a matrix is symmetric and positive since
all the determinants of its submatrices are equal to 1. Thus, the maxi-
mal eigenvalue of (Cn

AA)−1 is larger than n implying that the minimal
eigenvalue of Cn

AA is smaller than 1/n. Hence, Condition (16) is not
fulfilled.

[Received March 2009. Revised April 2010.]
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