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A B S T R A C T

Purpose
We developed a multigene predictor of pathologic complete response (pCR) to preoperative
weekly paclitaxel and fluorouracil-doxorubicin-cyclophosphamide (T/FAC) chemotherapy and as-
sessed its predictive accuracy on independent cases.

Patients and Methods
One hundred thirty-three patients with stage I-III breast cancer were included. Pretreatment gene
expression profiling was performed with oligonecleotide microarrays on fine-needle aspiration
specimens. We developed predictors of pCR from 82 cases and assessed accuracy on 51
independent cases.

Results
Overall pCR rate was 26% in both cohorts. In the training set, 56 probes were identified as differentially
expressed between pCR versus residual disease, at a false discovery rate of 1%. We examined the
performance of 780 distinct classifiers (set of genes � prediction algorithm) in full cross-validation.
Many predictors performed equally well. A nominally best 30-probe set Diagonal Linear Discriminant
Analysis classifier was selected for independent validation. It showed significantly higher sensitivity
(92% v 61%) than a clinical predictor including age, grade, and estrogen receptor status. The negative
predictive value (96% v 86%) and area under the curve (0.877 v 0.811) were nominally better but not
statistically significant. The combination of genomic and clinical information yielded a predictor not
significantly different from the genomic predictor alone. In 31 samples, RNA was hybridized in replicate
with resulting predictions that were 97% concordant.

Conclusion
A 30-probe set pharmacogenomic predictor predicted pCR to T/FAC chemotherapy with high
sensitivity and negative predictive value. This test correctly identified all but one of the
patients who achieved pCR (12 of 13 patients) and all but one of those who were predicted to
have residual disease had residual cancer (27 of 28 patients).
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INTRODUCTION

Despite the critical importance of selecting the most
effective adjuvant/neoadjuvant chemotherapy for
an individual, diagnostic tests to guide selection of
the optimal regimen for a particular patient are
lacking.1-4 Estrogen receptor (ER) –negative status,
high grade, and high proliferative activity are histo-
logic characteristics that tend to indicate more
chemotherapy-sensitive cancer.5-7 However, these
clinicopathologic variables predict general chemo-
therapy sensitivity and therefore, have little potential
to guide selection of a specific regimen. Neoadjuvant
(preoperative) chemotherapy provides an opportu-

nity to directly assess tumor response to therapy.
Furthermore, complete eradication of all invasive
cancer from the breast and regional lymph nodes,
pathologic complete response (pCR), is associated
with excellent long-term cancer-free survival.8,9 Our
goal was to evaluate gene expression profiling as a
potential tool to predict who may achieve pCR to
sequential anthracycline paclitaxel preoperative
chemotherapy. We selected a complex multidrug
regimen for study because combination chemother-
apy represents the current clinical standard for pa-
tients who require systemic cytotoxic treatment.
Also, gene signatures that are predictive of response
to individual drugs may not fully capture sensitivity
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to combination chemotherapy. In an earlier small study (n � 42) we
reported that it is possible to perform gene expression profiling on
fine-needle biopsies of newly diagnosed breast cancer and that a mul-
tigene predictor of pCR has been developed promising predictive
performance.10 The current study represents an extension of the ear-
lier work. We used a larger sample size for predictor discovery (n�82)
and used a commercially available standard gene expression profiling
technology. We systematically examined the performance of a large
number of potential predictors in cross validation in the training data
and selected one final predictor for independent validation in 51 new
cases. In the current study, we also examined the reproducibility of
prediction results in 31 replicate experiments.

PATIENTS AND METHODS

Patients and Samples

This biomarker discovery trial was conducted at the Nellie B. Connally
Breast Center of the University of Texas M.D. Anderson Cancer Center
(MDACC) in Houston, TX, and at the Instituto Nacional de Enfermedades
Neoplásicas (INEN) in Lima, Peru. During this research, patients were asked
to undergo pretreatment fine-needle aspiration (FNA) of the primary breast
tumor or ipsilateral axillary metastasis before starting chemotherapy as part of
an ongoing pharmacogenomic marker discovery program.11 The aspiration
was performed using a 23- or 25-gauge needle. Cells from two to three passes
were collected in vials containing 1 mL RNA later solution (Ambion, Austin,
TX) and stored at �80°C. FNA samples on average contain 80% neoplastic
cells and contain little or no stromal cells or normal breast epithelium.12 Gene
expression data generated from FNAs capture the molecular characteristics of
the invasive cancer, including the molecular class.13 Approximately 70% of all
aspirations yielded at least 1 �g total RNA required for the gene expression
profiling. The main reason for failure to obtain sufficient RNA was acellular
aspirations. One hundred thirty-one consecutively accrued patients with at
least 1 �g RNA were included in this analysis. All patients received 24 weeks of
sequential paclitaxel and fluorouracil-doxorubicin-cyclophosphamide preop-
erative chemotherapy. Metallic markers were placed under radiologic guid-
ance in the shrinking tumor bed for any patient interested in breast-conserving
surgery, whose tumor became less than 2 cm measured by ultrasonogram or
mammogram during the course of treatment. At the completion of neoadju-
vant chemotherapy, all patients had modified radical mastectomy or lumpec-
tomy and sentinel lymph node biopsy or axillary node dissection as
determined appropriate by the surgeon. Grossly visible residual cancer was
measured and representative sections of the cross sectional area were submit-
ted for histopathologic study. When there was not grossly visible residual
cancer, the slices of the specimen were radiographed, and all areas of radiolog-
ically and/or architecturally abnormal tissue were entirely submitted for his-
topathologic study. pCR was defined as no residual invasive cancer in the
breast or lymph nodes. Residual in situ carcinoma without invasive compo-
nent was also considered a pCR. This study was approved by the institutional
review boards of MDACC and INEN, and all patients signed an informed
consent for voluntary participation. Clinical characteristics of the patients are
presented in Table 1.

RNA Extraction and Gene Expression Profiling

RNA was extracted from FNA samples using the RNAeasy Kit (Qiagen,
Valencia, CA). The amount and quality of RNA were assessed with DU-640
UV Spectrophotometer (Beckman Coulter, Fullerton, CA), and they were
considered adequate for further analysis if the optical density 260/280 ratio was
� 1.8 and the total RNA yield was � 1�g. Of the 133 RNA specimens used in
this study, 33 were also included in the previous pharmacogenomic analysis.10

These 33 cases were profiled on both the Affymetrix U133A chip (Santa Clara,
CA) and the proprietary cDNA array. The results of the cross platform com-
parison were published previously.14 cRNA generation and second-strand
cDNA synthesis were performed as described previously.12-14 No second
round amplification was performed. Thirty-one total RNA specimens were

split, labeled, and hybridized in duplicates several months apart in the same
and in a different laboratory to assess technical reproducibility of gene
expression– based predictions.

Data Analysis

dCHIP V1.3 (http://www.dchip.org) software was used to generate
probe level intensities and quality measures including median intensity, per-
cent of probe set outliers, and percent of single probe outliers for each chip.
This program normalizes all arrays to one standard array that represents a chip
with median overall intensity. This reference chip and the normalization
procedure is available online (http://www.bioinformatics.mdanderson.org/
pubdata.html). Normalized gene expression values were transformed to the
log10 scale for analysis. To identify differentially expressed genes between
cases with pCR and those with residual disease (RD) genes, two-sample,
unequal-variance t tests were performed and genes rank ordered by P values.

Table 1. Clinical Information and Demographics of the 133 Patients Included
in the Study

Training Set Validation Set

No. % No. %

Female 82 100 51 100
Age, years

Median 52 50
Range 29-79 28-73

Race/ethnicity
White 56 68 30 59
African American 11 13 3 6
Asian 7 9 2 4
Hispanic 6 7 16 31
Mixed 2 2 0 0

Histology
Invasive ductal 73 89 51 100
Mixed ductal/lobular 6 7 0
Invasive lobular 1 1 0
Invasive mucinous 2 2 0

TNM stage
T1 7 9 6 12
T2 46 56 24 47
T3 15 18 7 14
T4 14 17 14 27
N0 28 34 12 23
N1 38 46 25 49
N2 8 10 6 12
N3 8 10 8 16

Nuclear grade (MBMN)
1 2 2 0 0
2 23 37 24 47
3 35 61 27 53

ER positive� 35 43 35 69
ER negative 47 57 16 31
HER-2 positive† 25 30 8 16
HER-2 negative 57 70 42 (1 unknown) 82
Neoadjuvant therapy

Weekly T � 12 � FAC � 4 69 84 46 90
3-weekly T � 4 � FAC � 4 13 16 5 10

Pathologic complete response 21 26 13 26
Residual disease 61 74 38 74

Abbreviations: MBMN, modified Black’s nuclear grade; ER, estrogen recep-
tor; T, paclitaxel; FAC, fluorouracil, doxorubicin, and cyclophosphamide.

�Cases where � 10% of tumor cells stained positive for ER with immuno-
histochemistry (IHC) were considered positive.
†Cases that showed either 3� IHC staining or had gene copy number �2.0

were considered HER-2 “positive.”
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Beta uniform mixture analysis (BUM) of the P values showed a nonuniform
distribution and was used to estimate false discovery rates (FDRs).15 We
constructed multigene classifiers using combinations of the most informative
genes and several different class prediction algorithms including support vec-
tor machines with linear, radial, and polynomial kernels (SVM), Diagonal
Linear Discriminant Analysis (DLDA), and K-nearest neighbor (KNN) using
Euclidean distance.16 Monte Carlo cross validation (CV) was performed by
repeated iteration (n � 100) of stratified random sampling to estimate the
prediction performance of the different classifiers in the training data and to
facilitate selection of a single classifier for independent validation. Stratifica-
tion was performed to insure that the relative proportion of outcomes sampled
in both cross-validation training and test sets was similar to the original
proportions for the full training data. We performed complete CV including
gene selection in each iteration to avoid selection bias.17

To assess whether the performance of a chosen predictor differed signif-
icantly from what chance alone could produce, a random-label permutation
test was performed.18 During this process, the outcome label of each case (ie,
pCR v RD) was randomly reassigned. One thousand such data sets with

randomly permutated labels were created, and predictors were generated with
repeat selection of the top probes with each iteration. The observed prediction
error rate for the data set is compared with the distribution of the error
rates observed with the randomly permutated data sets to calculate a
permutation P value.

Classifier performance on the validation data were assessed by using the
area under the receiver operating characteristic (ROC) curve (AUC) and its
compliment, the area above the curve (AAC; AAC � 1�AUC). The ROC
curve is a graphical display of the false-positive rate and the true-positive rate
from multiple classification rules.19 The ROC curve arises when a continuous
predictor value is calculated for each subject for a broad range of thresholds. A
case is called test-positive (eg, predicted to have pCR) if the threshold is above
a defined value. The total area under the ROC curve is a summary measure of
the test’s ability to correctly classify those with and without the outcome of
interest. An AUC of 1 represents a perfect test; an AUC of 0.5 represents a test
no better than random prediction.

We also evaluated the performance of a multivariate clinical predic-
tor. The predictor utilized clinical variables only to predict pCR and was

Table 2. Top 31 Differentially Expressed Probe Sets by Unequal-Variance t Test (n � 82, false discovery rate � 0.5%)

Rank by
t Test t Test

t Test P
Value

Higher
Expression in

Gene
Symbol

Affymetrix
Probe Set ID Transcript ID

Gene
Bank ID Gene Name

1 6.6019 .00000001 No-pCR MAPT 203929_s_at Hs.101174.1 AI056359 Microtubule-associated protein �

2 6.2428 .00000002 No-pCR MAPT 203930_s_at g8400712 NM_016835 Microtubule-associated protein �

3 6.0259 .00000008 No-pCR BBS4 212745_s_at Hs.26471.0 AI813772 Bardet-Biedl syndrome 4
4 5.9166 .00000008 No-pCR MAPT 203928_x_at Hs.101174.1 AI870749 Microtubule-associated protein �

5 6.0604 .00000010 No-pCR THRAP2 212207_at Hs.4084.0 BG426689 Thyroid hormone receptor
associated protein 2

6 5.6999 .00000027 No-pCR MGC5370 217542_at Hs.168732.0 BE930512 Hypothetical protein MGC5370
7 5.6116 .00000028 No-pCR MAPT 206401_s_at g338684 J03778 Microtubule-associated protein �

8 5.5118 .00000047 No-pCR — 215304_at Hs.159264.0 U79293 Human clone 23,948 mRNA
sequence

9 5.4961 .00000047 No-pCR ZNF552 219741_x_at g13443019 NM_024762 Zinc finger protein 552
10 5.474 .00000051 No-pCR RAMP1 204916_at g5032018 NM_005855 Receptor (calcitonin) activity

modifying protein 1
11 5.6112 .00000055 No-pCR BECN1 208945_s_at Hs.12272.0 AF139131 Beclin 1 (coiled-coil, myosin-like

BCL2 interacting protein)
12 �5.9508 .00000056 pCR BTG3 213134_x_at Hs.77311.1 AI765445 BTG family, member 3
13 5.4395 .00000068 No-pCR SCUBE2 219197_s_at Hs.222399.0 NM_020974 Signal peptide, CUB domain,

EGF-like 2
14 �5.8788 .00000070 pCR MELK 204825_at g7661973 NM_014791 Maternal embryonic leucine

zipper kinase
15 �5.8634 .00000096 pCR BTG3 205548_s_at g5802989 NM_006806 BTG family, member 3
16 5.2823 .00000129 No-pCR AMFR 202204_s_at g5931954 NM_001144 Autocrine motility factor

receptor
17 5.1606 .00000178 No-pCR CTNND2 209617_s_at g2661061 AF035302 Catenin (cadherin-associated

protein), delta 2 (neural
plakophilin-related arm-
repeat protein)

18 5.349 .00000250 No-pCR GAMT 205354_at g7549759 NM_000156 Guanidinoacetate N-
methyltransferase

19 5.0802 .00000282 No-pCR CA12 204509_at g8923149 NM_017689 Carbonic anhydrase XII
20 5.1848 .00000311 No-pCR FGFR1OP 214124_x_at Hs.108548.1 AL043487 FGFR1 oncogene partner
21 5.0679 .00000337 No-pCR KIAA1467 213234_at Hs.6189.0 AB040900 KIAA1467 protein
22 5.3029 .00000364 No-pCR MTRN 219051_x_at g13128999 NM_024042 Meteorin, glial cell

differentiation regulator
23 5.2581 .00000374 No-pCR FLJ10916 219044_at g8922765 NM_018271 Hypothetical protein FLJ10916
24 �5.2639 .00000381 pCR E2F3 203693_s_at g12669913 NM_001949 E2F transcription factor 3
25 4.9635 .00000540 No-pCR ERBB4 214053_at Hs.390729 AW772192 V-erb-a erythroblastic leukemia

viral oncogene homolog 4
(avian)

26 5.0047 .00000559 No-pCR JMJD2B 215616_s_at Hs.301011.2 AB020683 Jumonji domain containing 2B
27 �4.9078 .00000618 pCR RRM2 209773_s_at g12804874 BC001886 Ribonucleotide reductase M2

polypeptide
28 4.824 .00000668 No-pCR FLJ12650 219438_at g13375663 NM_024522 Hypothetical protein FLJ12650
29 4.8992 .00000715 No-pCR GFRA1 205696_s_at g4885268 U97144 GDNF family receptor � 1
30 5.0633 .00000718 No-pCR IGFBP4 201508_at g10835020 NM_001552 Insulin-like growth factor binding

protein 4
31 5.0448 .00000748 No-pCR KIF3A 213623_at Hs.43670.0 NM_007054 Kinesin family member 3A

Abbreviation: pCR, pathologic complete response.

Hess et al

4238 JOURNAL OF CLINICAL ONCOLOGY

Copyright © 2006 by the American Society of Clinical Oncology. All rights reserved. 
Downloaded from jco.ascopubs.org on October 20, 2008 . For personal use only. No other uses without permission. 



constructed similarly to the genomic predictor. Informative variables were
identified through logistic regression performed on the training set, and a
multivariate predictor was constructed using a DLDA machine learning
algorithm identical to that used for the pharmacogenomic predictor. A
three-variable– based (nuclear grade, age, and ER status) DLDA prediction
model was tested on the independent validation set and its performance
compared to the multigene predictor using ROC analysis. A combined
clinical plus genomic model was also assessed that included age, dichoto-
mized versions of ER status determined by routine immunohistochemistry
(� 10% of cells with positive nuclear staining versus � 10%) and grade
(grade 3 v grades 1 or 2) as variables in addition to the genes already
included in the pharmacogenomic prediction models.

Predictor learning was also evaluated for selected pharmacogenomic
models. One hundred and twenty cases from the training and validation
sets were included in this analysis. Nine different training sample sizes
ranging from 20 to100 by increments of 10 were created. The test set size
was kept constant at 20. Stratified sampling was used to preserve the ratio
of pCR and RD cases in each training and test sets. For each training set,
feature selection was repeated to identify the top 30 informative genes. The
area above the ROC curve and the misclassification error rate were calcu-
lated for 50 random sample sets generated for each nine training set sizes
(n � 20, 30, 40, . . .100). The following learning curve model was fit to the
resulting AAC and misclassification error rate (MER) values:

Y � a � �b*TrainingSizec�

Gene expression data are available at http://bioinformatics.mdanderson.org/
pubdata.html.

RESULTS

Pathologic Response Rate and Selection of

Informative Genes

The overall pCR rate in the 133 patients was 26% (n � 34), which
is consistent with results from a larger randomized study using the
same preoperative therapy.20 The first 82 cases were used as a training

set (including 21 cases of pCR) to develop pharmacogenomic and
clinical predictors. This training set size was determined by fitting
learning curves to gene expression data (see below). The next 51
consecutive cases, including 13 cases of pCR, were used as indepen-
dent test set to assess accuracy. In univariate analysis including clinical
variables, age, nuclear grade, and ER status were significantly associ-
ated with pCR in the training set. In a logistic regression model includ-
ing age, pretreatment T stage, N stage, nuclear grade, ER status, and
HER2 status as predictors, only ER status (P � .0037) and age
(P � .012) remained significant. To select informative genes for re-
sponse prediction, we compared gene expression data from cases with
pCR to those with RD in the training set. Setting the FDR to 5%
resulted in 395 probe sets, 1% in 56 probe sets (corresponding to 49
genes) and 0.5% in 31 probe sets (27 genes). Table 2 presents the top 31
probe sets that were differentially expressed between the 2 response
groups at an FDR of 0.5%. When similar analyses were performed
separately for ER-positive (n � 35) and ER-negative cases (n � 47),
BUM analysis of P values indicated the possibility of high false discov-
ery rates even with small P values. Small sample size and relatively few
events, particularly in the ER-positive group (three pCR), may have
prevented the identification of differentially expressed genes with con-
fidence within these subsets. Indeed, when predictors were con-
structed from genes separately associated with pCR in ER-negative
and ER-positive cancers, these predictors were inferior to predictors
that used genes selected from all cases.

Development of a Multigene Predictor of Pathologic

Complete Response

We used gene expression data from the first 82 consecutively
enrolled patients to develop a pharmacogenomic predictor. There is
no consensus on what the best statistical method (if any) is to develop
the most efficient class predictor from gene expression data. There-
fore, we evaluated the performance of 780 different class predictors

Fig 1. Mean area above the receiver
operating characteristic (ROC) curves plot-
ted against the number of top genes in-
cluded in the classifiers. Complete 5-fold
cross validation results (means over the
100 iterations) for 20 classifier algorithms
including different numbers of probe sets
(39 gene sets) are shown. Green and black
horizontal dotted lines indicate the mean
�/� 2SD for the nominally best Diagonal
Linear Discriminant Analysis (DLDA) classi-
fier with 30 probe sets that was selected
for independent validation. polynomial ker-
nels (SVM), and K-nearest neighbor
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that represented 20 different classification methods (DLDA, SVM
with linear, polynomial and radial kernels, KNN with k � 3, 5, 7, 9, 11,
13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33) in combination with 39 distinct
gene sets spanning the range 1 to 22,283 probes ranked by P values and
spaced approximately equally on the log scale. Figure 1 shows the area
above the ROC (AAC) results for each of these predictors derived from
the means of 100 iterations of five-fold complete CV plotted against
the number of genes included in the classifiers. The SVM classifiers did
worse than the others in this particular data set. The performance of

the DLDA and KNN classifiers improved with increasing numbers of
genes leveling off at about 80 genes. Among the classifiers with fewer
than 80 genes, DLDA did slightly better than KNN achieving the best
performance at 26 genes corresponding to 30 probe sets that are
shown on Table 2. In five-fold cross validation in the training set, this
predictor showed mean area above the ROC curve (AAC) of 18%
(95%CI: 0% to 37%), MER 27% (6% to 47%), sensitivity 75% (35%
to 100%), specificity 73% (48% to 97%), and positive and negative
predictive values (NPVs) of 50% (20% to 79%) and 90% (75% to
100%), respectively. To determine if the 30 probe set DLDA classifier
performed significantly better than chance we did permutation testing
in cross validation. None of the 1000 permuted data sets had perfor-
mance as high as or higher than that calculated from the original class
labels. This 30-probe set predictor (DLDA-30) was selected for inde-
pendent validation. However, the mean AAC point estimates for
most of the other classifiers fall within the 95% confidence interval
of the DLDA-30 results. This indicates that picking the best classi-
fier is a somewhat arbitrary process because many prediction
methods and gene sets show statistically equal performance in
complete cross validation.

Fig 2. Learning curve for Diagonal Linear
Discriminant Analysis–30 classifier. Mean
area above the receiver operating charac-
teristic (ROC) curves (AAC) developed
from 20 to 100 cases in increments of 10
are shown. Fifty individual point estimates of
AAC (small dots) and their means (large dots)
are plotted for each of the training set sizes.
The projected AAC is 0.12 if 200 cases.

Fig 3. Receiver operating characteristic curves of three distinct pathologic
complete response prediction models. The performance of the Diagonal Linear
Discriminant Analysis–30 predictor and a predictor based on clinical variables and
a combined clinical � pharmacogenomic prediction model are shown in the
validation set (n � 51). ER, estrogen receptor; AUC, area under the curve.

Table 3. Performance Metrics of the Genomic and Clinical Predictors in the
Validation Set (n � 51)

Metric

Clinical Variables� DLDA-30 Probe Sets

Estimate 95% CI Estimate 95% CI

Accuracy 0.78 0.65 to 0.89 0.76 0.62 to 0.87
Sensitivity 0.61 0.32 to 0.86 0.92 0.64 to 1.0
Specificity 0.84 0.69 to 0.94 0.71 0.54 to 0.85
PPV 0.57 0.29 to 0.82 0.52 0.31 to 0.73
NPV 0.86 0.71 to 0.95 0.96 0.82 to 1.0

Abbreviations: DLDA-30, Diagonal Linear Discriminant Analysis-30; PPV,
positive predictive value; NPV, negative predictive value.

�Age, estrogen receptor status, and nuclear grade.
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We also used the same 82 cases to develop a clinical variable based
predictor of pCR. Younger age, ER-negative status, and high nuclear
grade were associated with increased probability of pCR in univariate
analysis. These three variables were combined with the same DLDA
class prediction rule as used for the genomic data to create a clinical
predictor. This model was trained on the 82 cases to determine the
classification threshold and was applied to independent validation
cases to compare its performance with that of the DLDA-30
genomic predictor.

To estimate the training set size that is necessary to develop a
pharmacogenomic predictor that operates near to its plateau, we ex-
amined how the performance characteristics of DLDA-30 changed as
the training set size increased. One would expect some improvement
in prediction accuracy and narrowing of confidence intervals as the
predictor is developed and trained on larger and larger sample sets.
The steepness of this “learning curve” may help determine a rea-
sonable sample size for predictor discovery.21 Figure 2 shows the
change in mean AAC as the classifier was developed from 20 to 100

cases in increments of 10. The results indicate a steady but modest
improvement in performance as the training set size increases. Based
on these observations a DLDA-30 predictor developed from 80 cases
was projected to be only marginally inferior to a predictor developed
from 200 cases. Essentially similar learning curves were obtained for
KNN and SVM methods that all exhibited minimal improvement in
projected performance beyond 60 to 100 training cases.

Performance of the DLDA-30 Pharmacogenomic

Predictor in Independent Validation

We tested the prediction accuracy of the DLDA-30 predictor, the
clinical variable-based predictor (DLDA including age, grade and
ER-status) and a combined clinical-genomic predictor (DLDA with
33 variables including 30 probe sets � age, ER, and grade) on 51
independent individuals who were accrued consecutively after the
discovery set was completed. Figure 3 shows the ROC curves for the
distinct prediction models. The genomic (AUC � 0.877) and
the combined clinical and genomic models (AUC � 0.879) showed

Fig 4. (A) Diagonal Linear Discriminant Anal-
ysis–30 (DLDA-30) probe set model prediction
outcome (black dots indicate misclassified
cases). (B) Clinical (estrogen receptor status,
grade, age) model prediction (black dots indi-
cate misclassified cases). RD, residual disease;
pCR, pathologic complete response.
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better overall performance than the clinical-only model (AUC �
0.811). Formal statistical comparison of the three distinct ROC
curves showed no significant difference between the curves. How-
ever, the models including genomic data had substantially higher
sensitivity (92%; 95% CI, 0.64 to 0.99) compared with the clinical
model (61%; 95% CI, 0.32 to 0.86). In the validation, the genomic
predictor correctly identified 12 of 13 patients with pCR compared
with eight correctly predicted by the combination of ER status,
grade, and age. Also, 27 of 28 patients who were predicted to have
residual disease by the pharmacogenomic test had residual cancer
compared with of 32 of 37 when clinical variables were used. Table
3 and Figure 4 presents descriptive statistics for the clinical and
pharmacogenomic predictors, respectively. Importantly, different
cases were misclassified by the two models. This suggests that the
combination of the clinical and genomic information may further
improve performance. Indeed, the combined clinical plus genomic
model was nominally best (AUC � 0.879). However, if it is at all
possible to develop a combined model that shows unequivocal
statistical superiority over a genomic or clinical predictor alone, it
will require a substantially larger training set size.

Reproducibility of Pharmacogenomic Prediction in

Replicate Experiments

We evaluated the technical reproducibility of the results in repli-
cate experiments. Thirty-one of the 133 total RNA specimens were
profiled twice at different points, and at two different laboratories but
using the same platform and operating procedure. The replicates
included 20 cases from the training set and 11 cases from the validation
set. We applied the DLDA-30 predictor to both the original and
replicate data and examined how often the same prediction was made.
Thirty of the 31 replicate data sets yielded identical response predic-
tion result (97% concordance). One case was a near miss (Fig 5).
When the combined clinical and genomic model was used, all 31
replicates yielded the same prediction.

DISCUSSION

We developed a multigene predictor of pCR to preoperative sequen-
tial weekly paclitaxel followed by FAC chemotherapy from fine-needle
biopsies of breast cancer. pCR is a meaningful clinical end point to
predict because these patients experience prolonged disease-free and
overall survival compared with patients with lesser response. Good
survival in these patients probably reflects benefit from chemotherapy
since most clinical and gene expression variables that are associated
with pCR (ie, high grade, ER-negative status, high Oncotype DX
(Genomic Health Inc, Redwood City, CA) recurrence score) tend to
predict worse prognosis in the absence of chemotherapy.22 Gene ex-
pression data from 82 cases was used to identify genes associated with
pCR. We constructed a large number of predictors and tested their
performance in true cross validation in the training set. The classifier
performances generally improved with increasing numbers of genes,
but have reached a plateau at around 40 genes. This is not surprising
since genes were ranked by P values of differential expression in uni-
variate analysis; therefore, genes further down the list added less and
less independent discriminating value. The majority of the 780 distinct
predictors showed similar performance to the nominally best predic-
tor. Other investigators have also observed this phenomenon.23 This is
due to the large number of genes that correlate at least to some extent
with outcome and to the highly intercorrelated expression of individ-
ual genes. Many genes show correlation with outcome; however, the
strength of correlation varies from training set to training set and
therefore the rank order of genes is unstable. Since many genes are
tightly coexpressed any one of the coexpressed genes could be selected
for inclusion in a predictor and could yield equally good result. These
observations partly explain why many of the prognostic and predictive
signatures reported so far contain relatively few overlapping genes yet
each gene set perform reasonably well in independent validation.
Another important source of variation that contributes to the differ-
ences in predictor gene sets developed for the same purpose by differ-
ent laboratories is the gene expression-profiling platform. Different
platforms contain different genes and measure the expression of the
same gene with different accuracy and dynamic range.14

We selected the nominally best predictor with the least number of
genes for independent validation in 51 cases. This predictor, DLDA-
30, includes 30 probe sets and uses DLDA to formulate outcome
prediction rule. The predictor showed substantially higher sensitivity
(92% v 61%) and slightly better NPV (96% v 86%) than a clinical
variable (ER, grade, and age) –based model. The high sensitivity
indicates that the predictor correctly identified almost all of the pa-
tients (92%) who actually achieved pCR. The positive predictive value
(PPV) of the pharmacogenomic predictor was 52% (95% CI, 31% to
73%). Importantly, the lower bound of the 95% CI did not overlap
with the 26% pCR rate observed with this regimen in unselected
patients.17 This indicates that the predictor can define a patient pop-
ulation who is more likely to achieve pCR than the general patient
population. However, the 52% PPV also indicates that many who
were predicted to have pCR had a lesser response. This type of error
may be considered acceptable in the adjuvant treatment setting. The
NPV of the test was also high (96%; 95% CI, 82% to 100%), which
indicates that less than 5% of test-negative patients (ie, predicted to
have residual disease) achieved pCR. These performance statistics are
similar, with regards to the NPV, and better with regards to PPV, than
those seen with ER immunohistochemistry or HER2 gene amplifica-
tion as predictive markers to endocrine or trastuzumab therapies,

Fig 5. Prediction agreement in replicate experiments. Thirty-one RNA speci-
mens were profiled twice to assess reproducibility of prediction results. All but
one of the 31 replicates yielded identical prediction outcome for the Diagonal
Linear Discriminant Analysis–30 predictor. Prediction scores � 0 predict for
residual disease (RD) and � 0 predict for pathologic complete response (pCR).
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respectively. We also examined the reproducibility of the pharmacog-
enomic prediction results in 31 replicate experiments and observed a
97% concordance in prediction outcome for the DLDA-30 model and
100% concordance for the combined clinical and pharmacogenomic
model. This indicates a very high level of technical reproducibility of
pharmacogenomic predictions when the same RNA is used.

How do these results fit in with other recently reported molecular
predictors of pCR? There is more than one method to predict proba-
bility of pCR. Patients with high recurrence score determined by the
Oncotype Dx assay have greater probability to achieve pCR (to pacli-
taxel/FAC chemotherapy) than those with low recurrence score.22

Patients with basal-like breast cancer determined by hierarchical clus-
tering using the “intrinsic gene list” also have higher probability of
pCR than other molecular classes of breast cancer.13 Reassuringly, all
of these methods tend to identify the same group of patients, those
with ER-negative, high grade and highly proliferative tumors. How-
ever, they also seem to add some incremental predictive value to the
known clinical characteristics. Appendix Tables 1 and 2 (online only)
shows pCR rates in the training and validation sets as a function of
ER-status and Appendix Figure 1 (online only) shows the correlation
between Ki67 mRNA expression (probe sets 212022_s_at and

212023_s_at) and pCR. The discriminating value of these single gene
variables is less than that of the combined model.

Predicting extreme chemotherapy sensitivity to paclitaxel/
anthracycline therapy can be useful in some clinical situations. How-
ever, the greatest contribution will come from the molecular test that
can discriminate between likelihoods of response to different chemo-
therapy regimens and can therefore guide selection of one treatment
over another. To develop such predictor gene expression data from
cohorts of patients who received different chemotherapy regimens
will be needed. Pharmacogenomic research also has the potential to
open new insights into the biology of breast cancer and treatment
response. Indeed, some of the genes from our predictive signature
seem to contribute to the mechanism of sensitivity to paclitaxel.24

In summary, we developed a 30-probe set DLDA classifier that
predicts pathologic response to preoperative paclitaxel/FAC chemo-
therapy with higher sensitivity (92% v 61%) than a clinical variable–
based predictor. In an independent validation set of 51 patients, this
test correctly identified all but one of the patients who achieved pCR,
and all but one of those who were predicted to have residual disease
had residual cancer.
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GLOSSARY

ROC (receiver operating characteristic) curves:
ROC curves plot the true positive rate (sensitivity) against the
false-positive rate (1-specificity) for different cut-off levels of a
test. The area under the curve is a measure of the accuracy of the
test. An area of 1.0 represents a perfect test (all true positives),
whereas an area of 0.5 represents a worthless test.

FDR (false discovery rate): FDR is a statistical method that
is used to correct for multiple comparisons. FDR is the expected
proportion of false positives (as opposed to the more traditional Type
II error rate, which is the probability of any false positives).

Monte-Carlo cross validation: Cross validation (CV) is a
process using a dataset to build a prediction algorithm and to
estimate how well it will perform on new but similar data. A por-
tion of the data is used to build an algorithm while the remainder
is used to estimate the performance. Classical k-fold CV ran-

domly divides the data into k portions using each portion in turn as a test
set and the remaining data as training sets. One random partitioning of the
data is used. The performance on new data is estimated as the average per-
formance over the k test sets. In Monte-Carlo CV, the partitions are ran-
domly selected hundreds or thousands of times.

BUM (beta-uniform mixture analysis): This model is used to
quickly compute the FDR estimates for the analysis of microarray data by
taking the distribution of individual p-values to follow a mixture of a Beta
density function from the genes that differentially expressed and a uniform
density function from the genes that are not differentially expressed.

Pharmacogenomic: The study of how a person’s genome can affect
their reaction to medications.

Class prediction algorithms: Computer programs used to com-
bine known data on samples to predict unknown characteristics.
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