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ABSTRACT
Motivation: Given the explosive growth of biomedical data as well
as the literature describing results and findings, it is getting increas-
ingly difficult to keep up to date with new information. Keeping
databases synchronized with current knowledge is a time-consuming
and expensive task—one which can be alleviated by automatically
gathering findings from the literature using linguistic approaches. We
describe a method to automatically annotate enzyme classes with
disease-related information extracted from the biomedical literature
for inclusion in such a database.
Results: Enzyme names for the 3901 enzyme classes in the BRENDA
database, a repository for quantitative and qualitative enzyme inform-
ation, were identified in more than 100 000 abstracts retrieved from
the PubMed literature database. Phrases in the abstracts were
assigned to concepts from the Unified Medical Language System
(UMLS) utilizing the MetaMap program, allowing for the identifica-
tion of disease-related concepts by their semantic fields in the UMLS
ontology. Assignments between enzyme classes and diseases were
created based on their co-occurrence within a single sentence. False
positives could be removed by a variety of filters including minimum
number of co-occurrences, removal of sentences containing a nega-
tion and the classification of sentences based on their semantic fields
by a Support Vector Machine. Verification of the assignments with a
manually annotated set of 1500 sentences yielded favorable results of
92% precision at 50% recall, sufficient for inclusion in a high-quality
database.
Availability: Source code is available from the author upon request.
Contact: o.hofmann@smail.uni-koeln.de
Supplementary information: ftp.uni-koeln.de/institute/biochemie/
pub/brenda/info/diseaseSupp.pdf

INTRODUCTION
During the past years biology has gradually changed from a
hypothesis-driven science to a data-drivenone.With high-throughput
methods in fields like genome analysis, proteomics and system bio-
logy arises the need to make sense of the ever increasing amount of
raw data.
Automatic evaluation and annotation of this data usually requires

the utilization of several of the literally hundred biomedical databases
currently accessible online via theWorldWideWeb (Galperin, 2004),
covering genomic data (Benson et al., 2003), protein sequences
(Camon et al., 2004) and structures (Berman et al., 2000), meta-
bolic pathways (Kanehisa et al., 2002) or disease-related information
(McKusick, 2000). Frequently, essential information needs to be
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manually retrieved from the literature to facilitate the analysis
since few of the available data repositories are current, exhaustive
and machine-readable—all of which are required to facilitate the
automatic evaluation of experimental results.
Several problems contribute to this situation, chief among them

being the cost of manually extracting information from scientific
publications, as exemplified by the BRENDA database—amanually
curated repository for functional enzyme information. The current
version contains qualitative and quantitative data for about 4200
enzyme classes representing >80 000 different enzyme molecules
(Schomburg et al., 2004). The data include, among other fields,
information on nomenclature, catalyzed reaction and specificity,
occurrence and application, all stored in a relational database system
with free access to the academic community (Access to theBRENDA
database at http://www.brenda-uni-koeln.de). All parameters were
collected from >50 000 articles by experts. Given this significant
investment of resources, the rapid growth of new knowledge leads to
awidening gap between available, manually curated data and already
published current knowledge.
This growth is reflected by the PubMed literature database. Con-

taining more than 12 million abstracts of biomedical publications
and growing at a rate of ∼40 000 entries per month it exemplifies
the need to enhance the manual annotation process by other means
(de Bruijn and Martin, 2002; Wren and Garner, 2004).

Biomedical information extraction
Automatic annotation of biological entities by extracting relevant
information from the biomedical literature offers an opportunity to
keep up with the pace of published knowledge. Linguistic meth-
ods have seen increasing popularity in the field of bioinformatics
during recent years, being used for a variety of tasks ranging from
information retrieval (Yang, 1999) to sequence annotation based on
the description of related sequences (Dobrokhotov et al., 2003) to
enhancing existing algorithms like PSI-BLAST (Chang et al., 2001).
The task of automatic extraction and identification of relation-

ships or associations between entities in the biomedical literature has
received a particularly strong focus. Research ranges from identify-
ing gene–gene associations (Tao andLeibel, 2002) to protein–protein
interactions (Donaldson et al., 2003) to more complex tasks like
recognizing inhibitors (Pustejovsky et al., 2002) and building meta-
bolic networks from enzyme information (Humphreys et al., 2000)
(for a recent review of computational linguistics in the field of bio-
logy see Hirschman et al., 2002 and Yeh et al., 2003). Although the
specificity and sensitivity achieved by automatic methods usually do
not rival the precision of human experts it is more than sufficient
to complement experimental data, which is often associated with
similar margins of error.
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Unfortunately, there is a lack of freely available, modular systems
which can be tailored effortlessly to extract information from a vari-
ety of domainswhile covering all the different aspects of an automatic
annotation system: the creation of a text corpus, the identification
of biological entities and their potential association and finally the
presentation of the extracted data.
Here, we describe a system which allows for the annotation of

enzyme classes with different properties according to the need of the
user. In our case—the addition of the automatically acquired annota-
tion to a curated database—an emphasis was placed on minimizing
the number of false positive annotations.

The benefits of concepts
The presented prototype system is based on the co-occurrence of
enzyme names and concepts within abstracts retrieved from the
PubMed literature database—an approach that has been used suc-
cessfully to annotate gene (Stapley and Benoit, 2000; Jenssen et al.,
2001) and protein interactions (Blaschke et al., 1999; Ono et al.,
2001; Marcotte et al., 2001). It identifies enzyme names extracted
from the BRENDA database using a dictionary-based approach and
analyzes their co-occurrence concepts describing human diseases.
A concept within this context is an abstract entity that describes
the meaning of an event, a relationship or a class of entities. Using
concepts entails several benefits:

• Differing term representations of the same concept (e. g. ‘high
blood pressure’ and ‘hypertension’) can be collapsed to the
same idea.

• Compound terms can be maintained, i. e. the concept ‘high
blood pressure’ differs from the three concepts ‘high’, ‘blood’
and ‘pressure’ which might appear independently of each
other within a single document. A majority of the biomedical
vocabulary has been described to consist of such compound
terminology (Bodenreider et al., 2002).

• The mapping of synonyms and variants to one concept res-
ults in a controlled vocabulary and simplifies a comparison and
evaluation of the annotation.

Despite these benefits the majority of information extraction systems
in the biomedical field analyzewords and combinations ofwords only
(de Bruijn and Martin, 2002), mostly due to the lack of a concise,
exhaustive and freely available ontology and the difficult task ofmap-
ping phrases to the correct concepts. Given the recent integration of
the Gene Ontology (GO) into the UnifiedMedical Language System
(UMLS) the first challenge is no longer an issue. The 13th edition of
this system contains more than 1.5 million terms gathered from 60
dictionaries and grouped to about 775 000 concepts (Bodenreider,
2004). In addition, assigned semantic fields describe the properties
of each concept, allowing for the distinction of concepts like ‘rat’
with the semantic field ‘mammal’ and ‘polymerase chain reaction’,
marked as a ‘laboratory procedure’. Semantic filters based on these
fields facilitate the annotation of enzyme classes with different prop-
erties, in agreement with the underlying idea of being able to easily
enhance the annotation process by including different knowledge
domains.
Matching text segments to concepts can be achieved either through

a simple string comparison or preferably by the use of a special-
ized program like MetaMap (Aronson, 2001) which breaks the text
into phrases, assigns part-of-speech tags (the markup of words with

Table 1. Date sources used in this publication

Database Available at

BRENDA http://www.brenda.uni-koeln.de
UMLS http://www.nlm.nih.gov/research/umls/
PubMed http://www.pubmed.gov
MESH http://www.nlm.nih.gov/mesh/MBrowser.html

their corresponding parts of speech) and generates variants before
evaluating candidate concepts by a variety of different criteria. It has
been applied successfully to a number of tasks ranging from informa-
tion retrieval (Aronson and Rindflesch, 1997) to text mining (Weeber
et al., 2001).

Annotation by concept-based co-occurrence
Creating relationships between objects based on their co-occurrence
within different text segments has been used successfully in the
past (Weeber et al., 2001; Wren et al., 2004). While more complex
systems using statistical methods to detect patterns or those imple-
menting rule-based algorithms to extract the relevant keywords and
their dependencies (Temkin and Gilder, 2003) can identify associ-
ations with high precision, they are often difficult to maintain and
adapt to different tasks.
In accordancewith the aimof implementing an easilymaintainable

and adoptable system we focused on co-occurring enzyme classes
and relevant concepts while trying to retain a high precision by con-
centrating on sentences instead of larger text segments (Ding et al.,
2002). Additionally, extracting links from sentences simplifies the
evaluation task for the user in comparison to full-length abstracts
since the proposed association is immediately available for veri-
fication. This review process is assisted by presenting the network
of enzymes and diseases as an interactively explorable graph (see
Supplementary material for a sample visualization).

SYSTEMS AND METHODS
The code was written in Python 2.2 and tested on a Linux (Kernel 2.4.20),
Solaris (5.8) and Windows 2000 system. All data were stored in a MySQL
database (version 3.23.45) and accessed using the mySQLdb extension for
Python. Table 1 lists the data sources used to create the text corpus and
enzyme dictionary. Entries processed in this publicationwere gathered during
January–March 2002. Access to the UMLS requires a license freely avail-
able to academic users. Concepts were assigned using the MetaMap software
package (version 2.2a), which is covered by the same license as that of
the UMLS. The resulting network was inspected visually using TouchGraph
(TouchGraph, 2002).
All system parts and filters were implemented in an object-oriented, mod-

ular way, so that individual components such as the enzyme name recognition
or negation detection could be replaced with more sophisticated algorithms
in a straightforward manner if so required.

ALGORITHM AND IMPLEMENTATION
Figure 1 outlines the system’s workflow and can be divided into four
basic parts: information retrieval and processing, entity recognition,
linking the entities and finally visualizing the created network.
Abstracts were collected from the PubMed database utilizing the

Medical Subject Headings (MESH). The MESH terms represent a
hierarchically organized, controlled vocabulary used to manually
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Fig. 1. Basic workflow for the information retrieval, co-occurrence analysis
and evaluation.

index PubMed entries. Queries included all combinations of MESH
terms from the disease-related branches C1–C21 of the MESH tree
with recommended enzyme names and enzyme class identifiers
stored in the BRENDA database.
Collected entries were required to have full-length English

abstracts and limited to theMESH-keyword ‘human’. Queries return-
ing less than ten hits for a single enzyme class were expanded by
including synonyms taken from the BRENDA-database. Individual
queries with >1000 hits were successively limited to more recent
publications until <1000 relevant documents were found. Entries
were split into sentences; special chars, hyphens and brackets were
replaced by whitespace. Any alphanumeric sequence bracketed by
whitespace was defined as a token and compared to the enzyme
dictionary.

Detecting enzymes and diseases
Enzyme names in the BRENDA database (recommended names,
synonyms, EC numbers and systematic names) were processed in
the same way as the collected documents and expanded by adding
more names: all numerals were augmented by their roman (or arabic)
and spelled-out versions. After removing names also appearing in a
common English dictionary and those with a length of fewer than
four characters, entries in the dictionary were matched against the
collected abstracts. In the case of overlapping matches the enzyme
name with the largest coverage took precedence. Ambiguous names
could be partially resolved by keeping track of unambiguousmatches
in the same abstract and discarding ambiguous names that could not
be detected elsewhere.
Concept identification by MetaMap used default parameters

except for a limitation to unique abbreviations and acronyms only
(option -u) to improve precision (Table 2 shows a sample sentence
and its concept representation). Additionally the strict model was
used while preprocessing the UMLS metathesaurus (option -A),
resulting in the removal of terms for which an identification was
unlikely due to their internal structure (Aronson, 2002).

Table 2. Sample sentence and its representation after concept identification
using MetaMap

Word Concept Semantic field Score

Deficiency Deficiency Functional concept 1000
Ubiquinone Ubiquinone Biologically active

substance, organic
chemical

645

Cytochrome c
reductase

Cytochrome c
reductase

Amino acid, peptide, or
protein, enzyme

923

Patient Patient Patient or disabled group 632
Mitochondrial
myopathy

Mitochondrial
myopathy

Disease or syndrome 827

Disease-related concepts are marked in bold.
‘Deficiency in ubiquinone cytochrome c reductase in a patient with mitochondrial
myopathy.’

Phrases, assigned concepts and positional information were stored
in the database and the preferred concept term in the UMLS was
used to represent each concept. The semantic field ‘disease or syn-
drome’ (UMLS concept identifier ‘T047’) marked disease-related
concepts and could be used for studying co-occurring enzyme names
and diseases. Removal of very generic concepts was implemented
by a simple frequency analysis filtering out disease-related concepts
occurring in more than 5% of the mapped sentences.

Guilty by association: co-occurrence based annotation
Annotation of enzyme classes with disease-related concept was
based on the co-occurrence of both terms within single sentences.
Sentences fulfilling those conditions were filtered by four criteria
and the resulting change in precision and recall was studied:

(1) The confidence in the mapped disease-related concept: The
MetaMap program scores matches of candidate concepts to
phrases by their centrality, coverage, cohesion and the num-
ber of necessary variations [see Aronson (2001) for details].
A higher score reflects a better match and, therefore, higher
confidence in the assignment.

(2) The optional detection of sentences containing a nega-
tion: according to Mutalik et al. (2001) six words (‘no’,
‘denies/denied’, ‘not’, ‘none’ and ‘without’) cover 93% of
all negations in medical text. Removing sentences containing
such a negation should removemost false positive annotations
that would have been assigned due to negative findings.

(3) The semantic context of the detected enzyme names and
diseases: during manual inspection of several hundred sen-
tences it became obvious that they could be grouped into
several categories, i. e. description of diseases, a patient’s
case or a laboratory method. Therefore, we classified sen-
tences into disease-related and unrelated sentences based on
the semantic fields associated with any concept identified
within the sentence by MetaMap.
Similar semantic context analysis has been used success-

fully for word sense disambiguation based on the semantic
properties of the surrounding text using statistical methods
like a Support Vector Machine (SVM) (Cabezas et al., 2001).
Being developed in the field of machine learning, an SVM
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creates a binary classifier returning either class +1 or −1 for
each feature vector. Classes are separated by a hyperplane—
each feature vector’s class being determined by the side of the
space separated by the hyperplane it is located on. Training
the SVMwith an annotated dataset means finding the optimal
hyperplane, i.e. the one with the maximum distance between
itself and the feature vectors closest to the plane—the support
vectors (Kazama et al., 2002).
The SVM classifier was implemented using the ORANGE

machine learning library (Demsar and Zupan, 2004) with a
training and test set of 1000 manually annotated sentences,
400 of which described an association between an enzyme
class and a disease. The feature vectors consisted of the
semantic fields found in each sentence.

(4) The minimum number of detected enzyme and disease
co-occurrences within sentences before accepting an associ-
ation between both entities. This filter was applied after the
application of the previous three filters.

Links created in this manner were stored and the network of enzyme
classes anddisease concepts visualizedusing theTouchGraph library,
each object being represented by a node with edges connecting asso-
ciated enzymes and diseases. Enzyme nodes point to the original
entries in the BRENDA database. Disease nodes present defini-
tions and summaries automatically generated from the sentences
containing the disease.

RESULTS
The enzyme dictionary collected from the BRENDA database con-
tained 3901 recommended names and 17 530 synonyms, amounting
to more than six names per enzyme on average, including the
enzyme class number. Some enzyme classes like the protein kinases
(EC 2.7.1.37) list well above 60 different names, while the diverse
class of Type II site-specific deoxyribonucleases (EC 3.1.21.4)
includes 180 different enzymes.
Based on this enzyme name dictionary a text corpus of 105 897

PubMed documents was retrieved, containing ∼200 000 identified
enzyme names and synonyms. While the majority of documents
only mentioned 1–3 enzymes, >10 000 abstracts listed from 4 to as
many as 25 different enzyme classes, reconfirming the need to extract
links from smaller text segments. Manual annotation of 120 enzyme
names in a sample of 100 abstracts revealed a recall of 97%, miss-
ing enzyme names mostly being a result of an incomplete enzyme
name dictionary and errors during tokenization. Given that the same
enzyme nameswere part of the original queries to retrieve documents
for the text corpus those numbers should not be surprising.
Concept identification reduced the dictionary from 300 000 differ-

ent tokens to a mere 50 000 concepts, while the average abstract was
reduced from >200 tokens to ∼40 concepts. A manually reviewed
sample of 100 sentences showed 67% of the tokens were assigned
to concepts with a precision of>90%, in agreement with other stud-
ies (Pratt and Yetisgen-Yildiz, 2003). Phrases without a concept
representation were either missing from the UMLS or consisted
of compound phrases and artifacts like ‘12-year-old’ or ‘3alpha’.
Errors mostly occurred due to incorrectly mapped acronyms and the
inability to distinguish between homonyms.
To evaluate precision and recall an additional 1500 sentences with

at least one identified enzyme class were manually annotated. A total
of 273 sentenceswas found tobedescribing430associations between

Table 3. Precision and recall in percent for a manually annotated set of 1500
sentences

Filter Precision Recall

Basic co-occurrence 82.1 84.8
MetaMap assignment score !800 85.2 70.0
negated sentences removed 87.5 65.5
more than one co-occurrence 90.7 52.9
filtering semantic context 94.8 38.9

Filters are applied successively as described in the algorithmand implementation section.
A true positive is defined as the correct identificationof an associationbetween an enzyme
class and a disease-related concept, independent of the number of correctly identified
instances of that association.

enzyme classes and diseases, ofwhich 384were unique; 80 sentences
mentioned both, one or more, enzyme classes and disease-related
concepts without any discernible interrelation between both. With
the task being the automatic enhancement of databases it was deemed
more important to correctly extract the links themselves, as compared
to identifying each true co-occurrence. A true positive link, therefore,
represents a correctly identified association between an enzyme class
and a disease-related concept, regardless of where it was identified.
Conversely, a true negative is a co-occurrence of both entities with
no discernible relationship that was correctly filtered out during the
extraction process. Using these definitions 84.8% of all links could
be identified by evaluating the co-occurring concepts and enzyme
names, while precision was at 82.1% (Table 3).

More stringent criteria
Requiring a higher MetaMap confidence score before accepting a
disease-related concept—and thus its co-occurrence with an enzyme
name—gradually increases precision up to 3% at the cost of ∼15%
recall (Fig. 2a). Raising the minimum confidence score beyond 800
removes more correct than incorrect concept assignments.
Changing the minimum number of co-occurrences to more than

one increased the precision by another 4% for an additional decrease
of recall by 14% (Fig. 2b). In both cases precision benefitted from
the removal of sentences containing a negation prior to the evaluation
of co-occurrences—precision increased by ∼3% for the same loss
in recall.
Finally, at up to 50% recall the semantic context filter improves

precision by about 4% independently of the minimum confidence
score and number of co-occurrences. Tables outlining all precision/
recall values at the different threshold levels can be found in the
supplementary material.

Enzymes and their diseases
Using stringent parameters (MetaMap score of 800, no negated
sentences, using the SVM-filter and requiring at least two
co-occurrences) a total of 1409 disease-related concepts could be
assigned to 524 enzyme classes and added to the BRENDAdatabase.
On average, each enzyme class was associated with 10.3 differ-
ent diseases. The hydrolases exhibited significantly more links to
diseases—averaging more than 13 links per enzyme class—than the
oxidoreductases and transferases, despite similar numbers of enzyme
classes. In contrast, the ligases with the least number of enzyme
classes also exhibited the lowest connectivity.
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Fig. 2. Recall and precision using different parameters. (a) shows the
MetaMap confidence score in combination with the negation detection (no
minimum number of co-occurrences required); (b) reflects the influence of
the SVM classifier along with the minimum number of co-occurrences (no
negated sentences allowed, MetaMap confidence score !800).

The bipartite network of diseases and enzymes can be represented
as two distinct networks: an enzyme graph with edges connecting
enzymes that are associated with the same disease and a disease
graph with nodes being connected due to shared enzymes. A com-
parison of those graphs with random networks of equal size and
average connectivity revealed a scale-free, small-world structure for
both networks (graph statistics, comparisons to random networks of
equal size and connectivity distributions are available in the Supple-
mentary information). The enzyme graph in particular is three times
more clustered than a random graph of equal size while retaining a
similar diameter, typical for the easily traversed small-world network
architecture.
Node connectivity in both random and small-world networks fol-

lows a poisson distribution, resulting in homogenous networks and
generally lacking nodes with a high degree of connectivity. In the
analyzed enzyme and disease graphs, however, the connectivity
distribution is best described by a power law, classifying the graphs
as scale-free networks (For the connectivity distribution and an
overview of the disease graph, see Fig. 3).

DISCUSSION
Acomparison of the results with published approaches taking similar
advantage of the concepts in the UMLS proves difficult. They do not
state the achieved precision and recall values (Rindflesch et al.,
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Fig. 3. (a) Connectivity distribution for the disease graph showing the prob-
ability P(k) and the logarithmically binned node’s degree k following a
power law. (b) Overview of the disease graph. Node size represents the node’s
clustering coefficient. The graph is based on only 10% of the text corpus for
easier visualization.

2000b), do use different evaluation standards (Feldman et al., 2003)
nor tackle a different information extraction problem. Rindflesch
et al. (2000a) report a precision of 73% for the interaction of bio-
logical molecules at a recall of 53%, Wren and Garner (2004)
assume an 83% probability of an interrelation between two genes
co-occurring within one sentence. The later assumption is similar to
the precision attained in this work using no additional filters.
The four different filters all improve the precision of the extracted

annotation at the cost of lowering recall while covering different
aspects of the extracted links. Raising theminimum confidence score
for the concept assignment filters associations based on partial or
badly matched concepts (Table 4), but is bound to fail in cases where
concepts in the UMLS are labelled with an inappropriate semantic
field (example 3). While filtering concepts occurring too frequently
did help to remove general concepts (example 4), the strategy did
not help in every case.
Sentences that are being removed during the SVM classification

step often describe laboratorymethods or experimental strategies and
use different concepts—and thus semantic fields—in comparison to
disease-related sentences. In contrast to filtering for the minimum
number of co-occurring enzymes and diseases, this approach allows
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Table 4. Sample sentences and the confidence score of disease-related
concepts (emphasized in italics)

Sentence Concept and score

1 Immunohistochemical staining of
lung tissue with anti human
neutrophil elastase…

Lung diseases (694)

2 Three bk virus mutants forming
clear large plaques like those…

Dental plaques (670)

3 The patients had normal or
increased activities of…

Increased activities (900)

4 …in inactive tb patients reveals the
quiescent stage of the disease

Disease (1000),
Tuberculosis (660)

for the removal of systematic errors during the annotation process
like the following example:

‘three bk virus mutants . . . capable of transforming rat cells were
derived from the recombinant virus carrying the hind iii c segment’.

The term RAT is being recognized as an acronym for recurrent acute
tonsilitis, a bacterial infection. As a result, all experiments dealing
with rats link this disease to a multitude of different enzymes, most
of which occur more frequently than a still reasonable co-occurrence
filter could remove. The latter, however, is helpful in eliminating rare,
incorrect co-occurrences that frequently happen due to the wrong
usage of enzyme classes in publications, lineups and comparisons of
diseases or undetected negations.
While negated sentences occur infrequently—only 3% of the

manually annotated sentences used a negation—their removal still
results in a slight improvement in precision, despite sentences similar
to the following:

‘There was no alpha-d-mannosidase activity in the hair roots of
the patient with mannosidosis.’

In this particular case, the lack of enzyme activity is the actual
cause for a metabolic disease and the removal leads to a lower recall
score. As the number of required co-occurrences increases the benefit
of this filter decreases, since bad annotations created from negated
sentences tend to be mentioned only rarely within the text corpus.
At lower co-occurrence thresholds the negation filter remains useful,
nevertheless.

Limitations and alternatives
Using enzyme names collected from a manually curated data source
like the BRENDA database results in a precise name recognition,
but recall suffers due to the rapid growth and constant changes
in biological terminology. Keeping up with current literature and
name changes is crucial, as names having not yet been annotated or
assigned to an enzymeclass cannot be identified and, therefore, won’t
contribute to automatically extracted links. Unfortunately, there is no
reliable way of identifying enzyme names in the studied documents,
as well as correctly assigning them to the appropriate enzyme class.
Recommended names and synonyms of enzyme classes neither fol-
low an exploitable rigid nomenclature nor are homogenous enough
to utilize edit distance comparisons. For the time being a dictionary-
based enzyme name recognition, enhanced by various methods to

‘boost’ the number of recognized name variations, seems to be the
best approach when focussing on high precision results.
While the majority of missed annotations are caused by errors

during the concept assignment, missing concepts in the UMLS or
incorrect filtering, wrong annotations have a number of different
causes. Sentences emphasizing one disease distinguishing features
by comparing it with other diseases frequently result in an error.
Text fragments describing laboratory methods while dealing with
patient material or clinical studies are difficult to distinguish from
true positive co-occurrences based on their semantic properties alone.
Finally, lists of enzymes being tested for their causal relationship to
a given disease are another common source of errors.
Despite the achieved precision the high connectivity of the

enzyme-disease network poses a problem. Major factors contribut-
ing to this connectivity are the assignment of related or very general
concepts to the same enzyme class. In principle, the semantic net-
work of the UMLS could be used to merge such concepts and
filter basic concepts. However, due to the UMLS being constructed
from a large number of different lexica and ontologies with differ-
ent levels of detail, distance information is not a reliable criterion
for filtering. Additionally, several inconsistencies in the semantic
network (Pisanelli et al., 1998; Liu et al., 2002) complicate the mer-
ging of similar concepts. Joining concepts based on the similarity
of their assigned preferred term seems counterintuitive (Pratt and
Yetisgen-Yildiz, 2003), but seems to be the best approach while the
semantic network of the UMLS keeps improving with each released
version.
A hierarchy-based filter utilizing the semantic network of the

UMLS would be preferable, but is difficult to implement due to the
heterogeneity of the dictionaries used to construct the ontology (Liu
et al., 2002).

A small world of diseases and enzymes
Assuming that the structure of a network influences its function
(Strogatz, 2001) the question remains whether the small-world,
scale-free architecture of both the enzyme and disease graph is a
coincidence or is caused by biological reasons similar to those influ-
encing the network structure of neurons (Watts and Strogatz, 1998),
metabolic pathways (Fell and Wagner, 2000) or social interactions
(Newman, 2001). Similar diseases are linked by the same enzymes,
causing a higher clustering coefficient than would be expected of
a random network. At the same time, highly connected common
ailments like diabetes, arthritis and chronic kidney failure provide
the short-cuts that are required within a small-world network. The
same analysis holds true for the enzyme network, with large enzyme
families like the protein kinases serving as central hubs connect-
ing the different subgraphs and being responsible for the scale-free
properties of the network.
The observed topology of both the enzyme and disease graph is

likely to be distorted by non-biological properties. Semantic net-
works are known for their scale-free properties—a feature based on
the way a vocabulary is created (Steyvers and Tenenbaum, 2005).
Older concepts are augmented by newer ones and general terms
expanded by specialized ones. Ideas and general concepts connect
distinct parts of the network, similar to central metabolites like ATP
connecting the metabolic pathways (Fell and Wagner, 2000; Jeong
et al., 2000). The same features can be observed for the UMLS—
older disease-related concepts, i. e. those with a lower concept
identifier tend to have a higher connectivity than more recent ones
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(Supplementary material). Well-known diseases might have been
investigated more thoroughly than the recently added concepts for
new diseases. Additionally, common ailments with a large number
of studies and publications are likely to be among the first concepts
to be added to a newly created ontology. An objective study of the
disease network would require an ontology without this scale-free
topology, which is not available.
Similar conclusions can be drawn for the enzyme graph. The

existence of central nodes or enzymes in metabolic networks can
be explained by the stability of the evolving networks. As long as
no central enzyme is knocked out due to a mutation, scale-free net-
works remain highly resistant to random perturbations (Lemke et al.,
2004; Jeong et al., 2001). The same consideration could be applied
to the analyzed enzyme graph: evolutionary older enzymes play a
more central role in the metabolism by connecting different meta-
bolic pathways (Fell and Wagner, 2000) and, therefore, might be
associated with a larger variety of diseases. Due to the grouping of
individual enzymes into enzyme classes, however, this hypothesis is
difficult to prove. Few publications reference the enzyme sequence
that is being studied, hampering the task of annotating individual
enzymes with disease-related concepts.
Given these non-biological influences an evaluation of the network

topologies seems difficult and doubts about the structural analysis
of other literature-derived networks. Regardless of the biological
relevance, the connectivity structure needs to be kept in mind when
developing a scoring function based on the frequency of co-occurring
biological terms.

Conclusion and further work
A sentence-based evaluation of co-occurring enzyme names and
concepts offers an easy and—in combination with several filters—
a precise way to annotate biological entities. The process can be
tailored to match the task at hand: high precision for immediate
database enhancement, or rather high recall for manual evaluation
and exploration of the created networks.
The disease-related annotation of enzyme classes generated by the

workflow described in this publication was added to the BRENDA
database without further manual intervention; it is freely available to
the academic users and can provide valuable insights while exploring
the related enzyme information. In addition, the flexibility of the
presented method allows for the adaption to different knowledge
domains by simply exchanging the annotated semantic fields. Initial
trials annotating the enzyme classes with associated pharmaceutical
compounds and symptoms proved promising, requiring only another
small labeled set of sentences and a manual review of the concepts
with the highest frequency.
Finally, the approach is able to grow along with the used ontology.

Recent upgrades of the Unified Medical Language System include
Gene Ontology and the clinical SNOMED vocabulary (Bodenreider,
2004), which are likely to improve the overall effectiveness of the
annotation process. Future work includes the implementation of a
scoring function taking the described network structure into account.
This is likely to require some sort of concept merging prior to
assessing each annotations significance.
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