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Cancer: A Systems Biology disease
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Abstract

Cancer research has focused on the identification of molecular differences between cancerous and healthy cells. The emerging
picture is overwhelmingly complex. Molecules out of many parallel signal transduction pathways are involved. Their activities
appear to be controlled by multiple factors. The action of regulatory circuits, cross-talk between pathways and the non-linear
reaction kinetics of biochemical processes complicate the understanding and prediction of the outcome of intracellular signaling. In
addition, interactions between tumor and other cell types give rise to a complex supra-cellular communication network. If cancer
is such a complex system, how can one ever predict the effect of a mutation in a particular gene on a functionality of the entire
system? And, how should one go about identifying drug targets?

Here, we argue that one aspect is to recognize, where the essence resides, i.e. recognize cancer as a Systems Biology disease. Then,
more cancer biologists could become systems biologists aiming to provide answers to some of the above systemic questions. To this
aim, they should integrate the available knowledge stemming from quantitative experimental results through mathematical models.
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odels that have contributed to the understanding of complex biological systems are discussed. We show that the archi
ignaling network is important for determining the site at which an oncologist should intervene. Finally, we discuss the pos
pplying network-based drug design to cancer treatment and how rationalized therapies, such as the application of kinas
ay benefit from Systems Biology.
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. Introduction

During the micro-evolutionary process of malignant
ransformation, cancer cells accumulate multiple genetic
lterations that provide them with several capabilities
Cahill et al., 1999). The latter include the escape from
ormal growth control, evasion of the suicidal apop-

otic program, induction of sustained angiogenesis, the
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ability to metastasise, and to invade healthy tis
(Hanahan and Weinberg, 2000). In the past decades, ca
cer researchers have collected an enormous amo
information about the differences between cancer
and their healthy counterparts, with the ultimate goa
identifying drug targets. This has, for instance, le
the identification of genes that are causally implica
in human cancer and to the discovery of the mutat
in those genes. A cancer gene census was recently
piled (Futreal et al., 2004), which currently contains 30
genes. The vast majority of these genes function in s
transduction processes within or between cells, go
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cell cycle progression, apoptosis, angiogenesis, and infil-
tration (Vogelstein and Kinzler, 2004).

Although knowledge of the molecular cell biology
of cancer is enormous, at the same time, the emerging
complexity of the entire ‘cancer system’ overwhelms us,
leaving an enormous gap in our understanding and pre-
dictive power. In this paper, we will discuss aspects of
this complexity, and how one can deal with it to answer
questions that are relevant for the treatment of cancer.

2. Zooming in: complex signaling networks

Many signaling molecules (proteins, lipids, and ions)
have been identified, and for many, the way they commu-
nicate with each other through signal transduction path-
ways has been elucidated. Signaling pathways consist of
multiple sequential events, including covalent modifica-
tions (e.g. phosphorylation), recruitment, allosteric acti-
vation or inhibition, and binding of proteins (Alberts et
al., 2002). The kinetics of these reactions are often non-
linear, as a result of the properties of the enzymes car-
rying out these reactions (e.g. kinases or phosphatases),
causing the output of a signaling pathway to depend non-
linearly on the input (Ferrell, 1996; Huang and Ferrell,
1996; Kholodenko et al., 1999).

As more interactions between signaling pathways
were identified, it became apparent that signaling does
not necessarily occur in an independent fashion through
parallel linear pathways, but rather, through a large
and complex network of interacting signaling pathways
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architecture of signaling networks can then be thought to
consist of interacting network motifs, which endow the
network as a whole with specific properties, much like
electronic circuits built of flip-flops, capacitors, etc.

Additional complexity arises from the spatiotem-
poral organization of signaling pathways, such as
the fact that many signals travel between different
cellular compartments, such as the cytoplasm and the
nucleus (Pouyssegur and Lenormand, 2003; Swameye
et al., 2003). This type of complexity may give rise to
waves of covalently modified signaling proteins as has
already been observed for calcium signaling (Brown
and Kholodenko, 1999; Kholodenko, 2000; Peletier et
al., 2003).

In short, many cancer genes are known, as is the com-
position of many of the pathways in which their gene
products function and some of the ways the pathways
interact (Hanahan and Weinberg, 2000). This enables
the drawing of large ‘road maps’ of information that
are often different in cancer cells (Fig. 1). The com-
plexity resulting from the large number of interacting
molecules, cross-talk between pathways, feedback cir-
cuitry, the non-linear relations between the interacting
molecules and the spatiotemporal resolution of signaling
make it difficult, if not impossible to predict the altered
outcome of signaling on the basis of the changes in such
an interaction map alone.

3. Zooming out: complexity increases
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(Weng et al., 1999). These interactions between pa
ways occur at many hierarchical levels (Kolch, 2000).
Signaling proteins from different pathways may in
act directly (e.g. by phosphorylation) or influence e
other indirectly (e.g. via regulation of gene expressi
One component may also act in more than one p
way (Campbell et al., 1998). Such ‘cross-talk’ even
can result in unexpected behavior (Bhalla and Iyenga
1999; Hornberg et al., 2004).

A recurrent theme in the regulation of biological s
tems is the topology of the regulatory networks (Milo et
al., 2002). Feedback loops, in which a component
pathway positively or negatively regulates the activit
upstream components of the pathway, can dramat
influence the output of a network (Bhalla and Iyenga
1999; Ferrell, 1999, 2002; Kholodenko, 2000; Astha
and Lauffenburger, 2001). The identification of the stru
ture and the intrinsic properties of frequently occur
regulatory motifs (sometimes referred to as ‘netw
motifs’) is a challenge and may give us a functional v
on the organization of signaling networks rather th
molecular view (Yeger-Lotem et al., 2004). The comple
The architecture of signal transduction pathway
not where the complexity of cancer ends. Being par
the cell, signaling networks are affected by additio
levels of organization, for instance, as many prot
are not uniformly distributed over the cell. Areas w
high protein concentrations might lead to macromo
ular crowding (Ellis and Minton, 2003) and cause stee
spatial gradients of activated signaling proteins (Brown
and Kholodenko, 1999).

Numerous interactions at the supra-cellular le
make the cancer system even more complex (Fig. 2A).
Within a tumor, the cancer cells interact with each ot
both by direct cell–cell contact and by indirect commu
cation (e.g. binding of growth factors produced by o
cancer cells). Different cancer cells may also respon
different ways to the same signal, as a result of he
geneity (cells slightly differing from each other in ter
of size, shape, the concentration of macromolecules
metabolites they comprise, and the stage of the cell c
they are in).

Further ‘zooming out’ reveals interactions betw
cancer cells and other cell types (Fig. 2B). A well-studied
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Fig. 1. Road map of cellular signaling. Depicted are the backbones of key signal transduction pathways that are involved in cell cycle progression,
apoptosis, and angiogenesis. Mutations that cause cancer frequently occur directly in components of these pathways or in genes that indirectly affect
the functioning of these pathways. The interconnections between the pathways give rise to large complex signaling networks. The main sources that
were used for the construction of this figure areHanahan and Weinberg (2000)andVogelstein and Kinzler (2004).

example is the formation of new blood vessels, i.e. angio-
genesis (Rak et al., 1995; Folkman, 2002; Ferrara, 2004),
which is essential for a tumor to grow beyond a cer-
tain size. Between microscopic and macroscopic tumors,
the micro-vessel density within, may differ by a fac-
tor of 17 (Klauber-DeMore et al., 2001). It has been
proposed that a shift in the balance between pro- and
anti-angiogenic factors underlies an ‘angiogenic switch’
that facilitates the outgrowth of small dormant tumors
into macroscopic tumors (Hanahan and Folkman, 1996).
Cancer cells may excrete growth factors, such as vascu-
lar endothelial growth factor (VEGF) or basic fibroblast
growth factor (bFGF), and thereby, stimulate cell cycle
progression in endothelial cells, which constitute blood
vessel capillaries. Vice versa, newly formed blood ves-
sels provide the cancer cells with more oxygen and nutri-
ents. This process thus functions as a self-stimulatory
circuit. Since positive feedbacks can cause switch-like
responses (Ferrell, 2002), the interactions between tumor
cells and endothelial cells may be the cause of such an
angiogenic switch.

Apart from endothelial cells, there are multiple inter-
actions with other cell types. Fibroblasts have been
shown to be important for the neoplastic growth of breast

epithelial cells (Shekhar et al., 2001) and in turn, respond
to several growth factors that may be excreted by tumor
cells, such as epidermal growth factor (EGF). Also inter-
actions between tumor cells and immune-derived cells
can play important roles. For instance, macrophages that
infiltrate tumor tissue are driven by tumor cell-derived
cytokines to acquire a so-called polarized M2 phenotype
and promote tumor growth and progression (Mantovani
et al., 2002).

4. Cancer: a Systems Biology disease

Above, we have discussed that cancer involves
a number of molecular processes at the same time.
Looking back, it is clear that the interactions of these
processes lead to new functionalities that would not
otherwise be possible. An example is the formation of
a life-threatening tumor requiring the formation of new
blood vessels, which requires the cancer cells to become
insensitive to growth inhibition and the endothelial cells
to become activated to new blood vessel formation.
Indeed, cancer is a disease based on malfunctioning of
the system properties of parts of biology. We hence iden-
tify it as a Systems Biology disease. Indeed, progress
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Fig. 2. Complexity at the supra-cellular level. Within a tumor, interactions take place at many levels. In addition to the large intracellular signaling
networks, several supra-cellular interactions contribute to an even more overwhelming, complex system: (A) the tumor cells interact by direct
physical contact or by communication via secreted signaling molecules and (B) the tumor cells also communicate with other cell types, such as
endothelial cells (to provoke angiogenesis), fibroblasts (to ensure stability), and immune-derived cells (to escape immune responses).

in cancer research towards cancer therapy may develop
faster if cancer is not researched only in terms of Molec-
ular Biology but rather in terms of Systems Biology.

5. Towards integration

It appears that the many supra-cellular interactions,
which add to the intra-cellular signaling, are all at least
to some extent relevant for the development of can-
cer. As more relevant genes, proteins and interactions
are being identified, the total picture will continue to
grow even more complex. If we also take into account
the non-linearity of the biochemical processes and the
fact that different processes act on different time scales
(signaling, cell cycle, and angiogenic switch), then it
seems impossible that the unaided human brain will
ever conceive complete understanding of such a dynamic
and complex multi-cellular system just on the basis of
extrapolating from the molecular-biological data alone.

Can we still expect to understand the effect of a spe-
cific mutation on the whole cancer system? And can we
even begin to predict where in this complex system we
should intervene to kill it? Perhaps, the only way to reach
understanding at some point, is to integrate all available
molecular-biological and cell-biological knowledge in
such a way that our minds can still deal with the com-
plexity. We propose that one way to solve this is by the
Systems Biology approach that builds a computer replica
of cancer based on quantitative experimental results. In
this way, accurate experimentation and detailed model-
ing of network behavior in terms of molecular properties
reinforce each other. Ultimately, answers to questions
that remain difficult to deal with at present, by looking
at interaction maps of signaling networks, could then be
predicted by mathematical modeling and subsequently,
those predictions should be validated by quantitative
experimentation. A replica of the entire cancer system
may be a little far reached at present, although we argue
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that this must be the ultimate goal. In the mean time, reli-
able replicas of sub-systems may be closer milestones
that aid in answering questions from which the under-
standing and treatment of cancer can benefit directly (see
below).

This approach has already proven to aid in the under-
standing of complex cellular systems. Several detailed
kinetic models (‘computer replica’) of metabolic sys-
tems, such as glycolysis (Schuster and Holzḧutter, 1995;
Teusink et al., 2000), provide rather accurate descrip-
tions of their in vivo counterparts. The erythrocyte model
has been important for understanding the regulatory role
of 2,3-bisphosphoglycerate, as well as on how to store
red blood cells. The yeast glycolysis model has led
to a verification requirement that had been overlooked
in metabolic biochemistry, i.e. that of testing whether
the experimentally determined kinetics of the individual
enzymes of a pathway could make a pathway function.
When this was done, a metabolic explosion occurred.
The explosion could be prevented by adding to the com-
puter replica a regulatory loop outside the glycolytic
pathway, the molecular details of which were known,
but the function of which had been sought in quite differ-
ent realms of yeast function. Also, for a gene expression
system, a computer replica has led to the demonstra-
tion of the functionalities of molecular processes, i.e. the
storage of mRNA and of histones, important in the race
against time between histone-gene expression and DNA
replication in early development (Koster et al., 1988). In
biotechnology, a silicon cell has led to the engineering
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Besides, the detailed kinetic models of signal trans-
duction pathways and networks, our understanding has
also improved from the analysis of more general so-
called ‘core models’, that describe the system of interest
not in full detail, but in a simplified manner. These mod-
els have led to the discovery of ultra-sensitivity in sig-
naling pathways (Goldbeter and Koshland, 1982; Huang
and Ferrell, 1996) and to suggestions on the possibility
of spatially resolved signaling (Brown and Kholodenko,
1999) and on possible functions of differential feedback
regulation (Brightman and Fell, 2000). In addition, gen-
eral principles on the control of signal transduction have
been identified, such as how the control of the dynamic
activity of signal transduction pathways is distributed
over kinases and phosphatases (Kahn and Westerhoff,
1991; Heinrich et al., 2002; Hornberg et al., 2005a). Part
of this has been substantiated experimentally (Hornberg
et al., 2005a).

For those who dislike mathematics and theoretical
biology, we highlight that mathematical modeling is not
part of the definition of Systems Biology. The modeling
is a mere tool for helping the human mind to appreci-
ate how systems work and how malfunctioning systems
may be cured. For sure, there are other ways of manag-
ing system understanding; extensive experience, such as
present in the brain of general practitioners is extremely
valuable in this respect. However, we would expect that
more of the advances of functional genomics may be
brought to fruition when mathematical models are used
to amplify the potency of human insight and experience.
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The more limited, available kinetic knowledge of s
ral mammalian signal transduction pathways has
een cast into detailed models (Bhalla and Iyengar, 199
holodenko et al., 1999; Asthagiri and Lauffenburg
001; Schoeberl et al., 2002; Lee et al., 2003; Swam
t al., 2003; Bentele et al., 2004; Nelson et al., 2
tucki and Simon, 2005). These models have contribu

o the understanding of the particular signaling p
ays and they facilitate in silico experiments. With s
odels at hand, one could, for instance, determine

he effect of a particular mutation in (or overexpress
f) a certain component would be on the function
f the network. With the aim of integrating these co
uter replicas, peer-reviewed models are compiled
ade web-accessible in so-called ‘silicon cells’ (Snoep
nd Westerhoff, 2004). Through this facility, anyone ca
xperiment in silico with a number of pathways. T
ame facility can be used to assess the importan
olecular properties for the network, hence, to the d
ination of experimental priorities.
For integration of the total system, models of su
cellular interactions will also be needed. Although m
of those interactions have only been described qu
tively, such models have been reported, for instance,
respect to the functioning of the heart (Noble, 2004).
Several angiogenesis models describe, for instanc
formation of (sometimes even three-dimensional) c
lary networks (Chaplain and Anderson, 2004).

The combination of quantitative experimentation
mathematical modeling has already increased our u
standing of a few complex biological systems. M
others remain to be analyzed, and the ultimate chall
in this field is to integrate all processes that are r
vant for understanding the system cancer and to us
acquired understanding for drug development (Gatenby
and Maini, 2003; Kitano, 2003; Butcher et al., 20
Christopher et al., 2004; Khalil and Hill, 2005).

6. Network-based drug design

The inhibition of enzymes that contribute to aber
signaling and cancer progression holds promise fo
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treatment of cancer. Here, one should perhaps also think
about a substantial reduction in the rate of tumor progres-
sion and metastasis instead of only about a successful
total elimination of tumors. Such new therapies could
benefit directly from analyzing networks and whole sys-
tems, rather than all their individual parts of systems.
Which clinically relevant questions may be answered by
a Systems Biology approach?

The occurrence of regulatory circuitry, such as feed-
back loops, for instance, may have great impact in the
efficacy of an inhibitor of a certain signaling cascade.
Let us consider a simple pathway of which the activity
is crucial for the proliferation rate of a particular can-
cer cell (Fig. 3 andAppendix A). An oncologist might
aim to treat a patient by applying a drug that affects
one of the proteins in the pathway so as to inhibit one
of the processes in which this protein engages. With
increasing drug concentration, the activity of the path-
way decreases. However, if in this pathway, a negative
feedback loop inactivates an upstream component, and
overlaps the site of drug action, the same drug concen-
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tration becomes much less effective especially when the
oncologist wishes to inhibit the pathway by at least 80%
(Fig. 3A). In other words, if a negative feedback loop
is active, the drug concentration that will be needed to
inhibit the pathway to a certain extent increases. Interest-
ingly, if another drug is applied, which inhibits a different
protein outside of the feedback loop (in this case, func-
tioning upstream of the action of the negative feedback
loop), the presence of the feedback loop does not affect
the extent to which the drug inhibits the activity of the
pathway by nearly as much (Fig. 3B). In a simplistic way,
this example shows that the structure of the network is
important for the position in the pathway at which an
oncologist should intervene. Therefore, it is essential to
include possible regulatory circuits (and their strengths
and connectivity) when studying a signaling pathway.

Once a system has been characterized quantitatively,
then how should one identify the best drug target(s)?
A promising approach should be to determine which
components and processes in the system are actually con-
trolling its behavior, for instance, by applying metabolic
or hierarchical control analysis (MCA and HCA, respec-
tively). These are conceptual and mathematical tools
to determine how much an enzyme controls a partic-
ular steady-state value (e.g. metabolite concentration,
flux) (Kacser and Burns, 1973; Heinrich and Rapoport,
1974; Westerhoff and Van Dam, 1987; Heinrich and
Schuster, 2001; Fell, 1997). MCA has mainly focused
on steady states in metabolic systems, although it has
also been applied to determine control on dynamic
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Fig. 3. Feedback circuitry may influence drug efficacy. A simple p
way is considered, which consists of a receptor and of proteins
and Z, is activated by a signal, and leads to cell proliferation. A neg
feedback loop is constituted by protein Y inhibiting the activation
by the receptor. A drug inhibits the action of a pathway compone
indicated. The steady-state activity of protein Z (in the presence o
nal) is plotted versus the drug concentration. The solid lines repr
the case where the feedback loop is inactive, the dashed lines w
is active. If a negative feedback loop is active, then inhibition w
that loop (A) can be much less effective than inhibition upstrea

the loop (B). SeeAppendix Afor details on the simple core model that
was used. r to
properties of metabolic systems (Acerenza et al., 198
Kholodenko et al., 1997; Reijenga et al., 2002; Ing
and Sauro, 2003). HCA has done the same with resp
to steady-state concentrations of signaling molec
(Kahn and Westerhoff, 1991; Lee et al., 2003). Recently
we extended HCA to the time-dependent domain
order to analyze the dynamic activity of signal transd
tion cascades, in terms of signaling amplitude, dura
of signaling and the integrated response (Hornberg e
al., 2005a). We found that the control on the activity
a signaling cascade is generally distributed over m
proteins and processes rather than mediated by an
protein or any one process in particular. In fact, all re
tions that activate a pathway (often kinases) were sh
to be precisely as important for the amplitude of
naling as all inactivating reactions (often phosphata
The duration and integrated response were found
controlled more by phosphatases than by kinases.

Applying HCA to the dynamic properties that res
from the interactions in signal transduction pathwa
regulatory circuits, networks, between cells, and
ferent cell types, will provide a quantitative answe
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issues regarding how individual processes control such
dynamic properties. We have recently used this approach
to calculate to which extent individual reactions in the
complex MAP kinase signaling network control the
dynamic time profile of ERK phosphorylation (Hornberg
et al., 2005b). Another question could be for example,
how much control does the mutated protein X have on
cell proliferation? Or, how much do individual signal-
ing pathways contribute to the secretion of VEGF by
tumor cells? How important is VEGF secretion by tumor
cells for the growth of endothelial cells, and indirectly,
for their own growth? Answering such questions is of
vital importance not only for our understanding of these
complex cellular systems, but also for drug design, since
it allows for the identification of drug targets accord-
ing to the magnitude of their control on cell pathology
(Cascante et al., 2002). Such a strategy has, for instance,
been applied to the search for drug targets against para-
sites (Bakker et al., 2000).

7. Kinase inhibitors: smart drugs?

Conventional cancer treatment relies on surgery,
radiotherapy, and chemotherapy (DeVita et al., 2001).
The development of rationalized cancer therapy, based
on the knowledge of the biology of cancer, may enhance
the arsenal of oncologists. Inhibition of constitutive path-
ways, e.g. by monoclonal antibodies or tyrosine kinase
inhibitors, is a strategy that is already employed in
clinical trials (Mendelsohn and Baselga, 2000; Sebolt-
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hand, one could argue that healthy cells also depend on
the activity of the pathways that are inhibited by those
drugs, and that they will also suffer from targeting those
pathways.

Related to this issue is the question whether inhibit-
ing deregulated pathways will indeed affect the cancer
cell such that the disease goes into remission. Mutated
enzymes and overactive (or impaired) signaling path-
ways are responsible for the malignant phenotype, which
makes them obvious targets for cancer therapy. This
does, however, not necessarily mean that targeting these
same enzymes or pathways will have the reverse effect
on the tumor cells. It may be that, e.g. 80% inhibition of
the activity of a mutated kinase is not enough to block
signaling through the pathway, whereas 80% inhibition
of the normal counterpart of that kinase is enough to do
so. Then, maybe, the mutated protein is not the best tar-
get. Indeed, when a kinase has been mutated to become
overactive, it will usually exert less control on signal
transduction and is thereby a bad target. In this example,
it could be better to inhibit another protein in the cascade.

To resolve such issues, it is necessary to deter-
mine how important different enzymes are for signaling
through a pathway, and how important different path-
ways are for, e.g. cell survival and growth. Comparing
such quantifications for normal cells and for cancer cells
would reveal which enzymes or pathways make the most
effective targets for cancer treatment.

Appendix A
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eopold, 2000; Shawver et al., 2002). The success o
rugs in general depends mainly on three things: (i) p
acokinetics and drug transport into the tissue (how

an the drug reach its target?); (ii) selectivity (does
rug cause toxic side effects?); (iii) efficacy (are the
er cells affected sufficiently by the attack on the d
arget?). For some chemotherapeutics, such as do
icin, it was found that not all tumor cells may be reac
fficiently, due to difficulties with drug diffusion throug

issues (Lankelma et al., 1999; Lankelma, 2002). Such
roblems will also arise for rationalized therapies,
ay be alleviated by mathematical modeling and ra
alized dosing. Recently, we integrated the avail
xperimental data regarding the transport of doxorub

nto a computer replica that enabled simulation of
ffect towards tumor cells of a transient drug concen

ion (Lankelma et al., 2003).
The fact that kinase inhibitors are designed aga

argets that are mutated or overactive in cancer cells
ides some intuitive confidence that they will be work
ore selectively against cancer cells than convent

hemotherapeutics (Sebolt-Leopold, 2000). On the othe
The data used forFig. 3 were derived with a simp
core model of a linear signaling pathway. Signalin
initiated by an active receptor (Ra) that is inactivated
become R) and can be reactivated over time. Ra c
activation of a cascade of three kinase/phosph
monocycles. First Ra causes phosphorylation of X
become Xp). Xp then activates phosphorylation of Y
Yp), which, in turn, leads to phosphorylation of Z
Zp). A negative feedback loop was modeled by Yp a
vating the formation of inactive X (Xi). As Xi does n
participate in phosphorylation of Y, Yp, thus, negativ
influences its own production.

The model contains the following irreversible re
tions:

v1: Ra→ R v6: Yp→ Y
v2: R→ Ra v7: Z→ Zp
v3: X → Xp v8: Zp→ Z
v4: Xp→ X v9* : X → Xi
v5: Y → Yp v10* : Xi → X

The reaction velocities are given by Michaelis Men
kinetics:v = Vmax×S

Km+S
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Explicitly, the equations used for each reaction are:

v1 = Ra

0.1 + Ra
, v2 = 0.3 × R

1 + R
,

v3 = Ra× X

0.1 + X
, v4 = 0.3 × Xp

1 + Xp

v5 = Xp × Y

0.1 + Y
, v6 = 0.3 × Yp

1 + Yp
,

v7 = Yp × Z

0.1 + Z
, v8 = 0.3 × Zp

1 + Zp

v9 = Yp × X

0.1 + X
, v10 = 0.3 × Xi

1 + Xi

The initial concentrations (in mM) att = 0 are:

Ra = 1 Xp = 0 Z = 1
R = 0 Y = 1 Zp = 0
X = 1 Yp = 0 Xi = 0

* Reactions v9 and v10 were added to model the case
with an active feedback loop (dashed line inFig. 3) and
omitted to model the case without a feedback loop.

The model was analyzed using Gepasi software
(Mendes, 1997; Mendes and Kell, 1998). The effect of
a drug on the steady-state Zp concentration was mod-
eled by using the Scan option in Gepasi; theVmax of
the affected reaction (v5 inFig. 3A and v3 inFig. 3B)
was varied between 0.01 and 2 (density: 1000). The
steady-state Zp concentration in the non-inhibited case
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