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In a previous work, we have introduced Neighborhood Behavior (NB) criteria for calculated molecular
similarity metrics, based on the analysis of in vitro activity spaces that simultaneously monitor the responses
of a compound with respect to an entire panel of biologically relevant receptors and enzymes. Now, these
novel NB criteria will be used as a benchmark for the comparison of different in silico molecular similarity
metrics, addressing the following topics: (1) the relative performance of 2D vs 3D descriptors, (2) the
importance of the similarity scoring function for a given descriptor set, and (3) binary or Fuzzy Pharmacophore
Fingerprintsscan they capture the similarity of the spatial distribution of pharmacophoric groups despite
different molecular connectivity? It was found that fuzzy pharmacophore descriptors (FBPA) displayed an
optimal NB and, unlike their binary counterparts, were successful in evidencing pharmacophore pattern
similarity independently of topological similarity. Topological FBPA, identical to the former except for the
use of topological instead of 3D atom pair distances, display a somehow weaker, but significant NB. Metrics
based on “classical” global 2D and 3D molecular descriptors and a Dice scoring function also performed
well. The choice of the similarity scoring function is therefore as important as the choice of the appropriate
molecular descriptors.

INTRODUCTION

The computational evaluation of molecular similarity is
nowadays widely used for library design and analysis.
Molecules are represented by points of a Structural Space
(SS) defined by molecular descriptors, in which the in silico
metric (dissimilarity score) represents the pairwise distance
between points. In silico focused library1 design relies on
the computational exploitation of the similarity hypothesis
or Neighborhood Behavior (NB).2

In a previous work,3 we have reported novel NB-
assessment criteria, relying on the analysis of complete
activity profiles. Obtained by means of robotized High
Throughput Profiling4 (HTP) experiments, these activity
profiles can be seen as the basis of a multidimensional
Activity Space (AS), monitoring on each axis the activity
of compounds with respect to the associated biological test.
In this context, neighborhood relationships in the activity
space are characterized by activity dissimilarity metricsΛ-
(m,M) monitoring how similar the activity profiles of
compoundsm and M are, unlike in previous works where
the latter term only referred to activity differences with
respect to a single biological target. Neighborhood Behavior
can be accordingly understood as a relationship between the
structural dissimilarity metricΣ(m,M) of the calculated
molecular descriptor space and the activity dissimilarity
metric Λ(m,M). To avoid confusion, we have reserved the
term “similarity” to design structural similarity, while

“activity-relatedness” has been chosen to design similarity
of the biological activity profiles.

The present work uses the previously defined benchmark
criteria in order to compare the NB of various in silico dis-
similarity metrics, based on different categories of molecular
descriptors. Previous attempts5-7 to quantify NB were based
on an empirical assignment of ligands into activity classes
on the basis of their “main” activity with respect to the target
they were designed for. Therefore, the comparison of the
NB of various in silico similarity metrics in terms of the
novel, activity profile-related criteria is expected to offer new
insight with respect to topics such as the relative performance
of 2D vs 3D descriptors8 or the relative importance of con-
nectivity vs pharmacophore similarity with respect to activity
similarity. The descriptors and metrics have been chosen such
as to sample the main types of structural spaces: 2D
topological9 and electrotopological10 descriptors, 2D finger-
prints,11 3D shape and polarity-weighed accessible surface
indices,12 and both fuzzy13 two-point (FBPA) and bitwise
three- and four-point 3D pharmacophore fingerprints.14,15

2. EXPERIMENTAL DATAsTARGET PANEL AND
TESTED COMPOUNDS

The same panel ofNtargets) 42 tests16 (see Table 2 of the
preceding paper3) defining the activity space, and the same
set of Nmols ) 584 commercially available drugs and
reference ligands have been used here. The measured activity
valuesAm,t represent the average percentages of inhibition,
at a 10µM concentration, of a compoundm against every
biological targett.
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3. SPACES AND METRICSsDEFINITIONS AND
DISCUSSION

3.1. Structural Spaces.Molecules are represented as
points of a Structural Space (SS), where the distances
between a pair of such points (m,M) is given by the in silico
dissimilarity scoreΣ(M,m). Several structural spaces have
been explored in this work, and for each space one or more
similarity metrics have been evaluatedsan exhaustive list
of which can be found in Table 1).

•The “2D” and “2D+3D” structural spaces were defined
on the basis of “classical” molecular descriptors available
in the Cerius2 (MSI)17 QSAR module. The 2D space includes
42 topological (Balaban,9 Kier and Hall,18 Wiener,19 Infor-
mation Content, ...) and structural (Molecular Weight,
hydrogen bond donor/acceptor counts, rotatable bonds, ...)
descriptors, reducedsusing principal component analysis
(PCA)20 after average/variance normalizationsto six or-
thogonal components that explained 90% of the initial
variance. The 2D+3D space includes, in addition to the
previous, the electrotopological state keys10 as well as various
3D terms such as the Jurs12 polar surface areas, shadow
indices, principal moments of inertia, and others. This gave
a total of 142 descriptors, reduced to 33 principal components
at 90% of explained variance. Both the Euclidean distances
eq 1sand the Dice21 correlation coefficientseq 2shave been
considered as similarity metrics of these PC spaces, in which
the i ) 1..NPc components of the principal component
position vector of a moleculeM will be denoted as PCMi

•The Fuzzy Bipolar Pharmacophore Autocorrelogram13

(FBPA) space has been thoroughly described elsewhere.3,13

•Topological Fuzzy Bipolar Pharmacophore Autocorrelo-
grams (TFBPA) are identical in all respects with the FBPA,
except for the use oftopological(e.g. minimal numbers of

bonds separating two atoms) instead of 3D distances. The
two metrics using FBPA descriptors have been equally
employed with TFBPA, as noted in Table 1.

•Bitwise three-point14 (3PF) and four-point15 (4PF) phar-
macophore fingerprint spaces are characterized by a huge
number of dimensions representing the many possible
configurationsseach corresponding to a bit in the fingerprints
that can be formed in 3D-space with three or four pharma-
cophoric centers of any considered type, at all the considered
combinations of distance ranges separating them. They have
been built starting from a Catalyst database with up to 100
conformers per molecule (compared to a maximum of 20
used with the FBPA). Dice21 metrics have been associated
to these spaces.

An overview of the characteristics of the metrics used in
this work is given in Table 1.

3.2. Activity Space.The considered Activity Space (AS)
and its associated dissimilarity scores, generically denoted
by Λ(M,m), have been introduced previously3 and will be
briefly revisited here:

•The Λ(1) metric (3) is related to the number of targets
with respect to which two compoundsM and m display
significant potency differences, defined in terms of empirical
high (H%) and low (L%) values of inhibition percentage
differences:

•TheΛ(2) metric (4) relies on the same principle but includes
correction factorsωt accounting for the interrelatedness3 of
targett and other targets from the activity panel:

In addition to these activity metrics, this paper also
considers, for purposes of comparison, the standard and
respectively target intercorrelation-corrected Euclidean dis-
tances (5) and (6) as potential activity similarity metrics.

3.3. Which Is the Best Activity Metric? The validation
of in vitro similarity metrics is not a trivial problem, since
a NB study is typically considered to be a test for the
descriptors and their associated in silico metrics, e.g. the
mapping of neighboring points of SS onto remote points from
AS counts as a failure of the in silico metric. However, the
activity metrics, although based on experimental data, are

Table 1: In Silico Metrics Explored in This Worka

metric description

Σ1 A/V normalized FBPA metric with optimal parametrization
Σ5 Dice metric with normalized FBPA
Σ8 normalized TFBPA metric with parameters such as inΣ1

Σ9 Dice metric with normalized TFBPA
Σ10 four-point pharmacophore fingerprint Dice metric
Σ11 three-point pharmacophore fingerprint Dice metric
Σ12 Dice metric in the “2D+3D” PC spaceseq 2
Σ13 Euclidean metric in the “2D+3D” PC spaceseq 1
Σ14 Dice metric in the “2D” PC spaceseq 2
Σ15 Euclidean metric in the “2D” PC spaceseq 1

a Note: metric numbering is not contiguous, in order to avoid
confusion with the previous paper3 of this series in which mentions
other scoring schemes (#2,3,4,6,7), that will no longer be discussed
here. Metric numbering is therefore consistent throughout the two
papers.
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empirical expressions such as any other similarity score. In
this context, a NB study becomes a bootstrapping approach,
simultaneously validating both in silico and in vitro metrics
against each other. If one of the activity metrics issystemati-
cally found to maximize NB criteria, irrespectively of the
employed in silico counterparts, that definition of activity
neighborhood may arguably have some intrinsic advantages.

4. NEIGHBORHOOD BEHAVIOR OF IN SILICO
METRICS WITH RESPECT TO ACTIVITY METRICS

4.1. How Similar is Similar? Translating the Signifi-
cance of Structural Similarity Scores in Terms of Ex-
pected Activity Profile Differences.What dissimilarity level
s can still be tolerated in order to allow a confident
extrapolation of the properties of one partner of the pair to
the other? This can be answered by monitoring〈Λ〉P(Σ≈s),
the expectation value of observed activity profile difference
within subsets of compound pairs at given level of dis-
similarity s.

In eq 7 the summation is carried out over all theNP(Σ≈s)

pairs of structural dissimilarity falling within a small range
arounds, of width ∆s ) 0.02× s60%, wheres60% is an upper
dissimilarity threshold chosen such that 60% of the com-
pound pairs haveΣ(m,M) < s60% (typically, ∆s≈ 0.01...0.02
for Dice-type metrics). The low end of the structural
dissimilarity range, within which the profile dissimilarity
averages remain conveniently low, represents the “similarity
radius” or “validity range” of the metric.

4.2. The NB Quality Criteria. The reader is referred to
the previous paper in this series3 for a detailed discussion of
the complementary NB quality scoressthe consistency
criterion ø(s) and respectively the optimality scoreΩ(s) at
given dissimilarity thresholdsas well as for the introduction
to the “Ω-ø” plots that will be further one used for
Neighborhood Behavior benchmarking.

5. RESULTS AND DISCUSSION

5.1. How Similar is Similar? The plots in Figure 1
evidence the nonlinear relationship between structural dis-
similarity scores and the expected activity profile differences
Λ(1)(m,M) of compound pairs at given structural dissimilarity
Σ(m,M) ≈ s. All metrics areconsistentat the lower end of
their value rangesthe least performant beingΣ14, a metric
according to which many False Similar pairs score dis-
similarity values close to 0. The average degree of activity-
relatedness of pairs located at the upper ends of the
dissimilarity ranges reaches (or even exceeds) the average
degree of expected dissimilarity over the entire set (〈Λ(1)〉P

) 4.6). The mapping of dissimilarity scores with respect to
the activity-relatedness criterion widely differ from metric
to metric. Sets of pairs that are 90% dissimilar (s ) 0.9)
according toΣ10 (based on four-point bitwise fingerprints)
are roughly equally consistent as the 30% dissimilar (s )
0.6) according toΣ1 (fuzzy two-point FBPA). Very few
compound pairssmost of which are obviously similar “me
too” analogues with slightly different substitution patternss
score a dissimilarity as low as 0.3 according toΣ10. To match

the pattern attached to a given bit, six geometric degrees of
freedom simultaneouslyneed to match specific values.
Therefore, similar compounds in most of the cases fail to
highlight exactlythe same bits in the fingerprint. They may
instead highlight bits that arerelated (standing for quite
similar four-point configurations), some information ignored
by the bitwise metric.

5.2. Pair Ranking: The Relative Similarity Scale.The
plots ofø(s) againstNP(Σ<s) in Figure 2 illustrate the duality
of the NB concept, in terms of two complementary aspects
of (a) consistencys“Which metric offers the best guarantees
that the few best-ranked pairs will be activity-related?” and
(b) completenesss“Which metric is able to pick a maximum
of activity-related pairs at given consistency?”. The latter is
illustrated by therateof consistency loss with respect to the
selected set size.

Most metrics present excellent guarantees of enrichment
in activity-related pairs among the best-ranked 100...500
pairs, the worst performers with this respect being the 2D

〈Λ〉P(Σ≈s) ) 1/NP(Σ≈s) ∑
Σ(m,M)≈s

Σ(m,M) (7)

Figure 1. Expected average activity dissimilarity score〈Λ(1)〉P(Σ≈s)
taken over subsets of compound pairs scoring, according to various
metrics, a dissimilarity valueΣ roughly equal to the running variable
s of theX axis.

Figure 2. Consistency within the 4500 pairs ranked as the most
similar by various in silico metrics, with respect to theΛ(1) activity-
relatedness score.
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and 2D+3D descriptor-based Euclidean metricsΣ15 andΣ13

as well as the Dice metric in the 2D descriptor spaceΣ14.
Furthermore, the number of activity-related compound pairs
from the current data set in which the activity-relatedness
may actually be due to some underlying structural similarity
may be estimated at a minimum of 5000. These are
compound pairs that are perceived as structurally similar by
at least one of the considered metrics (Σ1), successfully
selecting all of them without any significant loss of consis-
tency. Σ1 is at this point the most complete metric of the
study, setting a challenge for other metrics to evidence
“hidden” structural similarities among other pairs of com-
pounds in addition to the 5000 ones picked byΣ1, without
co-opting any False Similars.

5.3. Relative Quality of the Activity Metrics. As
discussed in paragraph 3.3, a consensual preference of
various in silico metrics for a given activity metric, expressed
for example in terms of increased consistency factors, may
underscore the appropriateness of that activity metric as a
monitoring tool of activity likeness.All structural dissimilar-
ity scores (representatives of each type being shown in Figure
3) were found to display highest consistency values with
respect to theΛ(1) metric, followed byΛ(2) andΛ(4). This is
expected, the drawback of Euclidean metrics in terms of
inhibition percentages being that many small differences due
to experimental noise may spuriously sum up to yield
dissimilarity scores of magnitude comparable to the ones of
less noisy profiles, showing in exchange some significant
activity differences against a few targets. Although the
Euclidean metric is the most straightforward distance
functionsand might, furthermore, be used in connection with
Principal Component Analysis (PCA) to eliminate intertarget
correlation artifacts in a more elegant way than it has been
done inΛ(2) andΛ(4)sthese results illustrate that inhibition
percentage noise “suppression” mechanisms such as the ones
used in Λ(1) and Λ(2) are quite important in the herein
considered activity space.

The differences betweenΛ(1) and Λ(2) are due of the
downscaling of the importance ofrelatedtests in the panel.
As shown in the previous work, strong correlations are
practically confined within the family of G-Protein Coupled
Receptors (GPCR). Or, Figure 4 shows that the consistency
of pharmacophore metrics with respect to a GPCR-only
activity subspace (Alpha1, Alpha2, Beta1h, D1h, D2h,
DaUpt, H1c, M1h, M3h, Muh, 5HT1Ah, 5HT1D, 5HT2ch,

5HT3h, 5HT6h, 5HTUpt, Sigma1) isbetter than the one
relative the entire activity space. This is expectable, since
the characteristic pharmacophoric signature of bioactive
amines (aromatic ring- positive charge) is easily detected
by pharmacophore metrics and the atom-type sensitive
2D+3D descriptors. A purely topological metric such asΣ14

does however not behave better with respect to the GPCR
receptors. Therefore, the better performance ofΛ(1) most
likely stems from the repeated (and unjustified) counting of
its high success rates against GPCR targets, whileΛ(2) is
the more realistic metric of activity space. Unless stated
otherwise, this latter activity metric has been used to derive
all of the following results.

5.4. Optimality Analysis of in Silico Metrics. Like in
the previous work,3 the NB optimality of in silico metrics
will be discussed on hand of plots of the overall optimality
criterion Ω(s) against the consistency criterionø(s), where
Ω ) f(ø) displays a local minimum, of depth 1-Ω(s*) and
situated atø(s*). An in silico metric showinglower Ω(s*)
values athigherø(s*) scores is unambiguously the one with
a better NB. This insight will be used to compare the relative
performance of the different metrics while trying to highlight
the impact of specific aspects of the considered SS on the
Neighborhood Behavior.

5.4.1. Euclidean or Dice?The comparison (Figure 5) of
the performances of Euclidean (Σ15,Σ13) vs Dice (Σ12,Σ14)
metrics in the 2D and 2D+3D PC descriptor spaces
unambiguously prove the superiority of latter. Euclidean
metrics hardly do better than random in retrieving similar
pairs with similar activities. Accordingly, it can be concluded
that the angular component of the Dice metric, showing how

Figure 3. Comparison of consistency scores of structural metrics
against several activity-relatedness metrics. The different rendered
curves correspond toΛ(1) - with rhombs,Λ(2) - squares, andΛ(4)

- triangles.

Figure 4. Consistency criteriaø(s) vs dissimilarity cutoffssscored
by various metrics with respect to theΛ(1) activity dissimilarity
criteria in the (a) default activity space defined by the entire test
panel, shown with rhombic dot marks and respectively the (b)
subspace including only the GPCR binding assays, plotted with
squares.

Figure 5. Ω-ø plot of Euclidean and Dice metrics of the 2D and
2D+3D principal component descriptor spaces, featuringΛ(2) as
activity space metric.
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divergent two molecular vectors are, is essential for the
definition of biologically relevant neighborhoods in structure
space. The classical intuitive image of activity-related
“globular clusters” in the structural “Universe” should
therefore be more accurately described as “activity cones”
(although the Dice score, unlike the cosine correlation
coefficient,21 also introduces a penalty related to the differ-
ences in vector norms). Unsurprisingly, the metric based on
the information-richer 2D+3D descriptor set is the better
one.

5.4.2. How Important Is the Knowledge of the Three-
Dimensional Structure for Similarity Evaluation? The
three-dimensional shape of molecules is of paramount
importance for ligand recognition but not necessarily so for
similarity scoring. Indeed, besides their computational ex-
pense, the sometimes important variance of 3D descriptors
function of the considered conformation may introduce a
noise level overriding the benefits of considering the 3D
aspects. To minimize such artifacts, the FBPA13 were
specifically designed as averages over an ensemble of
conformational fingerprintsse.g. they capture well the
distance relationships that recur in many sampled conformers,
in detriment of those that are specific to a given conformer.

The debate concerning the superiority of 2D vs 3D
descriptors in QSAR and similarity evaluation is ongoing22

and seemingly heading for the consensus conclusions that
3D descriptors are not outperforming 2D or 1D23 approaches.
Previous authors have however sometimes compared widely
different classes of 2D and 3D descriptors, making it unclear
whether the observed differences in performance were
actually the consequence of the difference in dimensionality.
Figure 6 compares the NB of two metrics that are identical
in all respects, except for the (3D and respectively topologi-
cal) nature of the distances used to build the fingerprints.
With equal weights for pharmacophoric features (upper plot),
the FBPA (Σ5) and the TFBPA (Σ9) appear to perform
equally well in terms of overall optimality at consistency
levels aboveø > 0.6. At intermediate consistency levels,
the FBPA metric is however more performant. The com-
parison shifts in favor of the FBPA metric when optimal
pharmacophore feature weights are used (lower plot). An
attempt to specifically optimize the NB of the TFBPA-based

metric (results not shown) failed to outperform the quality
of Σ1. Also, FBPA generation is extremely rapid13 for
combinatorial libraries and may therefore be a method of
choice to characterize such compound collections, while
noncombinatorial compounds may be more effectively
described using 2D methodologies.

5.4.3. Three- and Four-Point Pharmacophore Finger-
prints. Three- (Σ11) and four-point (Σ10) pharmacophore
metrics score excellent consistency with respect to the small
subsets of<500 compound pairs ranked as most similar
(Figure 2). However, a common characteristic of these two
metrics is the relative paucity of compound pairs classified
within their similarity radiisalthough these radii (0.8..0.9)
almost cover their entire defined value range [0,1] (see
paragraph 5.1 and Figure 1). Due to low completeness,
overall optimality scores are deceivingly low, as shown in
Figure 7.

5.4.4. Comparative Analysis of the NB of Different
Categories of Molecular Descriptors.Figure 8 showsΩ-ø
plots of in silico metrics based on different categories of
descriptors. Figure 9 offers some additional information with
respect to some of the metrics in Figure 8, displaying the

Figure 6. Impact of the substitution of geometric 3D distances
(FBPA) by topological 2D distances (TFBPA) on the NB of bipolar
pharmacophore metrics, all the other parameters being equal
(Standard Dice metricssΣ5 vs Σ9sin the upper graph, and metrics
using fitted parameterssΣ1 vs Σ8sin the lower graph).

Figure 7. Neighborhood Behavior of three- vs four-point phar-
macophore fingerprint metrics.

Figure 8. Ω-ø plots comparing the best structural metrics
representing each of the considered structural spaces.

Figure 9. Numbers of co-opted “False Similar”NFS pairs (on Y)
vs the numbers of “True Similar” pairsNTS (on X) found within
an increasing subset of top-ranking structurally similar pairs.
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numbers of false similars co-opted into the smallest subset
of most similar pairs that includes the given number of true
similar pairsNTS (on theX axis).

Even in absence of weighing factor calibration, the FBPA-
based metric (Σ5) shows much better overall optimality than
the ones based on bitwise four-point pharmacophore finger-
prints, a trend that is further emphasized by weighing factor
calibration. The 2D+3D Principal Component Space in
conjunction with a Dice metricΣ12 also displays strong
neighborhood behavior, outperformingΣ5.

5.4.5. Nontrivial Similarity: Pharmacophorically Simi-
lar Analogues with Different Topology. The concept of
molecular similarity, rooted in the medicinal chemist’s know-
how to recognize compounds with related biological proper-
ties, heavily relies on connectivity similarity apparent from
the 2D structure sketches. Scaffold-centric (Markush)24

definitions of compound families are a direct consequence
of this fact. By contrast, the similarity of geometry-dependent
pharmacophoric patterns is much less obvious to a human
observer. Therefore, in silico metrics able to specifically
recognize nontrivial near neighbors with different connectiv-
ity,25,26 that would not have been perceived as similar by a
chemist, are of special interestsprovided that pharmacophore
similarity alone is a reasonably good guarantee of activity
similarity. Though it is the spatial distribution of functional
groups that drives the molecular recognition phenomena,
connectivity-related factors such as flexibility and electronic
density effects play a nonnegligible role in binding.

To evaluate the specific ability of pharmacophore descrip-
tor metrics to detect nontrivial pharmacophore similarity
backed by an activity similarity, a NB analysis of the FBPA-
basedΣ1 and four-point pharmacophore fingerprint-basedΣ10

metrics has been run against subsets oftopologically dis-
similar pairs withΣ14 scores larger than 0.1 (165 961 pairs)
and 0.25 (153 404 pairs), respectively, out of the total of
170 236. Figure 10 witnesses the expected general decrease
of NB quality of both metrics, after the elimination of the
pairs of “me too” (topologically and pharmacophorically
similar) analogues. This only moderately affects the NB of
the FBPA-basedΣ1 metricsthe exclusion of the first 4275
topologically most related pairs having no sizable effect.
However, fluctuations appear in the high consistency zone
of theΩ-ø plot of theΣ10 metric, signaling that the numbers
of selected pairs within that consistency range suffered a
significant backlash. According to Figure 11, the bitwise
fingerprint-driven selection corresponding to a consistency
level of 0.5 includes about 400 examples of true similars,
out of which all but 5(!!) also belong to the subset of 4275
topologically most similar pairs. This proves thatΣ10

achieved its excellent consistency scores by specifically
ranking pairs of “me too” compounds at the top of its nearest
neighbors list. It fails to evidence pharmacophore similarity
not backed by topological similaritysprobably due to the
low degree of exact bit string matches (see discussion in
paragraph 5.1). It might be concluded that the upper limit
of 100 conformations/molecule used to build the Catalyst
database is largely insufficient to ensure the continuous
conformational space coverage required in order to render
four-point pharmacophores independent to sampling artifacts.
These descriptors were originally designed to work with a
much denser conformational space coverage15showever, it
has been reported that three-point fingerprints performed

better when built on the basis of less conformers.7 Our own
results (not shown) tend to validate this counterintuitive
finding, for three-point pharmacophore fingerprints built on
hand of only 20 conformers slightly outperformed the NB
of the 100-conformer metric used throughout this paper.

The fuzzy character of the FBPA ensures a better ability
to detect examples of nontrivial molecular similarity. Figure
12 exemplifies three such cases of compound pairs with no
obvious relationships at the molecular connectivity level,
which all scoreΣ1 scores well within the validity range of
that metric (all lower than 0.16), and also show a significant
degree of activity similarity (Λ < 1, while sharing a common
pool of targets to which they bind). These pairs are “missed”
by the bitwise pharmacophore metrics (with four-point
fingerprints, all score worse than the similarity radius of
0.95).

6. CONCLUSIONS

The application of the activity profile-based NB assess-
ment criteria to different types of molecular similarity metrics
leads to a series of interesting insights, some in agreement

Figure 10. Changes in the NB of theΣ10 and Σ1 metrics upon
removal of atom pairs of highconnectiVity similarity (Σ14 > 0.10
and 0.25, respectively) from the set.

Figure 11. Number of “True Similar” pairs (on Y) found within
an expanding the subset of top-ranked structurally similar pairs,
plotted against the consistency criterion of the subset (on X), before
and after elimination of the topologically most similar compound
pairs (Σ14 > 0.10 and 0.25, respectively).
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and others in contradiction to the observations reported in
the literature, on hand of empirical biological activity
classifications of molecules.

Notably, our work showed that 3D information, captured
in terms of average interatomic distances over a set of up to
20 diverse conformations (FBPA), improved the NB of this
metric with respect to its 2D counterpart (Topological
FBPA). This is interesting, for literature27 typically reported
comparisons between completely unrelated 2D and 3D
descriptorssthe observed differences being therefore not
strictly related to descriptor dimensionality. However, the
net increase in NB with 3D fingerprints may not justify the
supplementary effort required to generate 3D conformers of
noncombinatorial compounds.

The very good NB of FBPA-based metrics is dependent
on the parametrization scheme of pharmacophore feature
weights. Unless the latter are optimized, the Dice metric in
the 2D+3D principal component space performs better.
Interestingly, Euclidean metrics preferentially used in PC
spaces perform significantly worse than correlation coef-
ficient-based measures of molecular similarity. Therefore,
the functional form of the similarity metric is as important
as the choice of molecular descriptors. Purely topological
similarity metrics ignoring the atom types obviously fail to
display any significant NB.

Three- and four-point pharmacophore fingerprints sup-
posed to capture the 3D distribution of pharmacophore
features have been shown to score an excellent consistency,
however, limited to the few best-ranked pairs of compounds
that happened to be also topologically similar. Compound
pairs with significantly different chemotypes are extremely

unlikely to setexactlythe same bits in the pharmacophore
string, even if their overall pharmacophore group distribution
is fairly similar. In the latter case, compounds would
highlight different bits corresponding torelated triplets/
quadruplets, but these “near misses” will not count in the
similarity evaluation. These descriptors can be successfully
used for pharmacophore queriessretrieving all molecules
with a given pattern of set bits from a databaseswhen the
issue of undetected compounds is unimportant as far as all
of the retrieved ones display the wanted features.
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