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ABSTRACT Remote homology detection refers
to the detection of structural homology in proteins
when there is little or no sequence similarity. In this
article, we present a remote homolog detection
method called SVM-HMMSTR that overcomes the
reliance on detectable sequence similarity by trans-
forming the sequences into strings of hidden Markov
states that represent local folding motif patterns.
These state strings are transformed into fixed-
dimension feature vectors for input to a support
vector machine. Two sets of features are defined: an
order-independent feature set that captures the
amino acid and local structure composition; and an
order-dependent feature set that captures the se-
quential ordering of the local structures. Tests us-
ing the Structural Classification of Proteins (SCOP)
1.53 data set show that the SVM-HMMSTR gives a
significant improvement over several current meth-
ods. Proteins 2004;57:518–530. © 2004 Wiley-Liss, Inc.
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INTRODUCTION

Breakthroughs in large-scale sequencing and the Hu-
man Genome Project have led to a surge in biological
sequence information. Researchers are increasingly rely-
ing on computational techniques to cope with the massive
amount of information generated. Homology detection is
one such computational approach to interpret the protein
sequences through the detection of homologous proteins.

Early methods in homology detection are based on
pairwise comparisons of protein sequences using dynamic
programming algorithms such as the Needleman–Wun-
sch1 and Smith–Waterman2 algorithms. Popular search
tools such as BLAST3 and FASTA4 are fast approxima-
tions of these dynamic programming algorithms. However,
these pairwise comparison methods do not work well for
remote homologies.

In order to identify remote homologs, methods such as
profiles for protein families,5 hidden Markov models
(HMMs),6,7 and iterative methods such as PSI-BLAST8

and SAM9 have been introduced. The basic idea behind
these methods is to generate a representative model for
each protein family. Instead of comparing an unknown
sequence to a specific protein sequence, we compare it to
the generated model of the appropriate family. While these

approaches provide better detection of the remote homolo-
gies as compared to the pairwise comparison methods,
additional accuracy can be obtained by modeling the
difference between positive and negative examples—
positive if they are in the family and negative otherwise.

If a fixed number of descriptive parameters, or features,
can be defined for each of the sequence families, then a
general technique called a support vector machine (SVM)
may be applied to find the boundaries between families in
the space defined by the features. This method has been
successfully applied to the homolog detection prob-
lem.10–14

An SVM algorithm chooses a hyperplane through the
feature space that has a maximum margin between posi-
tive and negative examples. Each hyperplane divides one
class of data (all of the sequences families of one fold type)
from all of the other classes. A new data point (an
unknown sequence) can then be classified by finding its
relationship with each of the hyperplanes. SVM classifiers
are better generalizers than neural networks for small
data sets.15

The success of a SVM classification method depends on
the choice of the feature set to describe each protein
family. Methods that use only sequence information fail
when the sequence similarity is very low, even if the two
structures are very similar (see Fig. 1). In our earlier work,
we noted that similar structures contain similar local
structure motifs. Our first SVM method, SVM-I-sites,16

demonstrated that the local structure content of a protein
improves remote homolog detection, even without know-
ing the locations of the local features within the sequence.
Local structure motifs were found using the I-sites library
of sequence–structure correlations.17 The I-sites library
contains 262 short-sequence patterns that each has a
strong correlation with the three-dimensional (3D) struc-
ture, locally. Our tests showed that SVM-I-sites was
comparable in detection accuracy and more efficient than
the state-of-the-art method SVM-pairwise.11

Further study revealed that I-sites motifs can occur in
different orders along the sequence in different fold topolo-
gies. Thus, encoding structure features using only the
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composition of I-sites motifs may not uniquely define the
global fold of the protein. The ordering of these motifs
along the sequence also must play a role in dictating how
the self-organization takes place during folding. Moreover,
many of the I-sites motifs tend to overlap, resulting in
redundant information.

Bystroff et al.18 described a hidden Markov model called
HMMSTR (Hidden Markov Model for protein STRucture)
that extends and generalizes the I-sites library. HMMSTR
models I-sites motifs as words of a higher order grammati-
cal structure. Probabilistic transitions between I-sites
motifs along the chain are thought to capture the propaga-
tion of structure during the folding process. A typical
transition would be from helix to helix-cap, or �-strand to
�-turn. Thus HMMSTR encodes some of the sequence
ordering of local motifs. HMMSTR also removes the redun-
dancy inherent in the I-sites model and reduces the
number of free parameters. For example, several I-sites
motifs are used to represent the different register shifts of
the amphipathic heptad–repeat helix motif, while in
HMMSTR these motifs are merged into a single, cyclic
pathway of 7 Markov states.

For each query protein sequence, the output of the
HMMSTR algorithm is a “�” matrix,19 where each element
is the probability that a residue at a given position is
associated with one of the Markov states. The states are
conserved in remote homologs, because the local structure
elements are conserved, and the relative positions of the
states along the sequence are approximately conserved,
because remote homologs conserve topology. Both the
state and position information are crucial for defining the
similarity of two proteins.

In this article, we investigate ways that the position-
specific local structure information in HMMSTR can be
efficiently encoded as fixed-length feature vectors for an
SVM. There are two issues to address here:

1. The length of � matrix is variable, while the input to the
SVM must be a fixed-length vector. We encode the
sequence order of the local motifs by performing align-
ments with the database, using a novel HMMSTR-
based similarity score. Each alignment score is one
feature.

2. The � matrices are high dimensional. This incurs high
computational costs when encoding the state and posi-
tion information. We overcome this problem by first
performing a dimension reduction before attempting to
align the � matrices of two proteins.

These feature vectors are subsequently used to train an
SVM, SVM-HMMSTR. In short, for each protein, we
obtain 2 sets of features. The first set aims to capture the
amino acid and local structure composition, while the
second set encodes the alignment scores. The new SVM
classifier was tested on the Structural Classification of
Proteins (SCOP) 1.53 data set and significantly outper-
formed existing methods.

MATERIALS AND METHODS
HMMSTR Model

HMMSTR is a better model for local structure prediction
than the I-sites library, improving 8-residue fragment
prediction accuracy from 43% to 59%.18 This is because
HMMSTR models the possible ways of arranging sequence–

Fig. 1. Example of two proteins from SCOP superfamily 2.28.1. The structures are remarkably similar (top
figures), but the alignment below shows only poor sequence similarity (10% identity).
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structure motifs along the sequence, and because overlap-
ping motifs have been merged, reducing redundancy and
increasing the statistical significance of the amino acid
profiles.

The topology of HMMSTR is a highly branched and
multicyclic network. Each of the 262 I-sites motifs is
represented as a chain of Markov states, which contains
information about the sequence and structure attributes of
a single position in the motif. Adjacent positions are
modeled by directionally linked states. A hierarchical
merging of these chains of states, based on sequence and
structure overlaps, resulted in a graph that contains
almost all the motifs. The merged graph of I-sites motifs
comprises a network of states connected by probabilistic
transitions, or a HMM, as shown in Figure 2.

In contrast to the more familiar family-specific HMMs,20

HMMSTR captures simultaneously the recurrent local
features of sequences and structures across all families of
globular proteins. Each state in HMMSTR can produce, or

“emit,” amino acids and structure symbols according to a
probability distribution specific to that state. There are 4
probability distributions defined for the states in
HMMSTR—b, d, r, and c—that describe the probability of
observing a particular amino acid, secondary structure,
backbone angle region, or structural context descriptor,
respectively. This set of emission probabilities for a given
state qi is collectively called Bqi

. The values bqi
(�) (1 � � �

20) are associated with probabilities for the emission of
amino acids. The values dqi

(�) (1 � � � 3) are the
probabilities of emitting helix, strand, or loop, respec-
tively. The values rqi

(�) (1 � � � 11) are the probabilities
of emitting one of the 11 dihedral angle symbols. Finally,
cqi

(�) (1 � � � 10) are probabilities of emitting 1 of 10
structural context symbols.

The database used for training, evaluation, and testing
of the HMMSTR is encoded as a linear sequence of amino
acids and structural observables. The amino acid sequence
data consist of a parent (“parent” means the sequence

Fig. 2. HMMSTR model built from I-sites Library. Symbols represent hidden states: circles, predominantly
helix; squares, strand; diamonds, loop or turn; yellow, glycine; magenta, proline; blue, nonpolar; green, polar;
white, no predominant amino acid. Only high probability connections are shown (Reprinted by permission of
the authors18).
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upon which the multiple alignment is based) amino acid
sequence of known 3D structure and an amino acid profile
obtained by alignment to the parent sequence. The amino
acid of the parent sequence is denoted by Ot, and the
profile by �Ot

�� (1 � � � 20). For each position t, there are 3
structural identifiers: 3-state secondary structure Dt, dis-
crete backbone angle region Rt, and the context symbol Ct

(context symbols Ct were assigned to strands and loops in
the training sequences based on the nonlocal context of
position t; for example, loops were “hairpins,” “diverging
turns,” “corners,” one of two types of helix cap, or just
“coil”; also, strands could be “middle” of the sheet or “end”).
Therefore, any sequence s of length T is given by the values
of the attributes at all positions st � {Ot, �Ot

��, Dt, Rt, Ct}
(1 � t � T).

HMMSTR models database sequences based on the
notion of a path. A path is a sequence of states through the
HMMs, denoted Q � q1q2…qT. The probability of a se-
quence s given the model �, P(s � �), is obtained by
summing the relevant contributions from all possible
paths Q:

P�s � �	 � �
allQ


q1Bq1�s1	aq1q2Bq2�s2	 · · · aqT�1qTBqT�sT	, (1)

where aqiqj (1 � i, j � T) represents the probability of a
transition from state qi to state qj, 
qi

is the probability of
initiating a sequence at state q1 and Bqi

(st) is the
probability of observing st at state qi, which for observation
of a single sequence is given by

Bqi�st	 � � dqi�Dt	
rqi�Rt	
cqi�Ct	

�bqi�Ot	. (2)

Usually, only one of the structural emission symbols d, r,
or c is included in Bqi

in any given training run. However,
in principle, any combination could be used. For remote
homology detection, we used a model trained on r for the
prediction, because this is the most closely tied to the
I-sites library representation. We found significant im-
provements in performance when we used amino acid
profiles instead of single amino acid sequences for training
and for subsequent predictions. For the probability of
observing a given profile Ot

� at position t in a sequence, we
use the multinomial distribution, and the expression for B
becomes

Bqi�st	 � rqi�Rt	�
��1

20

bqi��	Ncount�O�
t

. (3)

In this equation, Ncount is the “depth” of the multiple
sequence alignment, which is roughly the number of
homologous sequences in the alignment. However, this
number is an artifact of uneven sampling of sequence
families in the database. To give equal weight to all
sequence families in the training set, Ncount was taken to
be a fixed value.

To use the HMMSTR model, we input a single sequence
to predict its Markov states, as follows: We run PSI-

BLAST against the Swissprot database to generate a
multiple sequence alignment. Then, the multiple sequence
alignment is converted to a sequence profile. Next, the
profile is aligned to HMMSTR to get a probability distribu-
tion over all states at each position, that is, the � matrix.
This matrix is computed by the Forward–Backward Algo-
rithm19 and describes the probability of each HMMSTR
state at each position; that is,

�pq � P�q � s,t,�	 (4)

for all the 281 HMMSTR states (1 � q � 281) and for all
residues st (1 � t � T, where T is the length of the protein).
The � matrix may be viewed as the translation of a given
sequence to a language of I-sites motif descriptors.
HMMSTR is a grammatical model for that motif “lan-
guage.”

Feature Extraction and Representation

There are two schools of thought in defining the similar-
ity of proteins.21 The local view considers only 10–20% of
residues to be critical, while the global view advocates that
similarities should occur along the entire sequence. In
order to accommodate both views, we define two sets of
features: One feature set captures the composition of a
protein in terms of the local structure motifs and amino
acids regardless of their sequential ordering, and the other
feature set only considers the longest conserved regions
between two proteins by encoding both the composition
and the arrangement order of the regions. These two
feature sets are called “order-independent” and “order-
dependent,” respectively. This section presents the details
of our feature extraction and representation procedure.
The objective is to capture both the state information and
the positional information in terms of fixed length vectors
to be used for training an SVM.

Order-independent feature set

The order-independent feature set aims to capture the
composition of amino acids and local structure. Each
feature is indexed by (x,s), where x represents the 20
amino acids and s is the 281 Markov states in HMMSTR.
(x,s) is the total number of x in state s summed over all
positions of a protein. Therefore, there are a total 20 * 281
features. The feature value (x,s) can be computed from the
gamma matrix:

�x, s	 � �
t�1

Ot�x

T

�t�s	, (5)

which is the sum of all the probabilities of being in state s
and observing amino acid x across all the positions of the
target protein.

The feature set given by Eq. (5) is a variation of the
Fisher score defined by Jaakkola et al.10 Fisher score
vector Ux can be obtained by the following formula:

Ux � ��x,slog P�X � H1	 (6)
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Each component of Ux is a derivative of the log-likelihood
score for the query sequence X with respect to a particular
emission probability parameter � x,s of the HMM H1. The
magnitude of the components of Ux specifies the extent to
which each parameter � x,s contributes to generating the
query sequence. The derivatives of log P(X � H1) with
respect to the �x,s as the components of the Fisher score
vector Ux can be computed by the following formula10:

�

��x,s

log P�X � H1	 �
�x, s	

�x,s
� �s	, (7)

where �x,s is one emission probability parameter that
specifies the probability of emitting amino acid x in state s,
and (s) is the expected number of times we visit state s as
we traverse all paths through the model.

In this work, we use a sequence profile instead of a single
amino acid sequence. Therefore, for the order-independent
feature set, we define a variation of the Fisher score to
capture the expected sum, over all the positions of a
protein, of the position-specific frequency of visiting state s
and emitting symbol x.

Order-dependent feature set

The relative position of local structure is lost in the
order-independent feature set. Therefore, a strong similar-
ity between two such feature vectors tells us only that the
two sequences have the same local structure motifs. It does
not tell us that the motifs are arranged in the same order
along the sequence. For example, two proteins that are
predominantly helical would have similar “local” features,
even if they are globally different. Although to some
extent, the existence of conserved helix-caps or other, less
common motifs makes this feature space more selective
than amino acid or secondary structure composition mea-
sures.

In this section, we define an order-dependent feature set
by aligning the � matrices to include both the states’
posterior probability and their positions in the protein.
The order-dependent feature set for a protein X is defined
as Fx � (fx1

,fx2
, …,fx�

), where � is the total number of
proteins in the training set and fxi

is the E-value of the
Smith–Waterman score between protein X and the ith
training set protein. This feature set has a similar format
as the features in SVM-pairwise method. The difference is
that, in this work, fxi

is the E-value of the alignment score
of 2 � gamma matrices, rather than the E-value of the
Smith–Waterman score between 2 sequences in SVM-
pairwise method.

In the following sections, the procedure of deriving the
E-values of the alignment of 2 � matrices is described. This
process comprises 3 steps, namely, dimension reduction,
similarity computation of 2 � matrices, and transformation
of similarities scores into E-values.

Dimension reduction. Recall that the � matrix is 281
rows by T columns, where T is the length of the protein
sequence. We observe that only a few of the 281 states
have probability values that are significantly greater than
zero in most of the columns in the � matrices. Most of the
states have probability values that are very close to zero. A

state probability value is defined as “significant” if it
occurs by chance with a probability less than or equal to a
predefined probability value �. Given a significance value
�, we use the following steps to determine the cutoff value
and the maximum number of states C needed to store the
significant states for each column of a � matrix. This
procedure is based on a sample set of � matrices for
proteins in the SCOP database22 version 1.53:

1. Sort all the states in a descending order by their
probabilities. The cutoff is the probability value of the
nth state, where n � N * �, and N is the number of the
sampled states.

2. Count the number of states in each column with a
probability value greater than this cutoff, and C is the
maximum of these numbers.

Table I lists the cutoff values corresponding to the
different probability values. The variable C represents the
maximum number of states in one column in these samples
with values greater than the cutoff. It is clear that for an �
of 0.01, it is sufficient to just maintain the top 8 states.

This motivates us to reduce the dimensionality of the �
matrix by storing only the top C states for each column,
and the remaining states are assumed to have probability
0. In our experiments, we set C at 10 to ensure that all the
significant values for � � 0.01 are included. With this, we
transform each � matrix into a record with the format: “T
(S1 V1 … SC VC),” where T is the length of the � matrix,
the set (S1 V1 … SC VC) denotes the concatenation of C
entries of each column in the � matrix, Si and Vi (1 � i � C)
represents the state number from 1 to 281, and the
probability value corresponds to the state. Subsequent
similarity comparisons are carried out on this transformed
data set.

Similarity computation. We align the extracted �
matrices using Smith–Waterman algorithm to get a simi-
larity score to measure the overall conserved folding
similarity of two proteins. In order to use the Smith–
Waterman algorithm for alignment, a set of parameters
(similarity score, gap penalties) called a scoring scheme
must be defined. Existing scoring schemes such as BLO-
SUM or PAM are designed for sequence alignment, and
are not applicable for the � matrices alignment problem.
Hence, we redefine the scoring scheme for � matrices
comparison. Yona and Levitt23 examined the principles for
defining a new scoring scheme for the Smith–Waterman
algorithm for a new alignment problem. They concluded
that in order to be consistent with the BLOSUM and PAM
scoring schemes, the similarity score of two positions (a,b)
must satisfy the conditions:

TABLE I. Correlation Between C and �

Probability value � Cutoff Number of States C

0.001 0.71 1
0.005 0.16 4
0.01 0.06 8
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1. mean{Score(a,b)} � 0
2. max{Score(a,b)} � 0.

The first condition guarantees that the average score of
a random match is negative, while from the second condi-
tion, a match with a positive score is possible. Based on
these two principles, we define the scoring scheme for our �
matrix alignment problem. The following subsection pre-
sents the details of the procedure for redefining the new
similarity score of two positions.

Similarity score. To encode the position information, we
need to compute the similarity of 2 � matrices. This
involves performing a Smith–Waterman alignment on the
2 � matrices. To do this, we must first reduce the 2
matrices to a pairwise similarity matrix. In other words,
one pair of columns is first reduced to a single similarity
value.

Given 2 � matrix columns p and q, where the top C states
are stored, the similarity score of two columns is defined as
the cosine similarity score of the two columns. The main
reason we use a cosine similarity score in place of a
symmetrized relative entropy, which is used by Yona and
Levitt,23 is that multiplication is a much faster operation
compared to the log operation; especially the time needed
for such operations is huge. The cosine similarity score is
given by the formula

�p, q	 �
p � q

��p � p	�q � q	
(8)

where “ � ” denotes “dot product,” and the dot products (i.e.,
p � q, p � p, and q � q) in Eq. (8) are all computed with the
stored top C states under the assumption that the remain-
ing states are insignificant. The computation of the self-dot
products p � p and q � q is very straightforward, which is
again over just the top C states. The dot product of p � q is
equal to the sum of the products over just the states that
overlap between p and q.

Once we have computed the similarity scores of all the
pairwise columns of the 2 � matrices, the next step is to
map the computed similarity scores into a new range that
guarantees the average score of a random match is nega-
tive, and at the same time, a match with a positive score is
possible. A simple method that can map the similarity
score defined in Eq. (8) into a new range that satisfies the
two conditions is to subtract the similarity scores with a
shift value. To determine the shift value, we first compute
the average similarity score calculated for a large set of �
matrix column pairs, which is 0.05. To ensure that the
average score of a random match is negative, the shifted
value much be larger than 0.05. To ensure that a match
with a positive score is possible, the maximum shifted
value is less than 1. Shift values ranging from 0.1 to 0.9 are
investigated in our experiments.

Gap penalties. In addition to the shift value, gap penal-
ties also play an important role in deriving a sensitive
scoring scheme. In order to determine the optimal shift
value and gap penalty, a total of 9 £ 3 sets of parameters
are tested, with shift value between 0.1 and 0.9 (values of
0.1, 0.2, 0.3, …, 0.9), a gap opening penalty between 1 and

3 (values of 1, 2, 3), and gap extension penalty between 0.1
and 0.3 (values of 0.1, 0.2, 0.3). In keeping with the
BLOSUM62 matrix, we set the gap extension penalties to
be one order of magnitude smaller than gap open penalty.

We sample a subset of protein pairs that are either
related or unrelated from SCOP database22 version 1.53 to
determine the best scoring scheme. We refer to two
proteins within the same superfamily in SCOP as “re-
lated,” and otherwise, as “unrelated.” Given a specific set
of parameters, we first run Smith–Waterman algorithm
using these parameters as the scoring scheme to obtain the
similarity score for all the sampled protein pairs. The
receiver operating characteristic (ROC) score24 is com-
puted with all the alignment scores of the protein pairs
and their relatedness (1 for related and 0 for unrelated) as
the input to measure the goodness of this set of parame-
ters. Figure 3 shows the results of the experiments. From
the graph, we set the shift value at 0.3, with the gap
opening penalty of 3 and gap extension penalty of 0.3.

After redefining the scoring scheme, we run the stan-
dard Smith–Waterman algorithm to get the similarity
score of the 2 � matrices.

Transformation of similarity score into E-value.
Empirical studies25 have shown that the distribution of

local gapped similarity scores can be well approximated by
the extreme value distribution.26 We transform the scores
into a statistical significance value called “E-value” to
distinguish true similarities from random matches. The
E-value can be computed using the formula E � Kmne��S,
where S denotes the similarity score, m and n are the
lengths of the compared proteins, and � and K are two
empirically derived parameters.

We use the direct estimation method25 to estimate the
parameters � and K. We collect the scores of 5000 optimal
alignments of � matrices. These alignments are produced
from random protein sequences of length n � m � 900

Fig. 3. Performance with different parameter sets. The x axis is the
shift value; the y axis is the ROC score computed for the sampled protein
pairs. For each shift value, there are three ROC scores that correspond to
the gap opening penalty 1,2,3 and gap extension penalty 0.1,0.2,0.3,
respectively.
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using the scoring scheme described in the previous subsec-
tion. The number of alignments that score above a given
threshold � are counted. It is suggested in Waterman and
Vingron25 that the probability of an alignment scoring less
than or equal to � is given by exp(��mnK�). After an
appropriate transformation [log{�log(data)}], the empiri-
cal distribution function is expected to form a straight line,
which facilitates the estimation of the parameters � and K.
However, this estimation does not take into consideration
the length of the real data that will have an effect on the
value of parameter �.25 To eliminate this effect, � is
corrected by using the estimated � and K to search the
protein database using the maximum likelihood estima-
tion (MLE) method.

Data Sets

We assess the recognition performance of each algo-
rithm by testing its ability to classify protein domains into
superfamilies in the SCOP22 version 1.53. The same
experiment setup as the SVM-pairwise11 method is adopted
here to allow for a direct comparison. Remote homology is
simulated by holding out all members of a target SCOP
family from a given superfamily as follows:

1. Close sequences are removed using an E-value thresh-
old of 10�25, and this resulted in 4352 distinct se-
quences, grouped into families and superfamilies.

2. Positive training examples are chosen from the remain-
ing families in the same superfamily, and negative test
and training examples are chosen from outside the
target family’s fold. The held out family members serve
as positive test examples. A total of 54 families contain-
ing at least 5 family members (positive test) and 10
superfamily members outside of the family (positive
train) are produced. For each family, negative examples
are taken from outside of the positive sequences’ fold,
and are randomly split into training and testing sets in
the same ratio as the positive examples.

Metrics

To assess the performance of a remote homology detec-
tion method, we consider two metrics: the Receiver Operat-
ing Characteristic (ROC50) score24 and median Rate of
False Positives (RFP).10 The ROC score combines mea-
sures of a search’s sensitivity and specificity. The ROC
score is the area under a curve that plots true positives
versus true negatives for varying score thresholds, and it
measures the probability of correct classification. There-
fore, a score of 1 indicates perfect separation of positives
from negatives, whereas a score of 0 denotes that none of
the sequences selected by the algorithm is positive. The
ROC50 score is the area under the ROC curve, up to the
first 50 false positives. ROC50 has the advantage of
providing a more efficient and sensitive way to evaluate
different methods over the ROC score. The median RFP
score is the fraction of negative test sequences that score
as high or better than the median-scoring positive test
sequence. Median RFP is used to measure the error rate of
the prediction under the score threshold where half of the

true positives can be detected. These measures were used
for evaluation in Jaakkola et al.10 and Liao and Noble.11

Support Vector Machines

SVMs15,27 have strong theoretical foundations and excel-
lent empirical successes. The SVM is a supervised ma-
chine learning method that developed rapidly and has
been widely used in many kinds of pattern recognition
problems. The basic method of SVM is to transform the
samples into a high-dimension Hilbert space and to seek a
separating hyperplane in this space. The separating hyper-
plane, which is called the optimal separating hyperplane,
is chosen in such a way as to maximize its distance from
the closest training samples. The SVM usually outper-
forms other machine learning technologies, including Neu-
ral Networks and K-Nearest Neighbor classifiers.15

We use the Gist publicly available SVM software imple-
mentation (http://microarray.cpmc.columbia.edu/gist/
index.html), which implements the soft margin optimiza-
tion algorithm described in Jaakkola et al.10 The base
kernel is normalized so that each vector has length 1 in the
feature space, that is, K(X,Y)�X � Y/�(X � X)(Y � Y). This
kernel K(.,.) is then transformed into a radial basis kernel.

RESULTS AND DISCUSSION
Setup of Competing Methods

We compare SVM-HMMSTR with 5 methods: the genera-
tive models PSI-BLAST and SAM, and the SVM-based
discriminative models SVM-I-sites, SVM-pairwise, and
SVM-Fisher. We first briefly describe the setup procedure
of these methods.

It is not straightforward to compare PSI-BLAST and
SAM, which requires as input a single sequence, with
methods such as SVM-Fisher and SVM-HMMSTR, which
take multiple input sequences. We address this problem by
randomly selecting a positive training set sequence to
serve as the initial query.

PSI-BLAST is run for two iterations on the Swissprot
database with an E-value threshold 0.001, and the result-
ing profile is then used to search against the test set
sequence. The resulting E-values are used to rank the test
set sequences. The PSI-BLAST settings used here are
exactly the same as the ones we used to build the profiles
for our SVM-HMMSTR method.

For the SAM method, HMMs were trained using the
Sequence Alignment and Models toolkit (www.soe.ucsc.edu/
research/compbio/sam.html).7 The generative models were
trained from an existing library of SAM-T99 HMMs. The
SAM-T99 algorithm, described more fully in Karplus et
al.,9 builds an HMM for a SCOP domain sequence by
searching the nonredundant protein database Swissprot
for a set of potential homologs of the sequence and then
iteratively selecting positive training sequences from
among these potential homologs and refining a model. The
resulting model is stored as an alignment of the domain
sequence and final set of homologs. Once a model is
obtained, it is straightforward to compare the test se-
quences to the model and the resulting reverse scores are
used to rank the test set sequences.
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For the SVM based methods, SVM-Fisher, SVM-pair-
wise, and SVM-I-sites, the key steps are feature represen-
tation and extraction. The SVM-Fisher method uses fea-
ture vectors calculated from the parameters of a profile
HMM. For each positive training set, a HMM is first built
with the SAM package as described above, and subse-
quently used to compute a vector representation for any
sequence using the accompanying program get_fisher_
scores in the SAM package. SVM-pairwise uses the pair-
wise Smith–Waterman sequence similarity algorithm in
place of the gradient vector in the SVM-Fisher method
that we described earlier. In contrast, SVM-I-sites encodes
the local structure composition of a protein as the sum of
I-sites motif confidence scores,16,17 where each motif de-
fines one feature. After the vectorization step, all of the
SVM-based methods will define a similarity score for 2
proteins based on the feature vectors and use that similar-
ity as the kernel of the classifier.

Results

We first investigated the effect of varying the composi-
tion of the feature sets on the detection accuracy. We call
the method that uses only the order-independent feature
set as “SVM-HMMSTR-Independent,” and the method
using only the order-dependent feature set as “SVM-
HMMSTR-Dependent.” Figure 4 shows a family-by-family
comparison of the performances of the two methods.

From Figure 4, we realize that “SVM-HMMSTR-
Independent” and “SVM-HMMSTR-Dependent” are

complementary. This suggests that the local structure
composition and the sequential order of the local motifs are
equally important in determining the similarity of 2
proteins and a combination of the 2 feature sets should
achieve a better performance than either feature set alone.

There are 2 basic approaches for combining the 2 feature
sets. The most direct method is to concatenate the 2
feature sets into a longer feature set. We call this method
“SVM-HMMSTR-Hybrid.” Another approach is to first
obtain 2 classifiers with the 2 feature sets individually and
then combine their results, either taking the average or
maximum for each query protein. We refer to these
methods as “SVM-HMMSTR-Ave” and “SVM-HMMSTR-
Max,” respectively.

Table II summarizes the performance of the various
methods we tested in terms of ROC50 and median RFP
scores averaged over all 54 families tested. Since SVM-
HMMSTR-Ave gave the best performance, we will use
SVM-HMMSTR-Ave for the rest of the comparison tests.

The distribution of ROC50 and median RFP scores are
shown in Figures 5, 6, and 7. In each case, a higher curve
corresponds to more accurate remote homology detection
performance. Using either performance measure, the SVM-
HMMSTR method performs significantly better than the
other 5 methods.

We also assess the statistical significance of differences
among methods using Wilcoxon signed rank test.13 The
resulting p values are adjusted using a Bonferroni correc-
tion for multiple comparisons. As shown in Table III,

Fig. 4. Family-by-family comparison of SVM-HMMSTR-Independent and SVM-HMMSTR-Dependent. The
coordinates of each point in the plot are the ROC50 scores for one SCOP family, obtained using
SVM-HMMSTR-Independent and SVM-HMMSTR-Dependent. The dotted line is y � x.
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SVM-HMMSTR significantly outperforms all of the other
methods with a p value 0.05.

Many of these results agree with previous assessments.
For example, the relative performance of SVM-Fisher and
SAM agrees with the results given in Jaakkola et al.,10 as
does the relative performance of SAM and PSI-BLAST
with the results given in Park et al.28 and the relative
performance of SVM-I-sites and SVM-pairwise given in
Hou et al.16

One surprise is the magnitude of the difference between
SVM-pairwise and the 2 methods, SVM-Fisher and SAM,
that directly or indirectly utilize SAM-T99 model. It is
reported in Liao and Noble11 that SVM-pairwise signifi-

cantly outperforms these 2 methods, which is not the case
in this work. This difference can be explained as follows:
Our experiments allowed the iterative algorithm to access
to all of Swissprot database during training of the model,
while in Liao and Noble,11 they are only given a small
training set (containing only a handful of positive samples),
without the benefits of the potential homologs in the
Swissprot database.

The most significant result from our experiments is the
top-ranking performance of the SVM-HMMSTR method.
This result is further illustrated in Figure 8, which shows
a family-by-family comparison of the 54 ROC50 scores
computed for SVM-HMMSTR and SVM-pairwise method.

Our order-independent feature set uses a variation of
the Fisher score, and it plays essentially the same role as
the Fisher score features in that both capture the similar-
ity of 2 proteins in terms of the composition of HMM states
and amino acids. At the same time, the order-dependent
feature set is defined by the E-value of an alignment score
between 2 HMMSTR-derived profiles, which differentiates
our order-dependent feature set from that of the SVM-
pairwise algorithm. SVM-pairwise uses the E-value of a
Smith–Waterman alignment score. Thus, we can surmise
from the results shown in Table II that local structure–
based HMMSTR information provides better features than
the sequence-based profile HMMs, and alignment of
HMMSTR-derived profiles provide better features than
alignment of sequences. Figure 9 is the ROC50 distribu-

Fig. 5. Relative performance of homology detection methods. The graph plots the total number of families
for which a given method exceeds a ROC50 score threshold. Each series corresponds to one of the homology
detection methods described in the text.

TABLE II. ROC50 and Median RFP Averaged Over 54
Families for Different Methods

Methods
Mean

ROC50
Mean median

RFP

SVM-HMMSTR-Ave 0.640 0.038
SVM-HMMSTR-Max 0.618 0.043
SVM-HMMSTR-Hybrid 0.617 0.048
SVM-HMMSTR-Independent 0.572 0.051
SVM-HMMSTR-Dependent 0.587 0.048
SVM-I-sites 0.466 0.073
SVM-pairwise 0.438 0.094
SVM-Fisher 0.437 0.123
SAM 0.374 0.230
PSI-BLAST 0.264 0.336
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Fig. 6. Relative performance of homology detection methods. The graph plots the total number of families
for which a given method exceeds a median RFP score threshold. Each series corresponds to one of the
homology detection methods described in the text.

Fig. 7. Detail plot of the low median RFP region of Figure 6.
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tion of these features, and it shows that HMMSTR does
provide better features than the sequence-based models.

One significant characteristic of any homology detection
algorithm is its computational efficiency. In this aspect,
SVM-HMMSTR has the same order of time complexity as
SVM-pairwise in theory. Both algorithms include an SVM
optimization, which dominates SVM training time and is
roughly O(n2),11 where n is the number of training set
examples. The vectorization step of SVM-pairwise in-
volves computing n2 pairwise scores. Using Smith–
Waterman, each computation takes O(m2), yielding a total
running time of O(n2m2), where m is the length of the
longest training set sequence. In contrast, SVM-HMMSTR
first runs PSI-BLAST to obtain a profile before it aligns the
obtained profile against HMMSTR to get the � matrix. The
time complexity of running PSI-BLAST on the Swissprot
database is O(N) when the length of the query sequence k

is much less than N, where N is the size of the Swissprot
database. Hence, the total running time of getting the
profile is O(nN). The size of Swissprot database N we used
in the experiment is about quadratic in m* n, where m is a
second-order number; we conclude that the time complex-
ity of the step of obtaining a profile is O(n2m2). The step of
aligning the obtained profiles for the n examples against
HMMSTR is O(nmp), where p is the number of HMM
parameters. Thus, assuming that m � p, the time complex-
ity of aligning a profile against HMMSTR is O(nm2). For
feature representation and extraction step, the time com-
plexity of obtaining order-independent feature set is an
order of O(nmp). The time complexity of obtaining order
dependent feature set is O(n2m2), because the time of
computing the similarity score of 2 columns is a constant
time for a small fixed number C. So the overall time
complexity of SVM-HMMSTR is O(n2m2). Therefore, we

Fig. 8. Family-by-family comparison of SVMHMMSTR and SVM-pairwise. The coordinates of each point in
the plot are the ROC50 scores for one SCOP family, obtained using SVM-HMMSTR and SVM-pairwise. The
dotted line is y � x.

TABLE III. Statistical Significance of Differences Between Pairs of Homology Detection Methods

SVM-HMMSTR SVM-I-sites SVM-Fisher SVM-pairwise SAM PSI-BLAST

SVM-HMMSTR 1.35e-02 2.25e-02 0.0 4.5e-03 0.0
SVM-I-sites 9.0e-03
SVM-Fisher 3.15e-02
SVM-pairwise 1.35e-04
SAM
PSI-BLAST

Each entry in the table is the p value given by a Wilcoxon signed rank test comparing paired ROC50 scores from two methods for each of the 54
families. The p values have been adjusted for multiple comparisons using a Bonferonni adjustment. An entry in the table indicates that the
method listed in the current row performs significantly better than the method listed in the current column at a threshold of 0.05.
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conclude that the time complexity of SVM-HMMSTR is the
same as that of SVM-pairwise.

CONCLUSIONS

To the best of our knowledge, this is the first attempt to
encode both structure prediction and database alignment
information in the training of an SVM. We have presented
a new method to represent the sequence in terms of HMM
state composition, and also in terms of alignment scores
for sequences represented as HMM states. This creates a
feature space that captures both the local structural
composition and the overall conserved sequence similar-
ity.

The improved performance of SVM-HMMSTR in remote
homology detection can be understood by considering the
following factors:

1. HMMSTR is a better model for local structure predic-
tion than I-sites. HMMSTR states represent local se-
quence patterns, allowing distant similarities to be
seen.

2. Our approach considers both the overall composition
and the sequential ordering of local structures in sepa-
rate feature sets. The compositional feature sets are
sensitive but relatively unselective, while the sequen-
tial features are more selective but less sensitive, since
they require alignments that may be error prone.

3. The use of SVMs enables efficient and effective learning
to take place in high-dimensional feature space. The

SVM owes a great part of its success to its ability to use
kernels, allowing the classifier to exploit a very high-
dimensional (possibly even infinite-dimensional) fea-
ture space. In addition to their empirical success, SVMs
are also appealing due to the existence of strong gener-
alization guarantees, derived from the margin-maximiz-
ing properties of the learning algorithm.
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