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Improved Protein Secondary Structure Prediction
Using Support Vector Machine With a New Encoding

Scheme and an Advanced Tertiary Classifier
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Abstract—Prediction of protein secondary structures is an
important problem in bioinformatics and has many applications.
The recent trend of secondary structure prediction studies is
mostly based on the neural network or the support vector machine
(SVM). The SVM method is a comparatively new learning system
which has mostly been used in pattern recognition problems.
In this study, SVM is used as a machine learning tool for the
prediction of secondary structure and several encoding schemes,
including orthogonal matrix, hydrophobicity matrix, BLOSUM62
substitution matrix, and combined matrix of these, are applied
and optimized to improve the prediction accuracy. Also, the op-
timal window length for six SVM binary classifiers is established
by testing different window sizes and our new encoding scheme
is tested based on this optimal window size via sevenfold cross
validation tests. The results show 2% increase in the accuracy of
the binary classifiers when compared with the instances in which
the classical orthogonal matrix is used. Finally, to combine the
results of the six SVM binary classifiers, a new tertiary classifier
which combines the results of one-versus-one binary classifiers is
introduced and the performance is compared with those of existing
tertiary classifiers. According to the results, the 3 prediction
accuracy of new tertiary classifier reaches 78.8% and this is better
than the best result reported in the literature.

Index Terms—Binary classifier, BLOSUM62, encoding scheme,
orthorgonal matrix, Position Specific Scoring Matrix (PSSM), sup-
port vector machine (SVM), tertiary classifier.

I. INTRODUCTION

FOR THE PAST few decades, there have been many studies
focused on the prediction of protein structure. Since the

direct prediction of protein tertiary structure was challenging,
many approaches begin with the prediction of secondary struc-
ture and apply the results to predict the tertiary structure.

In the recent machine learning technologies for secondary
structure prediction, the neural networks (NNs) or the support
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vector machines (SVMs) have been generally adopted for
the learning tools. Among the studies of secondary structure
prediction using NNs, the Porfile network from HeiDelberg
(PHD) scheme [1] adopted three-layer feed-forward NNs
with the inclusion of evolutionary information using multiple
sequence alignments. And it showed outstanding performance
of % on 126 nonhomologous data set (RS126). Be-
sides the PHD scheme, there are many other approaches using
different NN architectures. For example, Riis and Krogh [2]
designed the highly structured NNs consisting of small neural
networks for the prediction of three states of the secondary
structure separately. With this scheme, they could avoid the
overfitting problem effectively. Also, with the use of another
NN to combine ensembles of the single-sequence networks
and with the inclusion of multiple alignment information, they
attained 71.3% cross validation accuracy on the RS126 set.
Chandonia and Karplus [3] introduced a novel method for pro-
cessing and decoding the protein sequence with NNs by using
larger training data set, such as 681 nonhomologous proteins.
And with the use of jury method, this scheme recorded 74.8%
accuracy.

The SVM method is a comparatively new learning system
which is developed by Vapnik and Cortes [4]. This machine uses
hypothesis space of linear functions in a high-dimensional fea-
ture space, and it is trained with a learning algorithm based on
optimization theory [5]. The superior features of this machine
is that first it can avoid the overfitting effectively with the use
of structural risk minimization. Second, the formulation can be
simplified to a convex QP problem; the training can certainly
converge to a global optimal [6]. Third, for the given data set,
information can be condensed while training without loss of
useful information [7]. Since this SVM has outperformed most
other learning systems, including NNs in most pattern recogni-
tion problems [7], it has been gradually applied to pattern clas-
sification problems in biology.

One of the recent studies adopting this SVM learning ma-
chine for secondary structure prediction is the one which used
frequency profiles with evolutionary information as an encoding
scheme for SVM [7]. With this scheme, the authors claimed the
prediction accuracy of and Segment Overlap Mea-
sure (SOV) of SOV94 % on the CB513 data set. Another
approach is the one which adopted two layers of SVM with a
weighted cost function for balanced training [8] and it presented
prediction accuracy of on C396 set. Also there was
another scheme that incorporated PSI-BLAST Position Specific
Scoring Matrix (PSSM) profiles as an input vector [9] and that
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applied new tertiary classifiers. This scheme, which is called
SVMpsi, showed the prediction accuracy of and
SOV94 on the CB513 data set.

In this paper, first, there is an attempt to increase the
prediction accuracy of the secondary structure by applying
the new encoding schemes, such as hydrophobicity matrix,
BLOSSUM62 matrix, and the combined matrix with these or
with the standard orthogonal matrix. For the comparison of the
results with those of the previous studies [7], [9], the common
data set of RS126 [1] is used. Second, to set up the optimal
window size of the sliding window scheme, different window
lengths from 5 to 19 are tested. Third, proper kernel function is
chosen based on the results of the previous studies [7], [9] and
the kernel function parameter and the regularization parameter

of the SVM are optimized. Finally, to combine the results of
the SVM binary classifiers, a new tertiary classifier is designed
and the performance is compared with those of several existing
tertiary classifiers [7], [9].

II. METHODS

A. Secondary Structure Assignment

The secondary structure is decided from the experimentally
determined tertiary structure with the schemes, such as DSSP
[10], DEFINE [11], or STRIDE [12]. In this study, the most
generally used DSSP scheme is adopted. The DSSP classifies
the secondary structure into eight different classes: ( - helix),

( -helix), ( -helix), ( -strand), (isolated -bridge),
(turn), (bend), and - (rest). These eight classes are reduced

into three regular classes based on the following method: ,
and to ; to ; all others to .

B. Training and Testing Data Sets

To compare the results of this study with previous results [7],
[9], RS126 data set is used. The RS126 data set is proposed by
Rost and Sander [1] and based on their definition, it is a non-
homologous set. The authors define nonhomologous as “no two
proteins in the set share more than 25% sequence identity over
a length of more than 80 residues” [7]. With this data set, the
sevenfold cross validation test is done [2], [7], [13]. In the sev-
enfold cross validation test, one subset is chosen for testing and
the remaining six subsets are used for training and this process
is repeated until all the subsets are chosen for the testing.

C. Encoding Schemes

To train the SVM, a sliding window scheme is applied. In this
sliding scheme, a window becomes one training pattern for pre-
dicting the structure of the residue at the center of the window.
And in this training pattern, the information about the local in-
teractions among neighboring residues can be embedded as a
feature value. The feature value of each amino acid residue in a
window means the weight (costs) of each residue in a pattern.
In this study, several different weight assignment schemes are
tested. Among them, the first simplest way is to use the tradi-
tional orthogonal encoding which assigns a unique binary vector
to each residue, such as , , ,
and so on. In this method, the weights of all residues in a window
are assigned to one equally. This simple orthogonal encoding

TABLE I
NONPOLAR! POLAR DISTRIBUTIONS OF AMINO ACID SIDE CHAINS,

PH 7 (KCAL/MOL) [14]

scheme is used as a reference for comparison with different en-
coding schemes.

Since this simple orthogonal scheme does not give detailed
information into the SVM classifiers except the existence of
the specific residues around, the new encoding scheme is re-
quired to enhance the performance of prediction. For this pur-
pose, a few encoding schemes are designed to incorporate the
physicochemical properties of amino acids into the training pat-
tern. However, since this physicochemical property encoding or
the simple combination of this encoding with orthogonal vector
does not show any improvement, those schemes are discarded
at the preliminary screening process.

As another approach to include the physicochemical prop-
erties, hydrophobicity property is selected as the main feature
among other properties, such as polarity, charge or size. As can
be seen from Table I [14], the hydrophobicity can be expressed
as the free energy (kilocalories per mole) of transfer of amino
acid side chains from cyclohexane to water. In other words, the
amino acids with the positive values of free energy in transfer-
ring cyclohexane to water are hydrophobic and the ones with
negative values are hydrophilic. Based on these values, and with
the use of the following function, the hydrophobicity matrix is
formulated.

Hydrophobicity matrix
abs Hydrophob Index Hydrophob Index

where the denominator 20 is used to convert the data range into
.

Next, the BLOSUM62 matrix [15] encoding scheme is ap-
plied into SVM. The BLOSUM62 matrix is originally made by
Henikoff and Henikoff [15] and this is a measure of differences
between two distantly related proteins. Namely, the values in the
BLOSUM62 matrix mean “log-odds” scores for the possibility
that a given amino acid pair will interchange with each other. In
this research, this BLOSUM62 matrix is applied as an encoding
scheme by converting its data range to .

In addition, the previous schemes are combined together with
the following ways and this is to obtain the optimal encoding
scheme which offers the most informative feature to predict the
secondary structure:
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• Orthogonal matrix Hydrophobicity matrix;
• BLOSUM62 matrix Hydrophobicity matrix;
• Orthogonal matrix BLOSUM62 matrix;
• Orthogonal matrix BLOSUM62 matrix added with the

positional information inside a window.
Among the above four combinations, the fourth combination

is the same as the third combination except the fact that different
weights are applied based on the positions inside a window. In
other words, in the third combination, even though each amino
acid has 20 different “log-odds” scores, those values are always
same regardless of the position inside a sliding window. There-
fore, by assigning different weights based on their positions, the
machine can be trained with more specific information.

D. Parameter Optimization of the Binary Classifier

The kernel function is selected based on the previous studies
[7], [9]. For example, Hua and Sun [7] has proved that the radial
basis function (RBF) kernel can provide superior performance
in the generalization ability and convergence speed. Therefore,
in this study, this RBF kernel, such as the following, is adopted:

Once the kernel function is selected, the parameter of the kernel
function and the regularization parameter are optimized
based on the process of the previous studies [7]–[9]. Namely,
for the proper choice of value and value of RBF kernel

, the previous studies tested different and upper
bound values of over their own data sets and selected the pairs
which show the best accuracy [7]–[9]. Similarly, in this study,
different and pairs are tested to find out the optimum pa-
rameter values.

E. Binary Classifier Construction

Six SVM binary classifiers, such as three one-versus-rest
classifiers ( , , and ), and three
one-versus-one classifiers ( , , and ) are con-
structed based on the previous study [7]. Here, the name “one”
in one-versus-rest classifier refers to positive class, and the
name “rest” means negative class. Likewise, the name “one” in
one-versus-one classifier refers to positive class and negative
class respectively. For example, the classifier classi-
fies the testing sample as helix or not helix and the classifier

classifies the testing sample as sheet or coil.

F. Tertiary Classifier Design

To combine the outputs from the binary classifiers for sec-
ondary structure prediction in this research, a new tertiary
classifier which combines the results of one-versus-one binary
classifiers is designed. And the performance is compared with
those of existing tertiary classifiers, including the tree-based
classifiers [7], the simple voting classifier which is called
“SVM_VOTE” [7], the SVM_MAX_D [7] and the Directed
Acyclic Graph (DAG)-based tertiary classifier [9].

In the tree-based tertiary classifier [7], three one-versus-rest
binary classifiers ( , , and ) and three
one-versus-one classifiers ( , , and ) are com-
bined together to form three cascade tertiary classifiers, such as

TREE_HEC ( , ), TREE_ECH ( , ),
and TREE_CHE ( , ).

In the simple voting tertiary classifier (SVM_VOTE) [7], all
six binary classifiers are combined by using a simple voting
scheme in which the testing sample is predicted to be state
( is among , , or ) if the largest number of the six binary
classifiers classify it as state . In case the testing samples have
two classifications in each state, it is considered to be a coil.

In the SVM_MAX_D classifier [7], the three one-versus-rest
classifiers ( , , ) are combined for han-
dling the multiclass case. And the class of a testing sample ( ,

or ) is assigned to the one which presents the largest pos-
itive distance from the optimal separating hyperplane (OSH).
For example, if the distance values of the each one-versus-rest
classifiers ( , , ) are 1.7, 1.2, and 2.5
respectively, as negative distance of binary classifier
does not give any information for decision, only two positive
values (1.2, 2.5) are compared and finally, the class for the test
sample is assigned to coil based on the largest positive distance.

In the DAG-based tertiary classifier [9], three one-versus-one
classifiers ( , , and ) are combined based on the
previous test results [16], [17]. According to the authors [9],
one-versus-one classifiers are more accurate than one-versus-
rest classifiers, since they handle two data sets with similar sizes.
In this scheme [9], if the class is predicted to be from
classifier, classifier is combined. On the other hand, if the
class is predicted to be not sheet from classifier,

classifier is combined to determine the final class.
A new tertiary classifier of this study is similar to the

SVM_MAX_D classifier in that the maximum distance is
used for the decision. But unlike the SVM_MAX_D classi-
fier, this scheme combines the three one-versus-one binary
classifiers ( , , and ) which give more informa-
tion than one-versus-rest binary classifiers. In other words, in
one-versus-one classifier, both positive and negative values are
meaningful to assign a final class but in one-versus-rest classi-
fier, negative value does not provide any specific information
for the decision. In this scheme, no matter what the distance
values are positive or negative, the classifier with the absolute
maximum distance is chosen as the representative classifier for
the final decision of the class. And the final class is assigned
based on the value of this classifier. For example, if the values
of the decision function of the each one-versus-one classifiers
( , , ) are 1.7, 0, and 2.5, respectively, the
binary classifier with highest absolute value—here,
classifier—can be chosen for deciding the final class. Once this
representative classifier is selected, the final class is assigned
based on the value of this classifier. In this example, since
the value of classifier shows negative, the final class is
assigned as helix.

G. Prediction Accuracy Evaluation Methods

There are several standard evaluation methods of secondary
structure prediction performance. In this study, and SOV
[18] are adopted for the performance evaluation, since these are
the most widely used assessing methods.

is one of the most commonly used performance measure
in the protein secondary structure prediction and it refers to the
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TABLE II
TESTING ACCURACY BASED ON DIFFERENT WINDOW LENGTH

The results are on the RS126 with the orthogonal encoding. The s value is the optimal window length for each binary classifier.
Combined results of sevenfold cross validation are shown.

three-state overall percentage of correctly predicted residues.
This measure is defined as

of residues correctly predicted

of residues in class

Based on the above equation, the per-residue accuracy for
each type of secondary structure can be ob-
tained as

of residues correctly predicted in state
of residues in state

SOV was developed by Rost et al. [19] and modified by
Zemla et al. [18] to evaluate the quality of a prediction in a
more realistic manner by assessing the prediction by segment.
SOV is calculated as follows [18]:

SOV
ov

ov

len

where
normalization value;
set of all overlapping pairs of segments

in state ;
len number of residues in segment ,

ov length of the actual overlap;
ov total extent of the segment, and is

given as

ov ov

ov int
len

int
len

SOV94 [19] and SOV99 [18] are different in the definition
of and the normalization factor . In this study, SOV99 is
adopted for RS126 to compare the results with SVMpsi [9],

Fig. 1. Testing accuracy based on different window lengths.

which claims the best performance in the protein secondary
structure prediction.

III. EXPERIMENTAL RESULTS

A. Window Size Optimization

The optimal window size of the sliding window scheme is
obtained by testing different window lengths from 5 to 19. For
this optimization, RS126 data set is used with the orthogonal
encoding scheme. And via sevenfold cross validation test, the
window length 13 is adopted as an optimal window size for all
six binary classifiers.

In Table II, testing accuracy based on different window
lengths is shown. The optimal window length for each
binary classifier is determined on the RS126 set using the
orthogonal encoding scheme. As can be seen from Table II
and Fig. 1, for all six binary classifiers, once the window
length is over 13, accuracy values converge. While all three
one-versus-one binary classifiers show the highest accuracy
in window size 17, the improvement is less than 0.3% when
compared with the case of size 13. Therefore, in this study, the
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TABLE III
ACCURACY COMPARISON OF BINARY CLASSIFIERS WITH OTHER METHODS

The results of SVMfreq are from Hua and Sun [7] and the SVMpsi results are

obtained by PSI-BLAST profiles [9]. SVMob is the new profile of this study

with the combined matrix of orthogonal and BLOSUM62.

Fig. 2. Accuracy comparison of binary classifiers with other methods.

window length 13 is adopted as an optimal window size for all
six binary classifiers.

B. Encoding Schemes

To determine the most informative encoding scheme, several
encoding schemes, including orthogonal matrix, hydropho-
bicity matrix, BLOSUM62 matrix, and the combination of
these matrices, are tested. According to the test results, the
combined matrix of orthogonal and BLOSUM62 matrix shows
78.8% accuracy and this value is the highest one among all
the encoding schemes. Also, this accuracy is 2% higher than
the result of standard orthogonal encoding scheme. Therefore,
this combined matrix of orthogonal and BLOSUM62 matrix is
adopted to train all six binary classifiers.

C. Binary Classifiers

Based on the orthogonal and BLOSUM62 matrix combined
encoding, six different binary classifiers are trained with sev-
enfold cross validation method. And the results are compared
with other methods which use the same data set but different
encoding schemes. In Table III and Fig. 2, the SVMfreq is the

TABLE IV
ACCURACY OF TERTIARY CLASSIFIERS ON THE RS126 DATA SET

Combined results of sevenfold cross validation are shown.

Fig. 3. Accuracy of tertiary classifiers on the RS126 data set.

scheme which adopts the frequency matrix with multiple se-
quence alignments as the encoding profile [7]. The SVMpsi is
the scheme which applies the PSSM obtained by PSI-BLAST
searches as the encoding profile [9]. SVMob is the new encoding
scheme of this study which adopts the combined matrix of or-
thogonal and BLOSUM62 matrix.

As can be noticed from Table III and Fig. 2, the SVMpsi
shows the best performance for all six binary classifiers and the
SVMfreq represents the similar performance with SVMob, but
slightly better. The accuracy of SVMob is about 5%–14% lower
than SVMpsi and it is about 0.4%–5% lower than SVMfreq on
RS126 data set. This fact infers that the encoding scheme of
SVMpsi or SVMfreq might be a better choice for the perfor-
mance of binary classifiers.

D. Tertiary Classifiers

In Table IV and Fig. 3, the performance of tertiary classifiers
is compared by using the two most typical accuracy measures
of and SOV. According to the result of Table IV, the tertiary
classifier of this study, SVM_REPRESENT, records the best
performance among all. It provides accuracy of 78.8% and
SOV of 71.1%. Compared with the result of this study, the
tree-based schemes, such as TREE_HEC, TREE_ECH and
TREE_CHE, or the DAG-based scheme shows about 15%
lower accuracy. This is probably due to the fact that in
these schemes, since the binary classifiers are combined with
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TABLE V
ACCURACY COMPARISON WITH OTHER RESEARCH RESULTS ON THE RS126 DATA SET

Combined results of sevenfold cross validation are shown. PHD result is obtained by Rost and Sander [1] and Rost et al. [19] and SVMfreq result is
obtained by Hua and Sun [7]. and SVMpsi result is obtained by Kim and Park [9]. SVMob is the new method proposed by this study.

Fig. 4. Accuracy comparison with other research results on the RS126 data
set.

multilayers, the error of upper layer binary classifier (false
positive and false negative) can be propagated to the next layer.

In this respect, the fact that the accuracy of SVM_VOTE
scheme is higher than these multilayer schemes can be ex-
plained. For the reason of the low accuracy of SVM_MAX_D
scheme, since it combines three one-versus-rest binary clas-
sifiers ( , , ), it might not catch the
useful information for decision. Namely, since these binary
classifiers deal with two data sets with very different sizes, these
are less accurate than one-versus-one classifiers. Moreover, the
final classification depends only on the positive value of each
binary classifier because the negative value cannot give any
information to make a decision.

One more interesting thing to notice in Table IV is that
there is no trend in SOV values among tertiary classifiers, such
as the one found in values. In other words, the order of
SOV measure does not match with the order of accuracy.
According to the result of the previous study [8], high accu-
racy does not always guarantee high SOV value. Therefore, we
could conclude that SOV measure should be interpreted as an
independent measure without finding some relationship with

accuracy and without trying to find some patterns among
different classifiers.

IV. DISCUSSION

A. Result Comparison With Other Research

Table V and Fig. 4 show the result of accuracy comparison
with other research. Here, PHD results are obtained by Rost and
Sander [1] and Rost et al. [19], SVMfreq results are obtained by
Hua and Sun [7], and SVMpsi results are obtained by Kim and

Park [9]. SVMob is the new method proposed by this study in
which orthogonal and BLOSUM62 combined matrix is applied
as an encoding scheme.

When we recall the previous result of accuracy comparison
with binary classifiers (Table III), the result of accuracy compar-
ison with tertiary classifiers is quite different. Even though the
performance of combined matrix of this study over the binary
classifiers is not satisfactory, with the use of the new tertiary
classifier, the accuracy increases noticeably. In other words,
the accuracy of SVMob is the best among all on the RS126
data set and even 2.7% higher than that of the SVMpsi which
claims the best performance so far. Also, when the SOV99 is
applied, the performance of SVMob shows comparable perfor-
mance with SVMpsi.

B. Potential Improvements

As can be seen from the previous performance comparison
based on six binary classifiers, the encoding scheme of this
study, the combined matrix of orthogonal and BLOSUM62 ma-
trix, is not satisfactory. Also, we can see that the best result is
obtained by the SVMpsi scheme, which applied PSSM as the
encoding.

Therefore, if this PSSM encoding scheme is applied for the
binary classifiers and if the results of these binary classifiers
are combined with the tertiary classifier of this study, more im-
provement in performance could be expected.

As another problem, the training time of binary classifier
should be mentioned. On a modern Linux server, a sevenfold
cross validation for the RS126 data set took around two days.
And for the CB513 set which was planned to be tested, due
to time and processing power constraints, the training was not
successful. Therefore, the parallelization of the numerical com-
puting for SVM should be considered to resolve the problem
related to the training speed. Otherwise, as the number of data
set increases, this problem would be worse.

V. CONCLUSION

In this study, SVM learning machine is applied for the im-
provement of the prediction accuracy of the protein secondary
structure. For this purpose, two new approaches are adopted.
The first one is to optimize the encoding scheme for binary clas-
sifiers and the second one is to design a new tertiary classifier
to combine the results of binary classifiers.

For the first approach, several different encoding schemes are
applied and optimized. And the optimal window size for six
SVM binary classifiers is set up by testing with different window
lengths. Also, proper kernel function is selected based on the
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results of the previous studies and its parameter and the regular-
ization parameter are optimized.

For the second approach, a new tertiary classifier which
combines the results of one-versus-one binary classifiers is de-
signed and its efficiency is compared with the existing tertiary
classifiers.

Based on the result of performance comparison with previous
studies, the optimized encoding scheme of this study, the com-
bined matrix of orthogonal and BLOSUM62 matrix, showed
lower performance than that of SVMfreq or SVMpsi. However,
by applying the new tertiary classifier of this study, the perfor-
mance is enhanced noticeably. Namely, the final accuracy of
this study is 2.7% higher than the result of SVMpsi which claims
the highest accuracy so far. Even in the SOV value, the result of
this study shows the comparable performance with SVMpsi.

The tertiary classifier designed for our research has imme-
diate application in other areas where the tertiary classification
can be decomposed into a set of binary classifications. This
scheme could improve performance in many other areas such
as pattern recognition, data mining, and machine learning.
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