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ABSTRACT
Motivation: Subcellular localization is a key functional
characteristic of proteins. A fully automatic and reliable
prediction system for protein subcellular localization is
needed, especially for the analysis of large-scale genome
sequences.
Results: In this paper, Support Vector Machine has been
introduced to predict the subcellular localization of proteins
from their amino acid compositions. The total prediction
accuracies reach 91.4% for three subcellular locations
in prokaryotic organisms and 79.4% for four locations in
eukaryotic organisms. Predictions by our approach are
robust to errors in the protein N-terminal sequences. This
new approach provides superior prediction performance
compared with existing algorithms based on amino acid
composition and can be a complementary method to other
existing methods based on sorting signals.
Availability: A web server implementing the prediction
method is available at http://www.bioinfo.tsinghua.edu.cn/
SubLoc/.
Contact: sunzhr@mail.tsinghua.edu.cn;
huasj00@mails.tsinghua.edu.cn
Supplementary information: Supplementary material is
available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/.

INTRODUCTION
High throughput genome sequencing projects are pro-
ducing an enormous amount of raw sequence data. All
this raw sequence data begs for methods that are able to
catalog and synthesize the information into biological
knowledge. Genome function annotation including the
assignment of a function for a potential gene in the
raw sequence is now the hot topic in bioinformatics.
Subcellular localization is a key functional characteristic
of potential gene products such as proteins (Eisenhaber
and Bork, 1998). Therefore, a fully automatic and reliable
prediction system for protein subcellular localization
would be very useful.

∗To whom correspondence should be addressed.

Several attempts have been made to predict protein
subcellular localization. Most of these prediction methods
can be classified into two categories: one is based on the
recognition of protein N-terminal sorting signals and the
other is based on amino acid composition (Nakai, 2000).
von Heijne and colleagues have worked extensively on
identifying individual sorting signals, e.g. signal peptides,
mitochondrial targeting peptides and chloroplast transit
peptides (Nielsen et al., 1997, 1999; von Heijne et al.,
1997). More recently, they proposed an integrated pre-
diction system for subcellular localization using neural
networks based on individual sorting signal predictions
(Emanuelsson et al., 2000). One advantage of their
method is that it can recognize cleavage sites in the
sorting signals and can mimic the real sorting process
to a certain extent. The reliability of methods based
on sorting signals is strongly dependent on the quality
of the gene 5′-region or protein N-terminal sequence
assignment. However, the assignments of 5′-regions are
usually not reliable using known gene identification
methods (Frishman et al., 1999). Therefore, subcellular
localization prediction methods which depend on sorting
signals will be inaccurate when the signals are missing or
only partially included. In addition, the known signals are
not general enough to cover the resident proteins in each
organelle (Nakai, 2000).

Other efforts are concentrated on the deviations of
amino acid composition with different subcellular local-
izations. Nakashima and Nishikawa (1994) have shown
that intracellular and extracellular proteins differ signif-
icantly in their amino acid composition. Andrade et al.
(1998) indicated that the localizations correlate better with
the surface composition due to evolutionary adaptation
of proteins to different physio-chemical environments in
each subcellular location. Cedano et al. (1997) proposed
a statistical method using the Mahalanobis distance but
did not obtain satisfying results. Reinhardt and Hubbard
(1998) constructed a prediction system using supervised
neural networks. They dealt with prokaryotic and eu-
karyotic sequences separately to obtain a total accuracy
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of 81% for three subcellular locations in prokaryotic
sequences and 66% for four locations in eukaryotic
sequences. Chou and Elrod (1999) proposed a covariant
discriminant algorithm to achieve a total accuracy of 87%
by the jackknife test on the same prokaryotic sequences
used by Reinhardt and Hubbard. Nakai and colleagues
developed an integrated expert system using both sorting
signal knowledge and amino acid composition infor-
mation (Nakai and Kanehisa, 1991, 1992; Nakai and
Horton, 1997). Yuan (1999) used Markov chain models
to achieve 89% accuracy for prokaryotic sequences and
73% for eukaryotic sequences on the same dataset used
by Reinhardt and Hubbard.

This paper introduces a new prediction method for
protein subcellular localization based on amino acid
composition. This method, called Support Vector Ma-
chine (SVM), was recently proposed by Vapnik and
co-workers (Cortes and Vapnik, 1995; Vapnik, 1995,
1998) as a very effective method for general purpose
supervised pattern recognition. The SVM approach is
not only well founded theoretically because it is based
on extremely well developed machine learning theory,
Statistical Learning Theory (Vapnik, 1995, 1998), but is
also superior in practical applications. The SVM method
has been successfully applied to isolated handwritten digit
recognition (Cortes and Vapnik, 1995; Scholkopf et al.,
1995), object recognition (Roobaert and Hulle, 1999),
text categorization (Drucker et al., 1999), microarray data
analysis (Brown et al., 2000), protein secondary structure
prediction (Hua and Sun, 2001), etc. Here, we construct
a prediction system for subcellular localization called
SubLoc based on the SVM method. The results show that
the prediction accuracy is significantly improved with this
novel method and the method is very robust to errors in
the protein N-terminal sequence.

MATERIALS AND METHODS
Data set
The dataset used to examine the effectiveness of the
new prediction method was generated by Reinhardt and
Hubbard (1998). The sequences in this dataset were
extracted from SWISSPROT release 33.0 and included
only those essential sequences which appeared complete
and had reliable localization annotations coming directly
from experiments. No transmembrane proteins were
included as they could be quite reliably predicted by some
known methods (Rost et al., 1996; Hirokawa et al., 1998;
Lio and Vannucci, 2000). Redundancy was reduced such
that none had >90% sequence identity to any other in the
set. Finally, as shown in Table 1, the dataset included 997
prokaryotic sequences which were classified into three
location categories (cytoplasmic, periplasmic and extra-
cellular) and 2427 eukaryotic sequences belonging to four

Table 1. Number of sequences within each subcellular localization category
of the dataset (Reinhardt and Hubbard, 1998)

Species Subcellular localization Number of sequences

Prokaryotic Cytoplasmic 688
Periplasmic 202
Extracellular 107

Eukaryotic Nuclear 1097
Cytoplasmic 684
Mitochondrial 321
Extracellular 325

location categories (nuclear, cytoplasmic, mitochondrial
and extracellular).

Support vector machine
Here we briefly describe the basic ideas behind SVM for
pattern recognition, especially for the two-class classifica-
tion problem, and refer readers to Vapnik (1995, 1998) for
a full description of the technique.

For a two-class classification problem, assume that we
have a set of samples, i.e. a series of input vectors �xi ∈
R

d(i = 1, 2, . . . , N ) with corresponding labels yi ∈
{+1, −1}(i = 1, 2, . . . , N ). Here, +1 and −1 indicate
the two classes. To predict protein subcellular localization,
the input vector dimension is 20 and each input vector unit
stands for one amino acid. The goal is to construct a binary
classifier or derive a decision function from the available
samples which has a small probability of misclassifying a
future sample.

SVM implements the following idea: it maps the
input vectors �x ∈ R

d into a high dimensional feature
space �(�x) ∈ H and constructs an Optimal Separating
Hyperplane (OSH), which maximizes the margin, the
distance between the hyperplane and the nearest data
points of each class in the space H (see Figure 1). Different
mappings construct different SVMs. The mapping �(·) is
performed by a kernel function K (�xi , �x j ) which defines
an inner product in the space H.

The decision function implemented by SVM can be
written as:

f (�x) = sgn

(
N∑

i=1

yiαi · K (�x, �xi ) + b

)
(1)

where the coefficients αi are obtained by solving the
following convex Quadratic Programming (QP) problem:

Maximize
N∑

i=1

αi − 1

2

N∑
i=1

N∑
j=1

αiα j · yi y j · K (�xi , �x j )

subject to 0 � αi � C (2)
N∑

i=1

αi yi = 0 i = 1, 2, . . . , N .
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Fig. 1. A separating hyperplane in the feature space corresponding to a non-linear boundary in the input space. Two classes denoted by circles
and disks are linear non-separable in the input space R

d . SVM constructs the Optimal Separating Hyperplane (OSH) (the solid line) which
maximizes the margin between two classes by mapping the input space R

d into a high dimensional space, the feature space H. The mapping
is determined by a kernel function K (�xi , �x j ). Support Vectors are identified with an extra circle.

In the equation (2), C is a regularization parameter which
controls the trade off between margin and misclassifica-
tion error. These �x j are called Support Vectors only if the
corresponding αi > 0.

Several typical kernel functions are

K (�xi , �x j ) = (�xi • �x j + 1)d , (3)

K (�xi , �x j ) = exp(−γ ‖�xi − �x j‖2), (4)

Equation (3) is the polynomial kernel function of degree
d which will revert to the linear function when d = 1.
Equation (4) is the Radial Basic Function (RBF) kernel
with one parameter γ .

For a given dataset, only the kernel function and the
regularization parameter C are selected to specify one
SVM. SVM has many attractive features. For instance,
the solution of the QP problem is globally optimized
while with neural networks the gradient based training
algorithms only guarantee finding a local minima. In
addition, SVM can handle large feature spaces, can
effectively avoid overfitting by controlling the margin,
can automatically identify a small subset made up of
informative points, i.e. the Support Vectors, etc.

Design and implementation of the prediction system
Protein subcellular localization prediction is a multi-class
classification problem. Here, the class number is equal to 3
for prokaryotic sequences and 4 for eukaryotic sequences.
A simple strategy to handle the multi-class classification
is to reduce the multi-classification to a series of binary
classifications. For a k-class classification, k SVMs are
constructed. The i th SVM will be trained with all of the
samples in the i th class with positive labels and all other
samples with negative labels. We refer to SVMs trained

in this way as 1-v-r SVMs (short for one-versus-rest).
Finally one unknown sample is classified into the class
that corresponds to the 1-v-r SVM with the highest output
value.

This method was used to construct a prediction system
(i.e. one 3-class classifier for prokaryotic sequences and
one 4-class classifier for eukaryotic sequences) for protein
subcellular localization. The prediction system is named
SubLoc and is available at http://www.bioinfo.tsinghua.
edu.cn/SubLoc/.

The software used to implement SVM was SVMlight by
Joachims (1999) which can be freely downloaded from
http://ais.gmd.de/∼thorsten/svm light/ for academic use.
The core optimization method for solving the QP problem
was based on the ‘LOQO’ algorithm (Vanderbei, 1994).
In this work, training a binary SVM usually takes less
than 10 min on a PC running at 500 MHz. The algorithm
spends less time on the classification of unknown samples
because we only need to calculate the inner products
between the unknown samples and a small subset made up
of the Support Vectors. SVM is, consequently, an efficient
classifier.

Prediction system assessment
The prediction quality was examined using the jackknife
test, an objective and rigorous testing procedure. In the
jackknife test, each protein was singled out in turn as a
test protein with the remaining proteins used to train SVM.
The total prediction accuracy, the prediction accuracy
and Matthew’s Correlation Coefficient (MCC) (Matthews,
1975) for each location calculated for assessment of the
prediction system are given by
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Table 2. Prediction accuracies for prokaryotic sequences with different type
of kernel functions

Location Linear Polynomial* RBF
Accuracy MCC Accuracy MCC Accuracy MCC

(%) (%) (%)

Cytoplasmic 98.1 0.83 97.5 0.86 97.5 0.86
Periplasmic 66.8 0.68 78.7 0.78 78.2 0.78
Extracellular 74.8 0.76 75.7 0.77 76.6 0.77

Total accuracy 89.3 – 91.4 – 91.4 –

Linear: polynomial kernel with d = 1; Polynomial*: polynomial kernel
with d = 9 which is finally used in our prediction system; RBF: RBF
kernel with C = 1000 was used for each SVM. The results were given by
the jackknife test.

total accuracy =

k∑
i=1

p(i)

N
, (5)

accuracy (i) = p(i)

obs(i)
, (6)

MCC(i)

= p(i)n(i) − u(i)o(i)√
(p(i) + u(i))(p(i) + o(i))(n(i) + u(i))(n(i) + o(i))

. (7)

Here, N is the total number of sequences, k is the class
number, obs(i) is the number of sequences observed in
location i , p(i) is the number of correctly predicted
sequences of location i , n(i) is the number of correctly
predicted sequences not of location i , u(i) is the number
of under-predicted sequences and o(i) is the number of
over-predicted sequences.

RESULTS
SubLoc prediction accuracy
The prediction accuracies by jackknife tests for prokary-
otic sequences are shown in Table 2. The total accuracy
predicted by the current method reached 89.3% with
the simplest linear kernel function. This indicates that
the prokaryotic samples can be well separated by a
proper linear hyperplane in the input space. The accuracy
could be improved by using the more complex non-
linear kernel function. The total accuracy was improved
to 91.4% using the RBF kernel with γ = 5.0 or the
polynomial kernel function of degree 9. The details
of prediction accuracies for each test protein by the
jackknife test are given in the supplementary material at
http://www.bioinfo.tsinghua.edu.cn/SubLoc/.

Table 3 shows the results for the eukaryotic sequences.
The training procedure did not converge when a linear
kernel was used which suggested that no hyperplane
in the input space can clearly separate the eukaryotic
samples. However, a proper non-linear kernel did work.
Using the polynomial kernel function of degree 9, the

Table 3. Prediction accuracies for eukaryotic sequences with different type
of kernel functions

Location Polynomial RBF*
Accuracy (%) MCC Accuracy (%) MCC

Cytoplasmic 78.4 0.63 76.9 0.64
Extracellular 70.2 0.71 80.0 0.78
Mitochondrial 46.1 0.53 56.7 0.58
Nuclear 88.0 0.72 87.4 0.75

Total accuracy 77.3 – 79.4 –

Polynomial: polynomial kernel with d = 9; RBF*: RBF kernel with
γ = 16.0 which is finally used in our prediction system. C = 500 was used
for each SVM. The results were given by the jackknife test.

total prediction accuracy was 77.3% and could be further
improved to 79.4% using the RBF kernel with γ = 16.0.

Tests have been done with various kernel function
parameters and value of the regularization parameter
C . For the limited computational power, we use the
results by 5-fold cross validation to select the appropriate
parameters. The details of dataset partition for the cross
validation and the prediction accuracies with different
parameters by the cross validation can be seen at http://
www.bioinfo.tsinghua.edu.cn/SubLoc/. The results by the
cross validation we obtained were very close to the results
by the jackknife test. Finally, the prediction system used
the polynomial kernel function of degree 9 for prokaryotic
sequences with C = 1000 and RBF kernel with γ = 16.0
for eukaryotic sequences with C = 500.

Comparison with other prediction methods
The SVM method predictions were compared with other
prediction methods. The Reinhardt and Hubbard dataset
was also tested with the neural network method (Reinhardt
and Hubbard, 1998) and the covariant discriminant algo-
rithm (Chou and Elrod, 1999). These two methods and
the SVM method are all based on amino acid composi-
tion alone. The results for prokaryotic and eukaryotic se-
quences are summarized in Tables 4 and 5, respectively.
The results of the covariant discrimination, the Markov
model and the SVM method were obtained by the jack-
knife test while the neural network method results were
with 6-fold cross validation.

As seen in Table 4, for prokaryotic sequences, the total
accuracy of the SVM method is about 10% higher than
that of the neural network method and about 5% higher
than that of the covariant discriminant algorithm. The ac-
curacy for cytoplasmic sequences reached 97.5% with the
SVM method which is much higher than for the other
methods. For eukaryotic sequences, the total accuracy was
13% higher than that of the neural network method (Ta-
ble 5). The prediction accuracies for nuclear and cytoplas-
mic sequences were 15% and 22% higher than those of the
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Table 4. Performance comparisons for the prokaryotic sequences. The neural
network results were given by cross validation. The covariant discrimination,
the Markov model and SVM method results were given by the jackknife test

Neural Covariant Markov model SVM
Location network discrimination

Accuracy Accuracy Accuracy MCC Accuracy MCC
(%) (%) (%) (%)

Cytoplasmic 80 91.6 93.6 0.83 97.5 0.86
Periplasmic 85 72.3 79.7 0.69 78.7 0.78
Extracellular 77 80.4 77.6 0.77 75.7 0.77

Total accuracy 81 86.5 89.1 – 91.4 –

Table 5. Performance comparisons for the eukaryotic sequences. The neural
network results were given by cross validation. The Markov model and SVM
method results were given by the jackknife test

Location Neural network Markov model SVM

Accuracy Accuracy MCC Accuracy MCC
(%) (%) (%)

Cytoplasmic 55 78.1 0.60 76.9 0.64
Extracellular 75 62.2 0.63 80.0 0.78
Mitochondrial 61 69.2 0.53 56.7 0.58
Nuclear 72 74.1 0.68 87.4 0.75

Total accuracy 66 73.0 – 79.4 –

neural network method, although the accuracy for mito-
chondrial sequences was about 4% lower. These results in-
dicate that the prediction accuracy can be significantly im-
proved using the same classification information (amino
acid composition) with a more powerful machine learning
method.

The SVM method was also compared with the Markov
chain model (Yuan, 1999), which was based on the full
sequence information including the order information
while the SVM method is based only on the amino acid
composition. The total accuracies using the SVM method
were 2.3% higher for prokaryotic sequences and 6.4%
higher for eukaryotic sequences (Tables 4 and 5). For
both the prokaryotic and eukaryotic sequences, the MCC
of each subcellular location using the SVM method was
higher than the corresponding one from Yuan’s method.

Assigning a reliability index to the prediction
When using machine learning approaches for the pre-
diction of protein subcellular localization, it is important
to know the prediction reliability. For neural network
methods, a Reliability Index (RI) is usually assigned
according to the difference between the highest and the

Fig. 2. Expected prediction accuracy with a reliability index equal
to a given value. The fractions of sequences that are predicted with
RI = n, n = 1, 2, . . . , 10 are also given.

second-highest network output score (Rost and Sander,
1993; Reinhardt and Hubbard, 1998; Emanuelsson et
al., 2000). The simple idea is easily used with the SVM
prediction system, i.e. assigning an RI according to the
difference (noted as diff) between the highest and the
second-highest output value of the 1-v-r SVMs in the
multi-class classification. RI is defined as:

RI =
{

INTEGER (diff) + 1 if 0 � diff < 9.0
10 if diff � 9.0.

(8)

The RI assignment is a useful indication of the level of
certainty in the prediction for a particular sequence. Fig-
ures 2 and 3 show the statistical results for prokaryotic
sequences. Similar curves were obtained for the eukary-
otic case (data not shown). The expected prediction ac-
curacy with RI equal to a given value and the fraction of
sequences for each given RI were calculated (Figure 2).
For example, the expected accuracy for a sequence with
RI = 3 is 91% with 14% of all sequences having RI = 3.
The average prediction accuracy was also calculated for
RI above a given cut-off (Figure 3). About 78% of all se-
quences have RI � 3 and of these sequences about 95.5%
were correctly predicted by the SubLoc system.

Robustness to errors in the N-terminal sequence
Some evidence has indicated that a method based on
amino acid composition would be more robust to errors in
the gene 5′-region annotation, i.e. the protein N-terminal
sequence (Reinhardt and Hubbard, 1998) than methods
based on sorting signals. Our results support this sugges-
tion. We removed N-terminal segments which lengths
of 10, 20, 30 and 40, respectively, from full protein
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Fig. 3. Average prediction accuracy with a reliability index above a
given cut-off. For example, about 75% of all sequences have RI � 3
and of these sequences about 95% are correctly predicted with the
SubLoc system.

sequences, then trained the SVM classifiers using the
remaining parts of the sequences. Only the results of the
5-fold cross validation were given instead of the jackknife
test because of the limited computational power. As
mentioned before, the results by these two testing pro-
cedures are so close that the variations of the prediction
accuracies with the removed segment lengths could be
accurately reflected by the 5-fold cross validation results.
The results for prokaryotic and eukaryotic sequences are
summarized in Tables 6 and 7. The results indicate that
the accuracies changed little for both the prokaryotic and
eukaryotic cases. When even 40 amino acid segments
were removed, the total accuracies were only reduced
1.2% for prokaryotic sequences and 3% for eukaryotic
sequences. Predictions based on sorting signals would
not be very reliable if this important information in the
N-terminal sequence was missing.

DISCUSSION AND CONCLUSION
SVM information condensation
One attractive property of SVM is that SVM condenses
information in the training samples to provide a sparse
representation using a very small number of samples, the
Support Vectors (SVs). The SVs characterize the solution
to the problem in the following sense: if all the other
training samples are removed and the SVM is retrained,
then the solution would be unchanged. It is believed that
all the information about classification in the training
samples can be represented by these SVs. In a typical

Table 6. Performance comparisons for the prokaryotic sequences with one
segment of N-terminal sequence removed

Accuracy (%) MCC

Total Cyto Peri Extra Cyto Peri Extra

COMPLETE 91.3 97.8 76.2 77.6 0.85 0.77 0.78
CUT-10 91.5 90.6 77.3 78.6 0.86 0.78 0.78
CUT-20 90.6 96.5 77.2 77.6 0.85 0.75 0.76
CUT-30 91.1 97.0 77.8 78.5 0.86 0.76 0.77
CUT-40 90.1 96.4 74.8 78.5 0.84 0.73 0.77

COMPLETE: prediction performance for the complete sequences;
CUT-10: prediction performance for the remaining sequence parts when
10 N-terminal amino acids were removed; CUT-20, CUT-30 and
CUT-40 have similar meanings. Cyto, Peri and Extra are short for
Cytoplasmic, Periplasmic and Extracellular, respectively.

case, the number of SVs is quite small compared to
the total number of training samples. This is a crucial
property when analyzing large datasets containing many
uninformative patterns which will be especially useful in
the bioinformatics field as the mass of experimental data
explodes. Table 8 shows the number of SVs for each
binary classifier for the 977 prokaryotic sequences using
the RBF kernel or the polynomial kernel. The results show
that for this classification task, the ratio of SVs to all
training samples is in the range of 13–30%.

SVM parameters selection
SVM still has a few tunable parameters which need to be
determined. SVM training includes the selection of the
proper kernel function parameters and the regularization
parameter C . The selection of the kernel function param-
eters is very important because they implicitly define the
structure of the high dimensional feature space where the
maximal margin hyperplane is found. The regularization
parameter C controls the complexity of the learning ma-
chine to a certain extent and influences the training speed.
Although successful theoretical methods are not available
for parameter selection, the accuracy of the subcellular lo-
calization prediction is not sensitive to this selection. The
results in Tables 2 and 3 show that almost the same accu-
racies were obtained with different kernel types. Further-
more, large variations of the parameters including γ for
the RBF kernel, degree d for the polynomial kernel and the
regularization parameter C , had little influence on the clas-
sification performance (see the supplementary material).
In addition, the results in Table 8 indicated that almost the
same Support Vectors were used in SVMs with different
kernels. This important phenomenon was previously ob-
served by Vapnik (1995). If so, the set of SVs could be
considered as a robust characteristic of the dataset.
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Table 7. Performance comparisons for the eukaryotic sequences with one segment of N-terminal sequence removed

Accuracy (%) MCC

Total Cyto Extra Mito Nuclear Cyto Extra Mito Nuclear

COMPLETE 78.3 76.7 77.2 56.4 86.0 0.64 0.77 0.55 0.73
CUT-10 77.2 74.0 77.8 52.7 86.1 0.62 0.77 0.50 0.73
CUT-20 76.3 73.2 78.5 51.4 84.8 0.61 0.76 0.50 0.71
CUT-30 76.1 72.5 76.3 50.5 85.8 0.60 0.73 0.48 0.72
CUT-40 75.3 71.5 74.2 46.7 86.3 0.58 0.71 0.46 0.72

COMPLETE: prediction performance for the complete sequences; CUT-10: prediction performance for the remaining sequence parts when 10 N-terminal
amino acids were removed; CUT-20, CUT-30 and CUT-40 have similar meanings. Cyto, Extra and Mito are short for Cytoplasmic, Extracellular and
Mitochondrial, respectively.

Combining with other methods and incorporating
other features
Several ways may improve the prediction performance.
Single prediction methods have limitations. For instance,
the methods based on sorting signals are sensitive to errors
in the N-terminal sequence. The methods including the
SubLoc system based on composition can not effectively
classify sequences with similar amino acid compositions.
The mitochondrial sequences were not well predicted by
the SubLoc system (Table 3) while Yuan’s method effec-
tively predicted these sequences, possibly due to the sim-
ilar amino acid compositions between the mitochondrial
and cytoplasmic sequences. In addition, as pointed out by
Nakai (2000), isoforms can not be well localized by the
methods based on composition. Therefore, a combination
of complementary methods may improve the accuracy.

Another strategy is to incorporate other informative
features. The methods mentioned above all use classifi-
cation information derived from protein sequences. More
recently, other useful classification information for loca-
tion has been investigated. Drawid and Gerstein (2000)
have localized all the yeast proteins using a Bayesian
system integrating features in the whole genome expres-
sion data. Murphy et al. (2000) analyzed the locations
using information from fluorescence microscope images.
As pointed out previously, SVM can easily deal with
high dimensional data so the SVM method can easily
incorporate other useful features which may improve the
prediction accuracy.

In conclusion, a new method for protein subcellular
localization prediction is presented. This new approach
provides superior prediction performance compared with
existing algorithms based on amino acid composition and
can be a complementary method to other existing methods
based on sorting signals. Furthermore, predictions by the
SVM approach are robust to errors in gene 5′-region
annotation. It is anticipated that the current prediction
method would be a useful tool for the large-scale analysis
of genome data.

Table 8. Number of the Support Vectors for various kernel functions. The
total number of prokaryotic samples was 997. The kernel functions were
RBF with γ = 5.0 and the polynomial function with degree d = 9

Binary classifier RBF Polynomial Shared SVs Union

Cyto/ ∼ Cyto 199 172 131 240
Peri/ ∼ Peri 303 237 192 348
Extra/ ∼ Extra 126 126 89 163

Cyto/ ∼ Cyto: the SVM trained with all of cytoplasmic sequences with
positive labels and all other sequences with negative labels; Peri/ ∼ Peri
and Extra/ ∼ Extra have similar meanings. Shared SVs: the number of
shared SVs for both kernel functions; Union: the total number of SVs for
both kernel functions.
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