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Protein structural annotation and classification is an important problem in
bioinformatics. We report on the development of an efficient subgraph mining
technique and its application to finding characteristic substructural patterns within
protein structural families. In our method, protein structures are represented by graphs
where the nodes are residues and the edges connect residues found within certain
distance from each other.  Application of subgraph mining to proteins is challenging for
a number reasons:  (1) protein graphs are large and complex, (2) current protein
databases are large and continue to grow rapidly, and (3) only a small fraction of the
frequent subgraphs among the huge pool of all possible subgraphs could be significant
in the context of protein classification.

To address these challenges, we have developed an information theoretic model
called coherent subgraph mining.  From information theory, the entropy of a random
variable X measures the information content carried by X and the Mutual Information
(MI) between two random variables X and Y measures the correlation between X and
Y. We define a subgraph X as coherent if it is strongly correlated with every
sufficiently large sub-subgraph Y embedded in it.  Based on the MI metric, we have
designed a search scheme that only reports coherent subgraphs.

To determine the significance of coherent protein subgraphs, we have conducted
an experimental study in which all coherent subgraphs were identified in several
protein structural families annotated in the SCOP database (Murzin et al, 1995). The
Support Vector Machine algorithm was used to classify proteins from different families
under the binary classification scheme.  We find that this approach identifies spatial
motifs unique to individual SCOP families and affords excellent discrimination between
families.

1 Introduction

1.1 Spatial Motif Discovery in Proteins

Recurring substructures in proteins reveal important information about protein
structure and function. For instance, common structural fragments may represent
fixed 3D arrangements of residues that correspond to active sites or other
functionally relevant features such as Prosite patterns (Hofmann, et al. 1999).
Understanding recurring substructures in proteins aids in protein classification
(Chakraborty et al. 1999), function prediction (Fischer et al. 1994), and folding
(Kleywegt 1999).



Many computational methods have been proposed to find motifs in
proteins. Multiple sequence alignments of proteins with similar structural
domains (Henikoff, et al 1999) could be used to provide information about the
possible common substructures in the hope that conserved sequence patterns in a
group of homologous proteins may have similar 3D arrangements. This method
generally doesn’t work very well for proteins that have low sequence similarity
although structurally similar proteins can have sequence identities below 10%,
far too low to propose any structural similarity on the basis of sequence
comparison (Orengo & Taylor, 1996).

Several research groups have addressed the problem of finding spatial motifs
by using computational geometry/computer vision approaches. From the
geometric point of view, a protein can be modeled as a set of points in the R3

space and the problem of (pairwise) spatial motif finding can be formalized as
that of finding the Largest Common Point (LCP) set. (Akutsu et al. 1997).
Plenty of variations to this problem have been explored, which include
approximate LCP problem (Chakraborty et al. 1999, Indyk et al. 1999) and
LCP-α (finding a sufficiently large common point set S of two sets of points
but not necessarily the maximal one) (Finn et al. 1997).

Applying frequent subgraph mining techniques to find patterns from a
group of proteins is a non-trivial task. The total number of frequent subgraphs
for a set of graphs grows exponentially as the average graph size increases, as
graphs become denser, as the number of node and edge labels decreases and as the
size of the recurring subgraphs increases (Huan et al 2003). For instance, for a
moderate protein dataset (about 100 proteins with the average of 200 residues per
protein), the total number of frequent subgraphs could be extremely high (>>
one million).  Since the underlying operation of subgraph isomorphism testing
is NP-complete, it is critical to minimize the number of frequent subgraphs that
should be analyzed.

In order to apply the graph based spatial motif identification method to
proteins, we have developed a novel information theoretic model called coherent
subgraphs. A graph G is coherent if it is strongly correlated with every
sufficiently large subgraph embedded in it. As discussed in the following parts
of this report, coherent subgraphs capture discriminative features and afford high
accuracy of protein structural classification.

1.2 Related Work

Finding patterns from graphs has long been an interesting topic in the data
mining/machine learning community. For instance, Inductive Logic
Programming (ILP) has been widely used to find patterns from graph dataset
(Dehaspe 1998). However, ILP is not designed for large databases. Other
methods focused on approximation techniques such as SUBDUE (Holder 1994)
or heuristics such as greed based algorithm (Yoshida and Motoda, 1995). Several
algorithms have been developed in the data mining community to find all



frequent subgraphs of a group of general graphs (Kuramochi and Karypis 2001,
Yan and Han 2002, Huan et al. 2003). These techniques have been successfully
applied in cheminformatics where compounds are modeled by undirected graphs.
Recurring substructures in a group of chemicals with similar activity are
identified by finding frequent subgraphs in their related graphical representations.
The recurring substructures can implicate chemical features responsible for
compounds’ biological activities (Deshpande et al. 2002).

Recent subgraph mining algorithms can be roughly classified into two
categories.  Algorithms in the    first    category use a level-wise search scheme like
Apriori (Agrawal and Srikant, 1994) to enumerate the recurring subgraphs.
Examples of such algorithms include AGM (Inokuchi et al. 2000) and FSG
(Kuramochi and Karypis 2001). Instead of performing the level-wise search
scheme, algorithms in the    second    category use a depth-first enumeration for
frequent subgraphs (Yan and Han 2002, Huan et al. 2003). A depth-first search
usually has better memory utilization and thus better performance. As reported
by Yan and Han (2002), a depth-first search, can outperform FSG, the current
state-of-the-art level-wise search scheme by an order of magnitude overall.

All of the above methods rely on a single threshold to qualify interesting
patterns. Herein, we propose the coherent subgraph model using a statistical
metric to qualify interesting patterns. This leads to more computationally
efficient yet more accurate classification.

The remaining part of the paper is organized as follows. Section 2 presents
a formal base for the coherent subgraph mining problem. This includes the
definition of the labeled graph and labeled graph database (Section 2.1), the
canonical representation of graphs (Section 2.2), the coherent subgraph mining
problem, and    our       algorithm     for efficient coherent subgraph mining (Section
2.3). Section 3 presents the results of an experimental study to classify protein
structural families using the coherent subgraph mining approach and a case
study of identifying fingerprints in the family of serine proteases. Finally,
Section 4 summarizes our conclusions and discusses future challenges.

2   Methodology

2.1 Labeled Graph

We define a labeled graph G as a four element tuple G = {V, E, ∑, l} where V is
the set of nodes of G and E ⊆ V ×V is the set of undirected edges of G. ∑ is a
set of labels and the labeling function l: V ∪ E → ∑ maps nodes and edges in G
to their labels. The same label may appear on multiple nodes or on multiple
edges, but we require that the set of edge labels and the set of node labels are
disjoint.  For our purposes we assume that there is a total order ≥ associated
with the label set ∑.



A labeled graph G = (V, E, ∑, l) is isomorphic to another graph G'=(V', E’,
∑', l') iff there is a bijection f: V → V' such that:

∀ u ∈ V, l(u) = l'(f(u)), and
∀ u, v ∈V,  ( ((u,v) ∈ E ⇔ (f(u), f(v)) ∈E')  ∧  l(u,v) = l'(f(u), f(v))).

The bijection f denotes an isomorphism between G and G'.
A labeled graph G= (V, E, ∑, l) is an induced subgraph of graph G'=(V',E',

∑', l') iff
V ⊆ V',
E ⊆ E',
∀ u,v ∈ V, ((u, v) ∈ E' ⇒ (u, v) ∈E),
∀ u ∈V, (l(u)= l'(u)), and
∀ (u, v) ∈E,  (l(u, v) = l'(u, v)).  
A labeled graph G is induced subgraph isomorphic to a labeled graph G',

denoted by G ⊆ G', iff there exists an induced subgraph G'' of G' such that G is
isomorphic to G''. Examples of labeled graphs, induced subgraph isomorphism,
and frequent induced subgraphs are presented in Figure 1.

           
a b

Given a set of graphs GD (referred to as a graph database), the support of a
graph G, denoted by supG is defined as the fraction of graphs in GD which
embeds the subgraph G. Given a threshold t (0 < t ≤1) (denoted as minSupport),
we define G to be frequent, iff supG is at least t. All the frequent induced
subgraphs in the graph database GD presented in Figure 1 (a) (with minSupport
2/3) are presented in Figure 1 (b).

Throughout this paper, we use the term subgraph to denote an induced
subgraph unless stated otherwise.

2.2 Canonical Representation of Graphs

Figure 1. (a): Examples of three labeled graphs (referred to as a graph database) and an
induced subgraph isomorphism. The labels of the nodes are specified within the circle and
the labels of the edges are specified along the edge. We assume the order a > b > c > d > x
> y > 0 throughout this paper. The mapping q1 → p2, q2 → p1, q3→ p3 represents an induced
subgraph isomorphism from graph Q to P. (b) All the frequent induced subgraphs with
minSupport set to be 2/3 for the graph database presented in (a).



We represent every graph G by an adjacency matrix M.  Slightly different from
the adjacency matrix used for an unlabeled graph (Cormen et al, 2001), every
diagonal entry of M represents a node in G and is filled with the label of the
node. Every off-diagonal entry corresponds to a pair of nodes, and is filled with
the edge label if there is an edge between these two nodes in G, or is zero if
there is no edge.

Given an n × n adjacency matrix M of a graph with n nodes, we define the
code of M, denoted by code(M), as the sequence of lower triangular entries of M
(including the diagonal entries) in the order: M1,1 M2,1 M2,2 … Mn,1 Mn,2 …Mn,n-1
Mn,n where Mi,j represents the entry at the ith row and jth column in M.

The standard lexicographic ordering of sequence defines a total order of
codes. For example, code "ayb" is greater than code "byb" since the first symbol
in string "ayb" is greater than the first symbol in string "byb" (We use the order
a > b > c > d > x > y > 0). For a graph G, we define the Canonical Adjacency
Matrix (CAM) of G as the adjacency matrix that produces the maximal code
among all adjacency matrices of G. Interested readers might verify that the
adjacency matrix M1 in Figure 2 is the CAM of the graph P shown in Figure 1.

Given an n × n matrix N and an m × m matrix M, we define N as the
maximal proper submatrix (MP submatrix for short) of M iff n = m-1 and ni,j =
mi,j  (0 < i, j ≤n).

One of the nice properties of the canonical form we are using (as compared
to the one used in Inokuchi et al. 2000 and Kuramochi et al. 2001) is that,
given a graph database GD, all the frequent subgraphs (represented by their
CAMs) could be organized as a rooted tree. This tree is referred to as the CAM
Tree of G and is formally described as follows:

• The root of the tree is the empty matrix;
• Each node in the tree is a distinct frequent connected subgraph of G,

represented by its CAM;
• For a given none-root node (with CAM M), its parent is the graph

represented by the MP submatrix of M;

Figure 2. Three examples of adjacency matrices. After applying the total ordering, we have
code(M1) = “aybyxb0yxc00y0d” > code(M2) = “aybyxb00yd0yx0c” > code(M3)
=“bxby0dxy0cyy00a”.



2.3 Finding Patterns from Labeled Graph Database

As mentioned earlier, the subgraph mining of protein databases presents a
significant challenge because protein graphs are large and dense resulting in an
overwhelmingly large number of possible subgraphs (Huan et al. 03). In order
to select important features from the huge list of subgraphs, we have proposed a
subgraph mining model based on mutual information as explained below.

2.3.1 Mutual Information and Coherent Induced Subgraphs

We define a random variable XG for a subgraph G in a graph database GD as
follows:

XG =  1 with probability supG
          0 with probability 1-supG

Given a graph G and its subgraph G', we define the mutual information I(G,
G') as follows:
I(G, G') =  ∑XG, XG'

  p(XG, XG’) log2(p(XG, XG’)/(p(XG)p(XG’))).  where p(XG, XG’)
is the (empirical) joint probability distribution of (XG, XG'), which is defined as
follows:

p(XG, XG') = supG if XG = 1 and XG’ = 1
                         0 if XG = 1 and XG’ = 0
                         supG’ - supG if XG = 0 and XG’ = 1
                          1- supG’ otherwise

Given a threshold t (t > 0) and a positive integer k, a graph G is k-coherent
iff ∀ G' ⊆ G and |G'| ≥k, (I(G, G') ≥t), where |G’| denotes the number of nodes
in G’.  

Figure 3. Tree organization of all the frequent subgraphs of the graph database shown in Figure 1 (a)



The Coherent Subgraph Mining problem is to find all the k-coherent
subgraphs in a graph database, given a mutual information threshold t (t > 0)
and a positive integer k.

Our algorithm for mining coherent subgraphs relies on the following two
well-known properties (Tan et al. 2002):
Theorem For graphs P ⊆ Q ⊆ G, we have the following inequalities:

I(P, G) ≤ I(P, Q)
I(P, G) ≤ I(Q, G)

The first inequality implies that every subgraph G' (with size ≥ k) of a k-
coherent graph is itself k-coherent. This property enables us to integrate the k-
coherent subgraph into any tree-based subgraph using available enumeration
techniques (Yan and Han 2002, Huan et al. 2003). The second inequality
suggests that, in order to tell whether a graph G is k-coherent or not, we only
need to check all k-node subgraphs of G. This simplifies the search.

In the following section, we discuss how to enumerate all connected induced
subgraphs from a graph database. This work is based on the algebraic graphical
framework (Huan et al. 2003) of enumerating all subgraphs (not just induced
subgraphs) from a graph database.

2.3.2 Coherent Subgraph Mining Algorithm

CSM
input: a graph database GD, a mutual information threshold t (0 < t ≤ 1) and a positive integer k
output: set S of all G's coherent induced subgraphs.
P ← {all coherent subgraphs with size k in GD}
S ← _
CSM-Explore (P, S, t, k);

CSM-Explore
input: a CAM list P, a mutual information threshold t (0 < t ≤ 1),
a positive integer k, and a set of coherent  connected subgraphs' CAMs S.
output: set S containing the CAMs of all coherent subgraphs searched so far

For each  X ∈ P
   S ← S ∪ { X }  
   C ← {Y | Y is a CAM and X is the MP submatrix of Y}
   remove non k-coherent element(s) from C.
   CSM-Explore(C, S, t, k)
End

3 Experimental Study

3.1  Implementation and Test Platform

The coherent subgraph mining algorithm is implemented using the C++
programming language and compiled using g++ with O3 optimization. The
tests are performed using a single processor of a 2.0GHz Pentium PC with 2GB
memory, running RedHat Linux 7.3. We used Libsvm for protein family



classification (further discussed in Section 3.4); the Libsvm executable was
downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

3.2 Protein Representation as a Labeled Graph

We model a protein by an undirected graph in which each node corresponds to an
amino acid residue in the protein with the residue type as the label of the node.
We introduce a “peptide” edge between two residues X and Y if there is a peptide
bond between X and Y and a “proximity” edge if the distance between the two
associated Cα  atoms of X and Y is below a certain threshold (10Å in our study)
and there is no peptide bond between X and Y.1

3.3Datasets and Coherent Subgraph Mining

Three protein families from the SCOP database (Murzin et al, 1995) were used
to evaluate the performance of the proposed algorithm under a binary (pair-wise)
classification scheme. SCOP is a domain expert maintained database, which
hierarchically classifies proteins by five levels: Class, Fold, Superfamily,
Family and individual proteins. The SCOP families included the Nuclear
receptor ligand-binding domain (NRLB) family from the all alpha proteins class,
the Prokaryotic serine protease (PSP) family from the all beta proteins class,
and Eukaryotic serine protease (ESP) family from the same class. Three datasets
for the pairwise comparison and classification of the above families were then
constructed: C1, including NRLB and PSP families; C2, including ESP and
PSP families, and C3, including both eukaryotic and prokaryotic serine
proteases (SP) and a random selection of 50 unrelated proteins (RP).  All the
proteins were selected from the culled PDB list,
(http://www.fccc.edu/research/labs/dunbrack/pisces/culledpdb.html) with less
than 60% sequence homology (resolution = 3.0, R factor = 1.0) in order to
remove redundant sequences from the datasets. These three datasets are further
summarized in Table 1.

For each of the datasets, we ran the coherent subgraph identification
algorithm. Thresholds ranging from 0.5 to 0.25 were tested; however, we only
report the results with threshold 0.3, which gave the best classification accuracy
in our experiments.

3.4 Pair-wise Protein Classification Using Support Vector Machines (SVM)

Given a total of n coherent subgraphs f1, f2, …, fn, we represent each protein G
in a dataset as a n-element vector V=v1, v2, ….vn in the feature space where vi is
the total number of distinct occurrences of the subgraph fi in G (zero if not
                                                
1 Note that this graph representation provides a lot of flexibility for future studies, e.g. using
smaller number of residue classes or using additional edge labels.  



present). We build the classification models using the SVM method (Vapnik
1998). There are several advantages of using SVM for the classification task in
our context: 1) SVM is designed to handle sparse high-dimensional datasets
(there are many features in the dataset and each feature may only occur in a small
set of samples), 2) there are a set of kernel learning functions (such as linear,
polynomial and radius based) we could choose from, depending on the property
of the dataset.

Table 1 summarizes the results of the three classification experiments and
the average five fold cross validation total classification accuracy [i.e., (TP +
TN)/(N) where TP stands for true positive, TN stands for true negative, and N is
the total number of testing samples]. In order to address the problem of possible
over-fitting in the training phase, we created artificial datasets with exactly same
attributes but randomly permuted class labels. This is typically referred to as the
Y-randomization test.  The classification accuracy for randomized datasets was
significantly lower than for the original datasets (data not shown) and hence we
concluded that there is no evidence of over-fitting in our models.

Class
A

Total #
Proteins Class B Total #

Proteins Features Time,
(sec.)

Accuracy
(%)

C1 PSP 9 NRLB 13 40274 240 96
C2 PSP 9 ESP 35 34697 450 93
C3 SP 44 RP 50 42265 872 95

Table 1. Accuracy of classification tasks C1, C2, C3. We used the C-SVM classification model
with the linear kernel and left other values as default.  Columns 1-4 give basic information about
the dataset. SP –serine proteases; PSP – prokaryotic SP; ESP – eukaryotic SP; NRLB – nuclear
receptor ligand binding proteins, RP – random proteins. The fifth column (Features) records the
total number of features mined by CSM and the sixth column (Time) records how much CPU time
was spent on the mining task. The last column gives the five fold cross validation accuracy.

3.5 Identification of Fingerprints for the Serine Protease Family  

Features found for the task C3 in Table 1 were analyzed to test the ability of the
CSM method to identify recurrent sequence-structure motifs common to
particular protein families; we used serine proteases as a test case.  For every
coherent subgraph, we can easily define an underlying elementary sequence motif
similar to Prosite patterns as:

M = {AAp, d1, AAq, d2, AAr, d3, AAs}
where AA is the residue type, p, q, r and s are residue numbers in a protein
sequence, and d1=q-p-1, d2=r-q-1, d3=s-r-1, i.e., sequence separation distances.

We have selected a subset of the discriminative features from the mined
features such that every feature occurs in at least 80% of the proteins in the SP
family and in less than 10% of the proteins of the RP family. For each
occurrence of such features, sequence distances were analyzed. Features with
conserved sequence separation were used to generate consensus sequence motifs.
We found that some of our spatial motifs correspond to serine protease sequence



signatures from the Prosite Database. An example (G1) of such a spatial motif
and its corresponding sequence motif C-x(12)-A-x-H-C (where x is any residue(-
s) and the number in the parenthesis is the length of the sequence separation) are
shown in Fig. 4. This example demonstrates that the spatial motifs found by
subgraph mining can capture features that correspond to motifs with known
utility in identifying protein families.  The spatial motif G2, which also was
highly discriminative, occurs in SP proteins at a variety of positions, with
varying separations between the residues.  Such patterns seem to defy a
sequence-level description, hence raise the possibility that spatial motifs can
capture features beyond those described at the sequence level.  

4 Conclusions and Future Work

We have developed a novel coherent subgraph mining approach and applied it to
the problem of protein structural annotation and classification. As a proof of
concept, characteristic subgraphs have been identified for three protein families
from the SCOP database, i.e., eukaryotic and prokaryotic serine proteases and
nuclear receptor binding proteins.  Using Support Vector Machine binary
classification algorithm, we have demonstrated that coherent subgraphs can serve
as unique structural family identifiers that discriminate one family from another
with high accuracy.  We have also shown that some of the subgraphs can be
transformed into sequence patterns similar to Prosite motifs allowing their use
in the annotation of protein sequences.  The coherent subgraph mining method
advanced in this paper affords a novel automated approach to protein structural
classification and annotation including possible annotation of orphan protein
structures and sequences resulting from genome sequencing projects.  We are
currently expanding our research to include all protein structural families and
employ multi-family classification algorithms to afford global classification of
the entire protein databank.
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Figure 4: Two discriminative features that appear very frequently in SP family while are infrequent
in the RP family. Left: the graphical representation of the two subgraphs (with residue type
specified within the circle). A dotted line in the figure represents a proximity edge and a solid line
represents a peptide edge. Right: the 3D occurrences of G1 (right) and G2 (left) within the
backbone of one of serine proteases, Human Kallikrein 6 (Hk6).
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