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We have generated a database of expression profiles carrying the transcriptional responses of the model
organism Bacillus subtilis following treatment with 37 well-characterized antibacterial compounds of different
classes. The database was used to build a predictor for the assignment of the mechanisms of action (MoAs) of
antibacterial compounds by the use of support vector machines. This predictor was able to correctly classify
the MoA class for most compounds tested. Furthermore, we provide evidence that the in vivo MoA of
hexachlorophene does not match the MoA predicted from in vitro data, a situation frequently faced in drug
discovery. A database of this kind may facilitate the prioritization of novel antibacterial entities in drug
discovery programs. Potential applications and limitations are discussed.

Understanding the in vivo mechanism of action (MoA) of
biologically active compounds is an elementary requirement
for drug discovery and development. Until recently, in vivo
MoA analysis was mostly limited to cases in which in-depth
knowledge of the respective biological pathway was available.
With the advancement of genomics, however, new technolo-
gies with the potential to address this question on a genomic
scale have emerged. Recently, Bandow et al. (2) presented the
results of a proteomics study in which they analyzed the MoAs
of antibacterial compounds. Earlier, Hughes et al. (15) used
DNA microarray analysis to correlate the gene expression pro-
files derived from defined yeast mutants with those derived
from compound-treated yeast cells. In that paper the high
degree of correlation of an expression profile of a drug (dy-
clonine)-treated culture with the expression profile obtained
from a mutant (erg2) elucidated the molecular target of an
antifungal compound. Despite its elegance, this approach faces
two practical problems: (i) it is limited to systems with well-
developed genetics, and (ii) it assumes that a single compound-
target interaction is responsible for a given MoA.

We have explored the potential of using gene expression
profiling for in vivo analysis of the MoAs of antibacterial com-
pounds. For this purpose we analyzed the transcriptional re-
sponse of Bacillus subtilis 168 (19) following treatment with 37
antibacterial agents with known MoAs using whole-genome
arrays. Since it is known that various technological pitfalls are
associated with expression profiling projects of this scale (5, 23,
24), we standardized and automated the experimental steps
wherever possible.

We demonstrate that such a data set will facilitate classifi-
cation of the MoAs of antibacterial compounds. We also pres-
ent evidence that the in vivo MoA of the antibacterial com-

pound hexachlorophene (HCP) is not as expected from in vitro
biochemical data. This finding emphasizes the practical value
of the expression profile database described herein. However,
we also describe potential limitations of the approach.

MATERIALS AND METHODS

Bacterial strains and growth of cultures. B. subtilis 168 was grown in basal
limitation medium (31). A 15-ml culture was inoculated at an A600 of 0.05 and
incubated at 37°C and 200 rpm (Innova 4400 incubator shaker; New Brunswick
Scientific, Edison, N.J.) and growth proceeded to an A600 of 0.25. At this optical
density compounds were added from a 1,000� stock solution (Table 1). In
parallel, control cultures were treated with the solvent for the respective com-
pound. Cultures were further incubated under the conditions described above,
and growth was monitoring by measuring the optical density at 600 nm at regular
intervals. For RNA preparation, 10 ml of the culture was harvested by centrif-
ugation at 3,000 � g at 10, 40, and 80 min posttreatment. Each datum point
represents the results for three replicate cultures grown on individual days.

For each compound we determined the optimal concentration (copt) for ex-
pression profiling experiments. To do so, the optical density of a culture, grown
as described above, was monitored for 5 h. The criteria applied to deduce copt are
outlined in the Results section.

RNA preparation and labeling. After cells were harvested, cell pellets were
immediately resuspended in 450 �l of lysis buffer (1% [vol/vol] �-mercaptoetha-
nol and 1 mM EDTA in RLT buffer [Qiagen, Hilden, Germany]). This suspen-
sion was transferred to a FastPrep tube (Qbiogene, Carlsbad, Calif.) prefilled
with 400 �l of glass beads (diameter, 106 �m; acid washed; Sigma), 500 �l of
citric acid-saturated phenol, and 200 �l of chloroform. The tube was processed
in a FP120 FastPrep cell disrupter (Qbiogene) for 45 s at 6.5 m/s. The slurry was
then transferred to a Phase-Lock tube (2 ml, heavy; Eppendorf, Hamburg,
Germany) and spun for 10 min in a microcentrifuge. Ethanol (250 �l) was added
to the supernatant, and the RNA was purified from this mixture on an RNeasy
column (Qiagen), according to the instructions of the manufacturer. At this stage
three replicates of each sample in equal amounts were pooled to give a total
RNA amount of 100 �g. The prepurified and pooled RNAs were digested with
RNase-free DNase I (Roche, Basel, Switzerland), and cleanup was performed
with RNeasy columns (Qiagen). Quality control of each RNA sample included
spectrophotometric analysis and formaldehyde gel electrophoresis. Furthermore,
each RNA was subjected to reverse transcription-PCR. Amplification of the
transcript in the presence of reverse transcriptase served as an indicator of the
integrity of the RNA, while reverse transcription-PCR without the addition of
reverse transcriptase was performed to verify the absence of any genomic DNA.

Labeling of RNA was performed as described previously (21), but 2 �g of total
RNA and random hexamers were used. As an additional step, a chasing reaction
was performed by adding 1 �l of labeling buffer containing 10 mM deoxynucleo-
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side triphosphates and 50 U of reverse transcriptase for 15 min after the labeling
reaction.

Expression profiling. DNA fragments for open reading frames (ORFs) were
computationally selected within the first third (proximal to the 5� end) of the
coding region. Each fragment was checked for its uniqueness; up to 80% simi-
larity with any other sequence on the genome was the maximum allowed. No
DNA stretch greater than 24 nucleotides was identical to any other such stretch
(with the exception of ORFs shorter than 140 bp, which were used in their
entirety). Two or three fragments were generated for ORFs longer than 3,000 bp.

Each fragment was prepared by annealing two 80-base oligonucleotides de-
signed to overlap at their 3� ends to form a 20-bp duplex. Rational and specific
features of these arrays are described below (see Results). An extension reaction
was then performed to yield a full-length product of 140 bp. Briefly, each pair of
oligonucleotides was annealed in 20 mM Tris (pH 8.8)–10 mM KCl–10 mM
(NH4)2SO4 and extended overnight at 65°C in the presence of 1.5 mM (each)
deoxynucleoside triphosphate, 10 mM MgSO4, 5� Q solution (Qiagen), and 8 U
of Bst DNA polymerase (New England Biolabs, Beverly, Mass.). Spotting, hy-
bridization, scanning, data processing, and data storage were performed as de-
scribed previously (21).

Data analysis. Experimental data are publicly available at the website www
.gpc-biotech.com/supplementary__material.htm. The logarithmic (base 10) ratios
of the expression signals were calculated for each compound treatment on the
basis of the signal for its corresponding control, i.e., that of the mock-treated
sample. The log ratios for the three time points were arranged in one vector,
called the feature vector, for each compound. Thus, the number of features (n �

12,615) corresponds to the number of DNA fragments spotted on the nylon
membrane (n � 4,205) times the number of time points (n � 3).

The feature vectors of all compounds were hierarchically clustered by an ag-
glomerative method (22). The similarities between feature vectors were measured
by determination of the Euclidian distance. The similarities between clusters
were measured by the complete linkage method, which is implemented in the Spot-
fire DecisionSite for Functional Genomics (Spotfire AB, Gothenburg, Sweden).

The MoA class was predicted with a support vector machine (SVM) (27, 33).
A linear kernel was used. SVMs allow discrimination between two classes. There-
fore, for each MoA class a single classifier that discriminates that class from all
other classes had to be built. Each classifier returns the quasiprobability (vote)
that the input belongs to the corresponding class. The outputs of all classifiers
were combined to a final predictor, such that the predicted class is the class with
the maximum vote. If the maximum vote was less than 0.8, the input was rejected;
thus, no classification was made.

The classifiers were trained with the feature vectors for reference compounds.
The quality of the predictor was tested by means of a “leave-one-out” strategy:
(i) one of the compounds was left out of the training set, (ii) the predictor was
trained with the remaining compounds, and (iii) the predictor was applied to the
compound left out and the predicted class was compared to the known class for
that compound. These steps were repeated for all compounds.

This procedure gives an unbiased estimation of the error rate of the final
predictor. The SVM, the multiclass classifier, and the cross-validation procedure
are implemented in the Matlab toolbox PRTools (The Mathworks GmbH,
Aachen, Germany; Delft University of Technology, Delft, The Netherlands [http:
//www.ph.tn.tudelft.nl/prtools/]).

Spectrophotometric assay of FabI. FabI activity was assayed spectrophoto-
metrically by monitoring the decrease in absorption at 340 nm by using an
adaptation of the spectrophotometric assay described previously (12). Standard
reaction mixtures contained 4 mM crotonyl coenzyme A, 21 �g of homogeneous
B. subtilis FabI (13), 100 �M NADH, and 0.1 M sodium phosphate (pH 7.5) in
a final volume of 300 �l. The reactions were performed at 24°C in semimicro
quartz cuvettes. The change in optical density was continuously monitored for
1 min, and the reaction rate was calculated from the slope of the trace. Triclosan
and HCP were added to the final concentrations indicated in Fig. 3 from serially
diluted stock solutions in dimethyl sulfoxide. The dimethyl sulfoxide concentra-
tion in all assays was maintained at 1.66%, which did not significantly affect the
FabI activity. Under these experimental conditions, the specific activity of FabI
in the absence of drugs was 0.385 nmol/min/�g. Each datum point represents the
mean of duplicate assays, and individual values were within 7% of the average.

Analysis of [3H]NAD� binding to FabI. Triclosan-dependent complex forma-
tion with FabI and NAD� was measured as described previously (12) by using a
polyvinylidene difluoride membrane to separate free [3H]NAD� from FabI-
bound [3H]NAD�.

TABLE 1. Compounds, their properties, and
predicted MoA classes

MoA class and
compound copt (�g/ml) Solventa Predictionb

Cell wall biosynthesis
Amoxicillin 16 DMSO Folate
Cefalexin 0.25 1 M NH4OH Cell wall
Cefotaxime 1 Water Cell wall
Cefoxitin 0.5 Water Cell wall
Cycloserine 16 Water Cell wall
Oxacillin 0.25 Water Cell wall
Penicillin G 4 Water Cell wall
Phosphomycin 256 Water Cell wall
Ristocetin 0.5 DMSO Cell wall
Vancomycin 0.25 Water Cell wall

DNA topology
Ciprofloxacin 0.5 DMSO Topo
Coumermycin A1 1 DMSO Membrane
Moxifloxacin 0.25 DMSO Topo
Nalidixic acid 8 Water Topo
Norfloxacin 0.5 DMSO Topo
Novobiocin 0.25 Water Topo

Fatty acid biosynthesis
Cerulenin 4 DMSO Membrane
Triclosan 1 DMSO Rejected

Folate biosynthesis
Dapsone 64 DMSO Cell wall
Sulfacetamide 64 DMSO Cell wall
Sulfamethizole 1,024 DMSO Rejected
Trimethoprim 1 DMSO Rejected

Membrane-active compounds
and ionophoresc

Gramicidin A 0.03 DMSO Membrane
Monensin 0.125 DMSO Membrane
Nigericin 0.008 DMSO Rejected
Nitrofurantoin 2 DMSO Membrane
Polymyxin B 64 Water Membrane
Triton X-114 64 Water Membrane

Protein biosynthesis
Chloramphenicol 4 DMSO Protein
Clarithromycin 0.25 DMSO Membrane
Clindamycin 2 Water Protein
Erythromycin 4 DMSO Protein
Fusidic acid 0.06 Water Protein
Neomycin 1 Water Protein
Puromycin 64 Water Protein
Spectinomycin 128 Water Protein
Tetracyclin 0.5 DMSO Protein

Test compounds
Actinonin 32 DMSO Rejected
Azaserine 2 Water Topo
Doxorubicin 16 Water Topo
Ethidium bromide 1 Water Rejected
HCP 0.03 DMSO Rejected
Hydrogen peroxide 4 Water Topo
Rifampicin 0.008 DMSO Rejected

a All compounds with the exception of sulfamethizole were added to the
cultures from a 1,000� stock solution. Sulfamethizole was added from a 250�
stock solution. DMSO, dimethyl sulfoxide.

b For the reference compounds, prediction is the assignment in the cross
validation (see Materials and Methods). For the test compounds, prediction is
the prediction obtained by using the classifier trained with the complete refer-
ence data set. Topo, topoisomerase.

c Ionophores and detergents were combined in the class membrane-active
compounds in order to discriminate compounds with unspecific activity from
compounds that act on specific protein targets.
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RESULTS

MoA database of expression profiles. In living cells, envi-
ronmental changes eventually lead to specific changes in pat-
terns of gene expression. A collection of genome-wide gene
expression profiles generated following treatment with antibac-
terial compounds of known MoAs can therefore potentially
serve as a MoA database for the generation of information on
the MoAs of novel antibacterial compounds. In this prototype
study we used 37 well-characterized antibacterial compounds
covering several known MoA classes (Table 1). The three
largest classes comprise compounds that inhibit protein bio-
synthesis, cell wall biosynthesis, and class II topoisomerases.
Other classes include compounds that inhibit fatty acid biosyn-
thesis and folic acid biosynthesis, as well as ionophores and
detergents.

Production of gene expression data. The approach outlined
herein requires a robust experimental platform. We generated
a genome array carrying all predicted ORFs of B. subtilis 168.
Double-stranded 140-bp DNA fragments were generated by
annealing and extending oligonucleotides with overlapping 3�
ends. All extension products were spotted on nylon mem-
branes (8 by 12 cm) in duplicate. The quality of the arrays was
tested by hybridization of B. subtilis genomic DNA (1, 26). A
total of 99.6% of all ORFs showed a signal significantly (more
than 3 standard deviations) above the background signal. Cell
culturing, RNA preparation, labeling, and hybridization were
standardized and largely automated. All steps were performed
in triplicate, resulting in six datum points (duplicate spots on
three membranes) for each gene that were used to calculate
the expression levels and the respective standard errors (see
Material and Methods).

Preanalyses revealed that the compound concentration is of
crucial importance for data quality. The best results were ob-
tained with subinhibitory concentrations, i.e., at concentrations
that are just low enough not to affect the growth of the organ-
ism (data not shown). The copt of each compound could be
deduced from the growth curves of the drug-treated cultures.
copt is the highest concentration that fulfills three criteria: (i)
the optical density of a culture after 1 h of compound treat-
ment is no more than 15% less than the optical density of the
control culture; (ii) the optical density at 600 nm reaches a
minimum of 1.0 after 5 h; and (iii) during these 5 h the optical
density increases steadily, i.e., does not decrease at any time
point. Cultures were harvested for RNA preparation following
10, 40, and 80 min of drug treatment, since these three time
points delivered the most meaningful results in preliminary
experiments (data not shown).

MoA classification. The simplest approach used to study the
MoA of an antibacterial compound by means of gene expres-
sion profiling is to investigate the biology of the transcriptional
responses elicited by the compound (7). However, this strategy
is limited to cases in which conclusions about the MoA can be
drawn directly from the annotation of deregulated genes.

We investigated two data analysis strategies for obtaining
MoA information independent of the functional annotation of
affected genes, namely, clustering and classification.

Clustering is an unsupervised method, in the sense that it
does not require the assignment of the reference compounds
to MoA classes before analysis. We used an agglomerative
clustering method to build a hierarchical tree of the com-

pounds under investigation (see the supplemental material
at www.gpc-biotech.com/supplementary__material.htm). One
would expect that compounds with similar MoAs would show
similar gene expression responses and would be located in the
same part of the tree. This is indeed the case for most of the
compounds, but not for all of them.

During clustering the similarity between two compounds is
calculated globally; that is, the expression of all genes is taken
into account. However, it is likely that only a small set of these
genes is regulated as a consequence of the primary compound-
target interaction (the primary MoA). The majority of the
regulated genes may represent unselective, secondary effects.
For this reason we did not consider unsupervised clustering as
a satisfactory stand-alone method for assignment of a MoA to
novel compounds.

We next tested the classification strategy, an analysis strategy
that applies a priori knowledge of the MoA classes of the
reference compounds. This approach consists of the following
steps: (i) MoA classes are defined on the basis of the known
MoAs of the reference compounds (Table 1), (ii) a predictor
based on gene expression data is built for each MoA class, (iii)
the predictor is validated, and (iv) the expression data gener-
ated with compounds of unknown MoAs are used to assign a
MoA from the predefined classes. If the MoA of a novel
compound is not represented within the database, no MoA is
assigned (i.e., the compound is rejected).

Among the many classification methods described in the liter-
ature (3, 8, 10), we used SVMs. SVMs were first introduced by
Vapnik et al. (32) and are also described elsewhere (27). They are
particularly suited for the type of classification problem presented
here. SVMs have been used in the past for gene expression-based
classification of tissues (3, 6, 32) and genes (4).

By using SVM, a predictor for MoA classification was cal-
culated according to the MoA classes defined in Table 1 (see
Material and Methods). The quality of the predictor was tested
by means of a leave-one-out strategy, in which each compound
was removed from the data set one by one and treated as a
compound of unknown MoA (see Materials and Methods and
Table 1 for details). The best success rates for correct MoA
classification were achieved for the MoA classes cell wall bio-
synthesis, topoisomerase, membrane activity and ionophores,
and protein biosynthesis. Nine of the 10 inhibitors of cell wall
biosynthesis were classified correctly. Amoxicillin was misclas-
sified as an inhibitor of folic acid biosynthesis. Similarly, there
was only one misclassification, that for clarithromycin, for the
nine compounds that inhibit protein biosynthesis. Of the com-
pounds that inhibit type II topoisomerase, only coumermycin
A1 was misclassified. Interestingly, MoA classification was not
successful for the MoA classes fatty acid biosynthesis and fo-
late biosynthesis. It is very likely that these MoA classes were
underrepresented in our compound list and that a minimum of
five to six compounds per MoA class is required to generate a
robust MoA predictor.

In order to obtain more information about the quality of the
predictor, we investigated a few test compounds that are di-
rectly or indirectly related to the MoAs of the reference com-
pounds (Table 1).

Actinonin inhibits the deformylation of N-formylmethionine
of newly synthesized peptides (9). Interestingly, actinonin was
not classified as a protein biosynthesis inhibitor but was re-
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jected (i.e., it was not assigned to any of the MoA reference
classes). This indicates that a compound that inhibits a process
closely associated with protein biosynthesis can be differenti-
ated from agents that act on the central process of protein
biosynthesis (i.e., on the ribosome).

Most interestingly, three compounds known to cause DNA
damage, namely, azaserine, doxorubicin, and hydrogen perox-
ide, were classified as topoisomerase inhibitors.

Doxorubicin and hydrogen peroxide both produce reactive
oxygen species (17, 25). For azaserine, two MoAs are described
in the literature: (i) it triggers the onset of DNA repair through
its action as a carboxymethylating agent (20), and (ii) it inhibits
purine biosynthesis through its action as a glutamine analogue
(18). Four quinolones and two coumarin antibiotics were used
as part of this study. These two chemical classes act on the
same target (type II topoisomerase); however, they act with
different mechanisms. Quinolones interrupt the cleavage and
resealing cycle during the type II topoisomerase-catalyzed in-
troduction of negative supercoils into DNA, thereby causing
double-stranded breaks (7, 14). Coumarins bind to the ATP
binding site of the enzyme and decrease the affinity of type II
topoisomerase for this nucleotide, leaving the DNA largely
intact (7, 34).

We next analyzed the MoA class of the topoisomerase in-
hibitors by hierarchical clustering. Figure 1A shows that the
two MoA subgroups described above (coumarins and quino-
lones) can be clearly distinguished by this approach. The re-
sults obtained by inclusion of the test compounds hydrogen
peroxide, doxorubicin, and azaserine in this analysis indicate
that these compounds are part of the quinolone cluster. Interest-
ingly, the two radical-forming agents doxorubicin and hydrogen
peroxide separate from azaserine in the clustering (Fig. 1B).

In summary, these findings allowed us to conclude that (i)
the two mechanisms of inhibition exerted by coumarins and
quinolones on a single target (type II topoisomerase) can be
clearly distinguished and (ii) the gene expression signatures
generated following treatment with DNA-damaging agents of
the types azaserine, doxorubicin, and hydrogen peroxide are

closely related to the ones induced by quinolones. This finding
must be taken into account when compounds of unknown
MoA are classified with this predictor. Interestingly, azaserine
also elicits in bacterial reporter strains a strong signal indica-
tive of inhibition of class II topoisomerases (16). It should be
noted, however, that ethidium bromide (a DNA-intercalating
agent) was rejected (i.e., it was not classified in any of the MoA
classes represented in the predictor). This finding indicates
that certain types of DNA stress are not classified as topoisom-
erase inhibition.

HCP. In the course of our analyses of the data, we discov-
ered that one of the compounds, HCP, did not behave as
expected. Initially, HCP was included as a member of the class
of fatty acid biosynthesis inhibitors due to its known in vitro
effect on FabI (11) (Fig. 2A). We did not obtain conclusive
data from the classification using SVMs (Table 1), probably
because the MoA group contained too few compounds to
calculate a robust predictor. However, two additional observa-
tions furthered our interest in HCP: (i) in all clustering anal-
yses that we performed, HCP was clearly separated from tri-
closan and cerulenin (two other well-characterized inhibitors
of the fatty acid biosynthesis pathway [see the supplemental
material at www.gpc-biotech.com/supplementary__material
.htm]), and (ii) triclosan and cerulenin both induced the ex-
pression of genes encoding enzymes of their target pathway
(fatty acid biosynthesis; Fig. 2A). In particular, the fabHB
(fabH2) gene, which encodes �-keto-acyl-ACP synthases, was
induced on the order of 30-fold, a response that proved to be
very selective for fatty acid biosynthesis inhibitors (Fig. 2B).
None of these responses were observed following treatment
with HCP (Fig. 2), indicating that in vivo HCP does not act via
fatty acid biosynthesis inhibition.

It has been reported elsewhere that effective in vivo inhibi-
tors of FabI enzymes require the formation of a stable ternary
complex with the enzyme and its cofactor, NAD� (12, 13).
Furthermore, FabI inhibition by HCP has not been character-
ized for the B. subtilis enzyme. Thus, we investigated the inhi-
bition of purified FabI from B. subtilis by triclosan and HCP

FIG. 1. (A) Hierarchical clustering of all topoisomerase inhibitors subjected to expression profiling in this study; (B) hierarchical clustering, as
in panel A, with the additional compounds hydrogen peroxide, doxorubicin, and azaserine.
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FIG. 2. (A) Deregulation of fatty acid biosynthesis genes after 80 min of treatment with three antibacterial compounds. The level of
deregulation is indicated as the fold change in comparison to that for the respective controls. C, cerulenin; T, triclosan; H, HCP; CoA, coenzyme
A. Underlined numbers indicate the levels of deregulation that were statistically significant. The target enzymes of triclosan and cerulenin are
indicated. (B) Deregulation of the fabHB gene after 80 min of treatment. Changes in the expression levels are shown as log ratios in comparison
to the levels for the respective controls.
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biochemically. Figure 3A shows that triclosan and HCP both
inhibit B. subtilis FabI in vitro. However, it is evident that, in
contrast to triclosan, HCP does not form a stable ternary com-
plex with FabI and NAD� (Fig. 3B).

In summary, these data lead us to conclude that HCP does
not exert its growth- inhibitory effect on B. subtilis cells via
inhibition of fatty acid biosynthesis but, rather, does so by an
unknown mechanism.

DISCUSSION

The aim of this study was to generate a prototype reference
database for assignment of antibacterial compounds to MoAs.
For this purpose we generated and analyzed the gene expres-
sion profiles for B. subtilis cells following treatment with 37
antibacterial compounds with known MoAs (the reference
compounds). We tested this data set for its potential to predict

the MoAs of antibacterial compounds and to generate other
information relevant to antibacterial drug discovery.

Following data production we investigated several statistical
data analysis approaches in order to assess the power of the
data set to predict MoAs. The most promising results were
obtained by using the MoA classifications obtained with an
SVM. SVM is distinguished from clustering, in that SVM ap-
plies a priori knowledge of the MoA classes of the reference
compounds. In a test experiment with the reference com-
pounds (the leave-one-out validation), the success rate of MoA
classification was best for the MoA classes cell wall biosynthe-
sis, DNA topology, membrane activity and ionophores, and
protein biosynthesis. These MoA groups represent the largest
groups in the data set. In particular, the high rate of correct
classification for cell wall biosynthesis inhibitors should be
noted. As has been reported previously, it is very difficult to
identify discriminative responses for this pathway by conven-
tional methods (2, 30). The SVM-based MoA predictor pre-
sented herein has a high likelihood of correctly assigning an
unknown inhibitor of this pathway. We have no direct expla-
nation for the reason why one compound in each of the classes
cell wall biosynthesis, DNA topology, and protein biosynthesis
was misclassified. This finding may simply reflect the limita-
tions of the present database, and precision will improve with
increasing numbers of compounds per class. This is in agree-
ment with our observation that the MoA classifications were
not successful for the MoA classes in the data set with small
numbers of compounds (fatty acid biosynthesis and folate bio-
synthesis). Thus, it is likely that the resolution of the SVM
approach is limited by the number of compounds in each class
with a defined MoA. For example, the MoA class cell wall
biosynthesis addresses the entire pathway, whereas the MoA
class DNA topology represents the inhibition of one enzyme
(type II topoisomerase). The resolution of the SVM classifica-
tion of any pathway could be increased by analysis of a larger
number of compounds and by definition of subclasses.

We did not analyze compounds with unknown MoAs. How-
ever, we investigated several test compounds for which the
MoAs, directly or indirectly, relate to the MoAs represented
by the reference compounds. This analysis revealed clear
strengths of the SVM-based classification approach, but it also
revealed some limitations. Actinonin, an antibacterial with a
MoA closely associated with protein biosynthesis (deformyla-
tion inhibitor), could clearly be distinguished from protein
biosynthesis inhibitors acting directly on the ribosome. How-
ever, three test compounds known to cause DNA damage
(stress), namely, azaserine, doxorubicin, and hydrogen perox-
ide, were classified as topoisomerase inhibitors (Table 1). Clus-
tering analysis of these compounds together with the reference
compounds for the MoA class DNA topology resulted in the
grouping of the compounds with the quinolones. This finding
indicates that the corresponding MoA predictor was not abso-
lutely selective for quinolones but indicates DNA stress in a
broader sense. This finding must be taken into account when
compounds of unknown MoAs are analyzed. The notable fact
that the intercalating agent ethidium bromide was not classi-
fied as DNA topology shows that the predictor does not assign
all types of DNA stress to this class.

HCP was included as a reference compound in the study,
based on reports (11) that this compound inhibits an enzyme of

FIG. 3. (A) Spectrophotometric assay of FabI showing the effects
of triclosan (E) and HCP (F) on the initial rate of the FabI reaction;
(B) formation of a high-affinity complex between FabI, [3H]NAD�,
and either triclosan (E) or HCP (F).
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the fatty acid biosynthesis pathway in vitro (Fig. 2A). The MoA
class fatty acid inhibition comprised only three compounds
(triclosan, cerulenin, and HCP), which was too small for suc-
cessful classification by use of SVM. However, the two known
fatty acid biosynthesis inhibitors in the study (triclosan and
cerulenin) yielded a response diagnostic for their MoAs by
inducing expression of several genes encoding fatty acid bio-
synthesis enzymes (Fig. 2A). This effect has been demonstrated
(28, 29), and a transcription factor, FapR, that controls the
expression of these genes in response to these drugs has been
identified (29). In this study it was evident that HCP did not
elicit such a response. This finding, together with the biochem-
ical data (Fig. 3), leads to the conclusion that HCP exerts its
antibacterial activity by a mechanism other than fatty acid
biosynthesis inhibition. The data described herein did not give
us any hints about the unknown in vivo MoA of HCP. How-
ever, the knowledge that an anticipated MoA based on in vitro
data is not confirmed in vivo is relevant to drug discovery and
represents value in itself.

In summary, we have shown that the approach presented in
this study produced information that has the potential to sup-
port priority decisions in an antibacterial drug discovery pro-
cess: (i) a high rate of success in MoA assignment was achieved
by the classification approach, (ii) two different MoAs for a
single target could be distinguished (i.e., coumarins versus
quinolones), and (iii) evidence that the in vivo MoA of HCP
differs from the in vitro MoA was generated. As discussed
above, we also observed several limitations. The major limita-
tion is the number of compounds that is necessary for success-
ful MoA classification. Our data indicate that a minimum of
five to six compounds per class is required. It will therefore be
difficult to identify a sufficient number of reference compounds
for certain MoA classes. Nevertheless, in the light of the
positive aspects outlined above, we believe that the approach
described herein may well be used to prioritize compound
candidates in drug discovery settings.
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