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Abstract

One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic
regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The
Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge aims to evaluate the success of GRN
inference algorithms on benchmarks of simulated data. In this article, we present GENIE3, a new algorithm for the inference
of GRNs that was best performer in the DREAM4 In Silico Multifactorial challenge. GENIE3 decomposes the prediction of a
regulatory network between p genes into p different regression problems. In each of the regression problems, the
expression pattern of one of the genes (target gene) is predicted from the expression patterns of all the other genes (input
genes), using tree-based ensemble methods Random Forests or Extra-Trees. The importance of an input gene in the
prediction of the target gene expression pattern is taken as an indication of a putative regulatory link. Putative regulatory
links are then aggregated over all genes to provide a ranking of interactions from which the whole network is
reconstructed. In addition to performing well on the DREAM4 In Silico Multifactorial challenge simulated data, we show that
GENIE3 compares favorably with existing algorithms to decipher the genetic regulatory network of Escherichia coli. It
doesn’t make any assumption about the nature of gene regulation, can deal with combinatorial and non-linear interactions,
produces directed GRNs, and is fast and scalable. In conclusion, we propose a new algorithm for GRN inference that
performs well on both synthetic and real gene expression data. The algorithm, based on feature selection with tree-based
ensemble methods, is simple and generic, making it adaptable to other types of genomic data and interactions.
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Introduction

Genetic regulatory networks (GRNs) [1] are central to all
biological organisms, and their deciphering is crucial to under-
stand the development, functioning and pathology of these
organisms. Once a remote theoretical possibility, this deciphering
is now made possible by advances in genomics, most notably high-
throughput profiling of gene expression patterns with DNA
microarrays. These advances have prompted the development of
a plethora of models of GRNs and algorithms to reverse-engineer
them from expression data [2–5].
The simplest models of genetic regulatory networks are based

on Boolean logic. Because of their simplicity, these Boolean
network models have provided high-level insights into the design
principles and emerging properties of GRNs [6]. At the other end
of the complexity spectrum are physical models mimicking the
biological mechanisms at play, including promoter recognition,
mRNA transcription and protein translation. These models,
typically based on systems of ordinary or stochastic differential
equations, can generate realistic behavior [7]. One of their main
drawbacks is that they have high-dimensional parameter spaces,

and thus a large number of experimental data are needed for their
identification. Nevertheless, hybrid methods involving ordinary
differential equations have shown good performances on real-life
genome-wide GRN inference [8].
Models based on the statistical analysis of dependencies between

expression patterns have an intermediate complexity, and have
already been successfully applied to the inference of large GRNs.
Early models used correlation coefficients between expression
patterns of all pairs of genes to infer ‘‘coexpression networks’’ [9].
However, correlation coefficients fail to capture more complex
statistical dependencies (e.g. non-linear ones) between expression
patterns, and thus more general measures of dependency based on
mutual information (MI), have been proposed. The simplest model
based on this measure, the ‘‘relevance network’’, computes MI
between all pairs of genes and infers the presence of a regulatory
interaction when MI is larger than a given threshold [10]. Various
refinements have been proposed to try to discriminate between
direct and indirect interactions in relevance networks. The CLR
algorithm [11] modifies the MI score based on the empirical
distribution of all MI scores. The ARACNE algorithm [12] filters
out indirect interactions from triplets of genes with the Data
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Processing Inequality [13]. Finally, MRNET [14] uses an iterative
feature selection method based on a maximum relevance/
minimum redundancy criterion.
Probabilistic graphical models have been widely used to model

GRNs [15]. With respect to correlation or mutual information
based approaches, these methods are potentially able to model
higher-order dependencies between the expression patterns of
genes. Among these methods, Bayesian networks have been used
since the advent of microarray technologies for GRN modeling and
inference [16]. A Bayesian network represents conditional depen-
dencies between random variables with a directed acyclic graph.
Learning the structure of a Bayesian network is a non trivial
problem, both from a theoretical and computational point of view,
and several sophisticated heuristics have been proposed in the
context of GRN inference [17,18]. One limitation of Bayesian
networks for GRN inference is that these models do not allow the
presence of cycles (feedback loops). While this limitation is partially
circumvented by dynamic Bayesian networks [17,19], these models
can only be learned from time-series expression data. Another
family of probabilistic models that gained interest recently for GRN
inference are Gaussian graphical models. These methods assume
that gene expression values are jointly Gaussian distributed and
represent conditional dependencies between genes by an undirected
graph. The estimation of this graph for high-dimensional data is
difficult but several robust solutions have been proposed in the
literature [20–23]. Although often very effective, the main
limitations of these methods is of course the Gaussianity assumption,
which also implies linear dependencies between variables, and the
undirected nature of the inferred regulatory links (although some
heuristics have been proposed to direct them [24]).
Within this context, this article presents GENIE3 (for ‘‘GEne

Network Inference with Ensemble of trees’’), a new GRN
inference method based on variable selection with ensembles of
regression trees. This method was best performer in the DREAM4
In Silico Multifactorial challenge [25]. Its main features with respect
to existing techniques is that it makes very few assumptions about
the nature of the relationships between the variables (which can
thus be non-linear) and can potentially capture high-order
conditional dependencies between expression patterns. It also
produces a directed graph of regulatory interactions and naturally
allows for the presence of feedback loops in the network. At the
same time, it remains intuitive, computationally tractable, and
easy to implement. In addition to its good performance on the
synthetic data of the DREAM4 challenge, we show that GENIE3
compares favorably with existing algorithms to decipher the
genetic regulatory network of Escherichia coli.

Methods

Problem Definition
We address the problem of recovering regulatory networks from

gene expression data. The targeted networks are directed graphs
with p nodes, where each node represents a gene, and an edge
directed from one gene i to another gene j indicates that gene i
(directly) regulates the expression of gene j. We only consider
unsigned edges; when gene i is connected to gene j, the former can
be either an activator or a repressor of the latter.
The goal of (unsupervised) gene regulatory network inference is

to recover the network solely from measurements of the expression
of the genes in various conditions. Given the dynamic and
combinatorial nature of genetic regulation, measurements of
different kinds can be obtained, including steady-state expression
profiles resulting from the systematic knockout or knockdown of
genes or time series measurements resulting from random

perturbations. In this paper, we focus on multifactorial perturba-
tion data as generated for the DREAM4 In Silico Size 100
Multifactorial subchallenge. Multifactorial expression data are static
steady-state measurements obtained by (slightly) perturbing all
genes simultaneously. Multifactorial data might correspond for
example to expression profiles obtained from different patients or
biological replicates. Such data are easier and less expensive to
obtain than knockout/knockdown or time series data and are thus
more common in practice. They are however also less informative
for the prediction of edge directionality [3,26,27] and therefore
make the regulatory network inference task more challenging.
In what follows, we define a (multifactorial) learning sample

from which to infer the network as a sample of N measurements:

LS~fx1,x2, . . . ,xNg,

where xk[Rp,k~1, . . . ,N is a vector of expression values of all p
genes in the kth experiment:

xk~(x1k,x
2
k, . . . ,x

p
k)

T:

From this learning sample, the goal of network inference
algorithms is to make a prediction of the underlying regulatory
links between genes. Most network inference algorithms work first
by providing a ranking of the potential regulatory links from the
most to the less significant. A practical network prediction is then
obtained by setting a threshold on this ranking. In this paper, we
focus only on the first task, which is also targeted by the evaluation
procedure of the DREAM4 challenge. The question of the choice
of an optimal confidence threshold, although important, will be
left open.
A network inference algorithm is thus defined in this paper

as a procedure that exploits a LS to assign weights wi,j§
0,(i,j~1, . . . ,p) to putative regulatory links from any gene i to
any gene j, with the aim of yielding large values for weights which
correspond to actual regulatory interactions.

Network Inference with Tree-based Methods
The basic idea of our procedure is to decompose the problem of

recovering a network involving p genes into p different subprob-
lems, where each of these subproblems consists in identifying the
regulators of one of the genes of the network. Exploiting
expression data, the identification of the regulatory genes for a
given target gene is defined as determining the subset of genes
whose expression directly influences or is predictive of the
expression of the target gene. Within the framework of supervised
learning, this problem is equivalent to a feature selection problem.
In this context, our solution will exploit the embedded feature
ranking mechanism of tree-based ensemble methods.
We first describe our procedure to solve the network inference

problem using feature selection techniques and then specialize it to
the case of tree-based ensemble methods.

Network Inference as a Feature Selection Problem
Our method makes the assumption that the expression of each

gene in a given condition is a function of the expression of the
other genes in the network (plus some random noise). Denoting by
x{j
k the vector containing the expression values in the kth

experiment of all genes except gene j:

x{j
k ~(x1k, . . . ,x

j{1
k ,xjz1

k , . . . ,xpk)
T,
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we assume that we can write:

xjk~fj(x
{j
k )zek,Vk ð1Þ

where ek is a random noise with zero mean (conditionally to x{j
k ).

We further make the assumption that the function fj only exploits

the expression in x{j of the genes that are direct regulators of
gene j, i.e. genes that are directly connected to gene j in the
targeted network. Recovering the regulatory links pointing to
gene j thus amounts at finding those genes whose expression is
predictive of the expression of the target gene. In machine
learning terminology, this can be considered as a feature selection
problem (in regression) for which many solutions exist [28]. We
assume here the use of a feature ranking technique that, instead
of directly returning a feature subset, yields a ranking of the
features from the most relevant to the less relevant for predicting
the output.
The proposed network inference procedure is illustrated in

Figure 1 and works as follows:

N For j=1 to p:

– Generate the learning sample of input-output pairs for gene
j:

LSj~f(x{j
k ,xjk),k~1, . . . ,Ng:

– Use a feature selection technique on LSj to compute
confidence levels wi,j ,Vi=j, for all genes except gene j itself.

N Aggregate the p individual gene rankings to get a global
ranking of all regulatory links.

Note that depending of the interpretation of the weights wi,j ,
their aggregation to a get a global ranking of regulatory links is not
trivial. We will see in the context of tree-based methods that it
requires to normalize each expression vector appropriately.

Gene Ranking with Tree-based Methods
The nature of the problem and the proposed solution put some

constraints on candidate feature selection techniques. The nature
of the functions fj is unknown but they are expected to involve the
expression of several genes (combinatorial regulation) and to be
non-linear. The number of input features in each of these
problems is typically much greater than the number of
observations. Computationally, since the identification of a
network involving p genes requires to rerun the algorithm p times,
it is also of interest for this algorithm to be fast and to require as
few manual tuning as possible. Tree-based ensemble methods are
good candidates for that purpose. These methods do not make any
assumption about the nature of the target function, can potentially
deal with interacting features and non-linearity. They work well in
the presence of a large number of features, are fast to compute,
scalable, and essentially parameter-free (see [29] for a review).
We first briefly describe these methods and their built-in feature

ranking mechanism and then discuss their use in the context of the
network inference procedure described in the previous section.

Tree-based Ensemble Methods
Each subproblem, defined by a learning sample LSj , is a

supervised (non-parametric) regression problem. Using square
error loss, each problem amounts at finding a function fj that
minimizes the following error:

XN

k~1

(xjk{fj(x
{j
k ))2: ð2Þ

Regression trees [30] solve this problem by developing tree
structured models. The basic idea of this method is to recursively
split the learning sample with binary tests based each on one input

variable (selected in x{j ), trying to reduce as much as possible the

variance of the output variable (xj ) in the resulting subsets of
samples. Candidate splits for numerical variables typically
compare the input variable values with a threshold which is
determined during the tree growing.

Figure 1. GENIE3 procedure. For each gene j~1, . . . ,p, a learning sample LSj is generated with expression levels of j as output values and
expression levels of all other genes as input values. A function fj is learned from LSj and a local ranking of all genes except j is computed. The p local
rankings are then aggregated to get a global ranking of all regulatory links.
doi:10.1371/journal.pone.0012776.g001
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Single trees are usually very much improved by ensemble
methods, which average the predictions of several trees. In our
network inference procedure, we compare two tree-based
ensemble methods based on randomization, namely Random
Forests [31] and Extra-Trees [32]. In a Random Forests ensemble,
each tree is built on a bootstrap sample from the original learning
sample and, at each test node, K attributes are selected at random
among all candidate attributes before determining the best split. In
the Extra-Trees method on the other hand, each tree is built from
the original learning sample and at each test node, the best split is
determined among K random splits, each determined by randomly
selecting one input (without replacement) and a threshold. For
these two methods, we will grow ensembles of 1000 trees and we
will consider two values of the main parameter of these methods:
K~

ffiffiffiffiffiffiffiffiffiffi
p{1

p
and K~p{1, where p{1 is the number of inputs,

equal to the number of potential regulators of each gene.
Empirical validations in [32] have shown that these two values
of K were near-optimal in terms of predictive accuracy on several
problems. Note however that we do not exclude that better results
could be obtained with other settings of K.

Variable Importance Measure
One of the most interesting characteristics of tree-based

methods is that it is possible to compute from a tree a variable
importance measure that allows to rank the input features
according to their relevance for predicting the output. Several
variable importance measures have been proposed in the literature
for tree-based methods. In our experiment, we consider a measure
which at each test node N computes the total reduction of the
variance of the output variable due to the split, defined by [30]:

I(N )~#SVar(S){#StVar(St){#SfVar(Sf ), ð3Þ

where S denotes the set of samples that reach node N , St (resp. Sf )

denotes its subset for which the test is true (resp. false), Var(.) is the
variance of the output variable in a subset, and # denotes the
cardinality of a set of samples. For a single tree, the overall
importance of one variable is then computed by summing the I
values of all tree nodes where this variable is used to split. Those
attributes that are not selected at all obtain a zero value of their
importance, and those that are selected close to the root node of
the tree typically obtain high scores. Attribute importance
measures can be easily extended to ensembles, simply by averaging
importance scores over all trees in the ensemble. The resulting
importance measure is then even more reliable because of the
variance reduction effect resulting from this averaging.
Breiman [31] proposed an alternative measure that computes

the average reduction of the tree accuracy on out-of-bag samples
(i.e. training objects that are not present in the bootstrap sample
used to build each tree) when the values of the corresponding
variable are randomly permuted. While this procedure has some
advantages with respect to the variance reduction based measure
of (3) [33], it gives in most practical applications very similar results
but is much more computationally demanding. Furthermore, it
does not extend to methods like the Extra-Trees method which do
not consider bootstrap sampling.

Regulatory Link Ranking
Each tree-based model yields a separate ranking of the genes as

potential regulators of a target gene in the form of weights wi,j

computed as sums of total variance reductions in the form (3). The
sum of the importances of all variables for a tree is equal to the
total variance of the output variable explained by the tree, which

in the case of unpruned trees (as they are in the case of Random
Forests and Extra-Trees ensembles) is usually very close to the
initial total variance of the output:

X

i=j

wi,j&N Var(S), ð4Þ

where S is the learning sample from which the tree was built (i.e.

LSj for the Extra-Trees method and a bootstrap sample for the
Random Forests method) and where Var(S) is the variance of the
target gene estimated in the corresponding learning sample. As a
consequence, if we trivially order the regulatory links according to
the weights wi,j , this is likely to introduce a positive bias for
regulatory links towards the more highly variable genes. To avoid
this bias, we have first normalized the gene expressions so that they
all have a unit variance in the training set, before applying the
tree-based ensemble methods. This normalization indeed implies
that the different weights inferred from different models predicting
the different gene expressions are comparable.

Computational Complexity
The computational complexity of the Random Forests and

Extra-Trees algorithms is on the order of O(TKN logN), where T
is the number of trees, N is the learning sample size and K is the
main parameter of the two tree-based methods. GENIE3’s
complexity is thus on the order of O(pTKN logN) since it
requires to build an ensemble of trees for each of the p genes. The
complexity of the whole procedure is thus log linear with respect to
the number of measurements and, at worst, quadratic with respect
to the number of genes (when K~p{1).
To fix ideas, with our MatLab implementation of GENIE3, it

takes 6.5 minutes to infer the five networks of the DREAM4
challenge and 7 hours to infer the E. coli network (with known
transcription factors), in both cases with Random Forests and
K~

ffiffiffiffiffiffiffiffi
nTF

p
, where nTF is the number of potential regulators (see

later for the details of these experiments). These computing times
where measured on a 16GB RAM, Intel L5420 2.50 GHz
computer.
Note that, if needed, the algorithm can be easily parallelized as

the p feature selection problems, as well as the different trees in an
ensemble, are independent of each other.

Results

Datasets
We report below two series of experiments: first on the

DREAM4 In Silico Multifactorial challenge and then on the
Escherichia coli regulatory network.

DREAM4 Datasets
The DREAM (for ‘‘Dialogue for Reverse Engineering Assess-

ments and Methods’’) initiative organizes an annual reverse
engineering competition called the DREAM challenge [34–37].
We report here our results on the DREAM4 edition of this
competition, where one challenge concerned in silico regulatory
network inference [25]. This challenge was divided into three
subchallenges, called In Silico Size 10, In Silico Size 100, and In Silico
Size 100 Multifactorial. We only report here our result of this last
subchallenge.
The goal of the In Silico Size 100 Multifactorial subchallenge was

to infer five networks of p=100 genes each from multifactorial
perturbation data. Multifactorial data are defined as static steady-
state expression profiles resulting from slight perturbations of all
genes simultaneously.

Inferring GRNs with Trees
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All networks and data were generated with GeneNetWeaver
(GNW) version 2.0 [38]. Network topologies were obtained by
extracting subnetworks from transcriptional regulatory networks
of E. coli and S. cerevisiae. The subnetwork extraction method was
adapted to preferentially include parts of the network with cycles
but direct self-interactions were removed. The dynamics of the
networks were simulated using a detailed kinetic model of gene
regulation. Noise was added both in the dynamics of the
networks and on the measurement of expression data. Multifac-
torial perturbations were simulated by slightly increasing or
decreasing the basal activation of all genes of the network
simultaneously by different random amounts. In total, the
number of expression conditions N for each network was set to
100.

Escherichia coli Dataset
In addition, we carried out experiments with our method on the

inference of the regulatory network of Escherichia coli, which has
been used by several authors as a benchmark.
The dataset of expression profiles we used was retrieved from

the Many Microbe Microarrays (M3D) database [39] (version 4
build 6). It contains 907 E. coli microarray expression profiles of
4297 genes collected from different experiments at steady-state
level. To validate the network predictions we used 3433
experimentally confirmed regulatory interactions among 1471
genes that have been curated in RegulonDB version 6.4 [40].

Performance Metrics
Our algorithm provides a ranking of the regulatory links from

the most confident to the less confident. To evaluate such a
ranking independently of the choice of a specific threshold, we
used both precision-recall (PR) curve and receiver operating
characteristic (ROC) curve. The former plots for varying
thresholds on the importance scores the proportion of true
positives among all predictions (precision) versus the percentage of
true positives that are retrieved (recall), whereas a ROC curve
plots the true positive rate versus the false positive rate.
To summarize these curves, the DREAM organizers proposed

different statistics:

N AUPR: The area under the PR curve.

N AUROC: The area under the ROC curve.

N AUPR p-value: The probability that a given or larger AUPR is
obtained by random ordering of the potential network edges.

N AUROC p-value: The probability that a given or larger
AUROC is obtained by random ordering of the potential
network edges.

An overall score was used to evaluate the predictions for the five
networks of each subchallenge:

overall score~{0:5 log10 (p1p2),

where p1 and p2 are respectively the geometric means of AUPR p-
values and AUROC p-values taken over the five networks.

Results on the DREAM4 Multifactorial Data
Challenge. We took part in the DREAM4 In Silico

Multifactorial challenge, where the goal was to provide the
ranking of the potential (directed) regulatory interactions for five
simulated networks. At the time of submission, the gold standard
networks were unknown and it was thus impossible to choose the
best one among several tree-based methods at our disposal. We

thus submitted the rankings obtained by our GENIE3 procedure
using the Random Forests algorithm with K~

ffiffiffiffiffiffiffiffiffiffi
p{1

p
.

Among twelve challengers, GENIE3 got the best performance
with an overall score of 37.428. As a comparison, the score of the
first runner-up was 28.165.
Table 1 shows the AUPR and AUROC values of our

predictions and those of the first runner-up, and Table 2 shows
their associated p-values, indicating that our predictions were
significantly better than random guessing. On all networks, these
scores were the highest among the twelve challengers. Individual
PR and ROC curves on each network are collected in Figure S1.

Comparison of Tree-based Methods. We have sub-
sequently applied GENIE3 on these same datasets, using the
Extra-Trees algorithm, and also setting K to its maximum value
(K~p{1). Table 3 shows the overall scores obtained with the four
different combinations. The Random Forests and the Extra-Trees
algorithms gave comparable results, and the predictions were
improved when the parameter K was increased, i.e. when the
randomization was reduced. The overall best result was achieved
when we used Random Forests with K~p{1, giving an overall
score equal to 40.471. This result is slightly better than our initial
submission to the challenge. Unless otherwise stated, all sub-
sequent experiments in the paper will be carried out with this
particular setting. Note that in this case, the algorithm simply
corresponds to the Bagging method applied on standard regression
trees [41].

Detailed Analysis of the Predictions. To have a more
precise picture of the quality of the predictions obtained with
GENIE3, Figure 2 depicts the ranking of regulators for all genes,
grouped according to their number of regulators, for the third
network which was predicted with the highest AUPR score by our
method. Similar plots for the other networks can be found in
Figure S2.
As can be seen from this figure, GENIE3 is able to retrieve the

best regulator for about two thirds of the genes that have only one
regulator. For genes with two regulators, the method retrieves one
of the two regulators for about the same proportion of genes but is
less good at retrieving the second regulator (only for one gene, the
two regulators are at the top of the ranking). For genes with three
or more regulators, even one regulator seems to be difficult to
retrieve.
This suggests that the performance of GENIE3 at retrieving a

regulator of one gene degrades as the number of regulators of this
gene increases, as also observed from the analysis of the results of
the DREAM3 challenge in [42]. To further check this hypothesis,
we plotted in Figure 3 the median rank of the regulators of gene j,
such that gene j is regulated by an increasing number of genes.
The rank is presented here as a percentage, such that the first and
last regulators of the ranking have a rank equal to 100% and 0%

Table 1. AUPR and AUROC scores for DREAM4 Multifactorial
challenge.

Method NET1 NET2 NET3 NET4 NET5

AUPR GENIE3-RF-sqrt 0.154 0.155 0.231 0.208 0.197

2nd best 0.108 0.147 0.185 0.161 0.111

AUROC GENIE3-RF-sqrt 0.745 0.733 0.775 0.791 0.798

2nd best 0.739 0.694 0.748 0.736 0.745

GENIE3-RF-sqrt: GENIE3 using Random Forests with K~
ffiffiffiffiffiffiffiffiffiffi
p{1

p
. 2nd best:

Second best performer in the DREAM4 Multifactorial challenge.
doi:10.1371/journal.pone.0012776.t001
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respectively. This plot clearly shows that the quality of the ranking
monotonically decreases with the in-degree of the genes.

Undirected Versus Directed Predictions. One interesting
feature of GENIE3 is its potential ability to predict directed
networks, while methods based on mutual information or
correlation are only able to predict undirected networks.
To see to what extent the networks predicted by our method are

asymmetric, we show in Table 4 for each network the proportion
of predicted regulatory links for which the opposite link is not
predicted. Notice that these predictions were obtained from the
Random Forests ranking, by fixing a weight threshold such that
the predicted network contains the same total number of edges as
the gold standard. This percentage is compared with the same
percentage computed for the gold standard. Our predicted
networks are clearly more symmetric than the corresponding gold
standards but they nevertheless contain a significant number of
asymmetric predictions (52% of the links on the average).
Of course, the fact that GENIE3 predicts asymmetric networks

does not ensure that the prediction of these asymmetric links is
really informative; asymmetric predictions might precisely corre-
spond to spurious predictions. To check this, we swapped the
weights wij and wji for each pair of genes (i,j) and assessed the new
resulting rankings. The overall score dropped from 40.471 to
14.674, suggesting that GENIE3 tends to correctly assign the
highest weight to the true direction, given an undirected regulatory
link.
To further assess the ability of our method to predict link

directions, we computed the proportion of edges i?j in the gold
standard network such that there is no edge j?i and for which our
method wrongly predicts wi,jvwj,i. This can be considered as an
error rate when our method is used for directing the edges of a
known undirected network. Table 5 shows the average value of
this error rate over the five networks, for increasing recall values.
Given that there are only two choices for a given link, a random
ranking of the directed interactions would yield an error rate close
to 50%. For all recall values, the error rate is significantly lower
than 50% suggesting that our method is a plausible approach for
directing an undirected network. The error rate is smaller (20%)
for the top ranked interactions but it remains quite good (27%)
even when considering less confident predictions.
Finally, we compared GENIE3 to three existing approaches

based on the computation of mutual information (MI), namely

CLR [11], ARACNE [12] and MRNET [14], and to one
approach based on graphical Gaussian models (GGMs) [20]. All
these four methods can only predict undirected networks. For
these experiments, we used the original MatLab implementation
of CLR [43] and the implementations of ARACNE and MRNET
in the minet R package [44]. To compute mutual information, we
used a B-spline smoothing and discretization, as implemented in
the CLR package, with the parameter setting used in [11] (10 bins
and third order B-splines). For ARACNE, the tolerance parameter
was optimized between 0 and 15%, as advised in [12]. For GGMs,
we used the GeneNet R package [45].
We carried two evaluations, the first one against the undirected

gold standard (Table 6) and the second one against the directed
gold standard (Table 7). In the first case, the predictions of
GENIE3 were symmetrized by assigning to each pair (i,j) the
maximum between wi,j and wj,i. In the second case, links (i,j) and
(j,i) were both assigned the same weights by the four undirected
methods, while GENIE3 was used unmodified. In the undirected
case, GGMs give the lowest score while all MI-based methods are
equally good with only a slight advantage to our method. In the

Table 2. AUPR and AUROC p-values for DREAM4 Multifactorial challenge.

Method NET1 NET2 NET3 NET4 NET5 Overall p-value

AUPR p-value GENIE3-RF-sqrt 3.3e-34 7.9e-54 1.8e-54 5.5e-47 4.6e-44 1.0e-46

2nd best 5.6e-23 9.7e-50 6.6e-43 1.5e-35 4.4e-23 7.4e-35

AUROC p-value GENIE3-RF-sqrt 3.3e-18 1.1e-28 9.7e-34 6.7e-33 1.9e-34 1.4e-29

2nd best 1.7e-17 5.4e-21 4.9e-28 1.9e-23 1.1e-24 6.3e-23

GENIE3-RF-sqrt: GENIE3 using Random Forests with K~
ffiffiffiffiffiffiffiffiffiffi
p{1

p
. 2nd best: Second best performer in the DREAM4 Multifactorial challenge.

doi:10.1371/journal.pone.0012776.t002

Table 3. Overall scores of GENIE3 for DREAM4 networks.

RF-sqrt RF-all ET-sqrt ET-all

Overall score 37.428 40.471 35.881 40.111

RF: Random Forests, ET: Extra-Trees, sqrt: K~
ffiffiffiffiffiffiffiffiffiffi
p{1

p
, all: K~p{1.

doi:10.1371/journal.pone.0012776.t003

Figure 2. Detailed results on DREAM4 NET3. Ranking of the
regulators for all genes. Each row corresponds to a gene. Dots in each
row represent the positions in the Random Forests ranking of the
regulators of this gene. Genes are ordered on the y-axis according to
their number of regulators in the gold standard network; those having
the same number of regulators are grouped inside an horizontal block
(from no regulator at the top to 6 regulators at the bottom). Inside each
block, genes are ordered according to the median rank of their
regulators. The ranking of interactions was obtained with Random
Forests and K~p{1.
doi:10.1371/journal.pone.0012776.g002
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directed case, GENIE3 is significantly better than the four other
methods that are constrained to predict undirected links.

Performance on Escherichia coli Dataset. As a first
experiment on the real E. coli dataset, we adopted the same
evaluation protocol as in [11] that assumes that we have prior
knowledge about which genes of the gold standard (i.e. the
experimentally confirmed interactions curated in RegulonDB) are
transcription factors. In the context of our method, this makes
each feature selection problem much easier as the regulators have
to be identified among a much smaller set of genes. This also
makes undirected and directed methods equally applicable (since
all links are automatically directed from transcription factors to
genes). Figure 4A shows the precision-recall curves for the four
different settings of the tree-based procedure. Contrary to the
DREAM4 networks, setting K~

ffiffiffiffiffiffiffiffi
nTF

p
, where nTF is the number

of potential regulators, improves the performance compared to
K~nTF , RF-sqrt leading to the best precision-recall curve.
Figure 4B compares this method with the four undirected
methods, CLR, ARACNE, MRNET, and GGMs, using exactly
the same protocol. The predictions obtained using GENIE3 with
Random Forests and K~

ffiffiffiffiffiffiffiffi
nTF

p
outperform those obtained from

ARACNE and MRNET, and give a precision-recall curve
comparable with CLR and GGMs (although less good for small

recall values). Figure S3 shows the ranking of the regulators with
GENIE3-RF-sqrt for all genes grouped according to their number
of regulators.
As a second experiment, we simulated conditions similar to the

DREAM4 challenge, where transcription factors were unknown
and tried to infer the network using as input features in each step
of our procedure all 1471 genes except the target gene itself. For
this experiment, precision never exceeded 6%, even for the
smallest values of recall. This indicates that the predictions are
extremely poor and only slightly better than random guessing.
With respect to the results obtained in the DREAM4 challenge,

these results are disappointing. The larger number of genes in this
case does not explain everything since it also comes with an
increase of the number of observations. Actually in both cases, the
number of observations is comparable to the number of genes.
However, since the E. coli dataset is a collection of expression data
compiled from experiments carried out in different laboratories,
there may be some redundancy among these experiments or some
bias in their selection. They are thus probably not as statistically
useful as the really randomized and i.i.d. perturbation data
generated for the DREAM4 multifactorial challenge. Other
potential reasons for these poor results are the fact that the gold
standard network is not complete and also the discrepancy that
exists between the simulation model used to generate the
DREAM4 data and the real regulation mechanism of E. coli.

Discussion

We developed GENIE3, a procedure that aims at recovering a
gene regulatory network from multifactorial expression data. This
procedure decomposes the problem of inferring a network of size p
into p different feature selection problems, where the goal is to
identify the regulators of one of the genes of the network. Among
different feature selection methods, we chose to use tree-based
ensemble methods. These methods do not make any assumption
about the nature of gene regulation, can potentially deal with
combinatorial regulations and non-linearity. They work well in the
presence of a large number of genes, are fast to compute and
scalable.

Figure 3. Rank of regulators as a function of the in-degree of
the target. The in-degree of a target is its number of regulators. The
dot corresponding to in-degree n is the median rank of regulators that
regulate a gene with in-degree n, over the five networks. The rank is
presented here as a percentage, such that the first and last regulators of
each ranking have a rank equal to 100% and 0% respectively. The
ranking of interactions was obtained with Random Forests and
K~p{1.
doi:10.1371/journal.pone.0012776.g003

Table 4. Asymmetry of predicted and gold standard
networks.

NET1 NET2 NET3 NET4 NET5

GENIE3-RF-all 50% 58% 48% 48% 58%

Gold standard 92% 94% 97% 96% 98%

The asymmetry of a network is measured by the proportion of regulatory links
for which the opposite link is not predicted.
doi:10.1371/journal.pone.0012776.t004

Table 6. Overall scores for the undirected networks of
DREAM4.

GENIE3-RF-all CLR ARACNE MRNET GGM

Overall score 36.736 35.838 32.632 34.124 26.846

Links (i,j) and (j,i) were both assigned the same weights by CLR, ARACNE,
MRNET, and GGM, while the predictions of GENIE3 were symmetrized by
assigning to each pair (i,j) the maximum between wi,j and wj,i .
doi:10.1371/journal.pone.0012776.t006

Table 5. Error rates on edge directionality on DREAM4
networks.

Recall 5% 25% 50% 75% 100%

Error rate 20% 28% 27% 27% 26%

The error rate is the proportion of edges i?j in the gold standard network such
that there is no edge j?i and for which our method wrongly predicts wi,jvwj,i .
Each column corresponds to one value of the number of considered directed
links of the gold standard. These error rates were obtained with Random
Forests and K~p{1, and averaged over the five networks.
doi:10.1371/journal.pone.0012776.t005
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GENIE3 got the best performance on the DREAM4 In Silico
Multifactorial challenge and is competitive with existing algorithms
to decipher the genetic regulatory network of Escherichia coli
assuming that transcription factors are known. When no prior
knowledge is available about transcription factors, our results on
the E. coli network were however not better than random guessing.
The reason of this discrepancy with respect to the results on the
DREAM4 challenge deserves to be further analysed.
Our algorithm can be improved along several directions. As

tree-based ensemble methods, we used the Random Forests and
the Extra-Trees algorithms, that both gave comparable results.
However, the performances of these methods depend to some
extent on their main parameter, the number K of randomly
selected attributes at each node of one tree. On the DREAM4
Multifactorial datasets, improved predictions were obtained by
increasing K to its maximum value (K~p{1), while on the E. coli
dataset, the best ranking of interactions was obtained by using
K~

ffiffiffiffiffiffiffiffi
nTF

p
. It would thus be of interest to find a way to

automatically tune this parameter. A first solution could be to
select the value of the parameter that leads to the best performance
for the prediction of the expression values, i.e. that minimizes
mean square error in (2) estimated by cross-validation. Unfortu-
nately, this solution did not work on the E. coli dataset, where using
K~nTF led to lower mean square error but a less good precision-
recall curve.
There is also a potential room for improvement on the way

variable importance scores are normalized. One apparent
drawback of the measure we proposed is that it does not take
into account the quality of the trees in generalization. Indeed since
our trees are fully grown, importance weights satisfy equation (4)
which, given our normalization, attributes equal weights to all tree

models irrespective of their quality when used to predict the
expression values of the target gene. We tried to correct for this
bias by normalizing the variable importance scores by the effective
variance reduction brought by the model as estimated by cross-
validation but it actually deteriorated the performances. The
question of the optimal normalization remains thus open at this
stage.
In this paper, we focused on providing a ranking of the

regulatory interactions. In some practical applications however,
one would like to determine a threshold on this ranking to obtain a
practical predicted network. To address this question, we have
tried to exploit cross-validation estimates of the mean-square error
as a criterion to determine such a threshold but we have not been
successfull so far. As future work, we therefore would like to extend
the technique developed in [46] to better assess the significance of
the predicted regulatory links and thus help determining a
threshold.
Our experiments on the DREAM4 dataset show that GENIE3

is able to predict the direction of the edges to some extent, even
though it only exploits steady-state measurements. This is an
interesting result as this is commonly admitted to be a difficult
problem. Bayesian networks also potentially allow to predict edge
directionality. A comparison with this family of methods would be
an interesting future work direction. Note that with respect to our
approach, Bayesian networks do not allow for the presence of
cycles in the predicted network, which could be a limiting factor
for networks such as those in DREAM4 that contain cycles by
construction.
Several procedures using regression trees have already been

proposed to solve the regulatory network inference problem. Most
of these procedures exploits other kinds of data in addition to
expression data, e.g. counts of regulatory motifs that serve as
binding sites for transcription factors [47,48], or ChIP-based
binding data [49]. The closest work to ours is the procedure
developed by Segal et al. [50], that recovers module networks from
expression data, so that the genes in each module share the same
regulators in the network and the same conditional probability
distribution, represented by a (single) regression tree.
Finally, although we exploited tree-based ensemble methods,

our framework is general and other feature selection techniques
could have been used as well. Actually, several existing methods

Figure 4. Precision-Recall curves for the E. coli network. Only known transcription factors were used as input genes. A. Comparison between
the four different settings of the tree procedure. B. Comparison to other approaches.
doi:10.1371/journal.pone.0012776.g004

Table 7. Overall scores for the directed networks of DREAM4.

GENIE3-RF-all CLR ARACNE MRNET GGM

Overall score 40.471 31.57 28.488 30.435 23.705

Links (i,j) and (j,i) were both assigned the same weights by CLR, ARACNE,
MRNET, and GGM, while GENIE3 was used unmodified.
doi:10.1371/journal.pone.0012776.t007
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for network inference can be interpreted as special instances of this
framework. In particular, mutual information as used in
Relevance Networks [10] or CLR [11] is a common dependency
measure exploited in filter-kind approaches for feature selection
[28]. MRNET [14] also considers each gene in turn as the target
output and exploits the maximum relevance/minimum redun-
dancy feature selection method to rank its candidate regulators.
Like Relevance Networks and CLR, this method reduces all the
information contained in the expression data to mutual informa-
tion between all pairs of genes, while our approach is by nature
multivariate. Meinshausen and Bühlmann [21] show that finding
the zero entries in the inverse covariance matrix of a multivariate
Gaussian distribution can be solved by applying the LASSO
embedded feature selection mechanism using each gene in turn as
the target output, which links Gaussian graphical models with our
approach. While the latter assumes that the functions fj in (1) are
linear, our approach can be seen as a relaxation of this assumption
by exploiting a non-parametric supervised learning method.
Whether or not this is an advantage in practice for inferring
regulatory networks is still an open question that deserves to be
studied.

Software Availability
Our GENIE3 software is available from http://www.montefiore.

ulg.ac.be/,huynh-thu/software.html.

Supporting Information

Figure S1 PR and ROC curves for each DREAM4 Multifac-
torial network. Left: PR curves. Right: ROC curves. Prec:
Precision. FPR: False Positive Rate. TPR: True Positive Rate.

The rankings of interactions were obtained using Random Forests
and K= !p21.
Found at: doi:10.1371/journal.pone.0012776.s001 (3.04 MB TIF)

Figure S2 Ranking of the regulators for all genes on DREAM4
networks. Each row in a figure corresponds to a gene. Dots in each
row represent the positions in the Random Forests ranking of the
regulators of this gene. Genes are ordered on the y-axis according
to their number of regulators in the gold standard network; those
having the same number of regulators are grouped inside an
horizontal block. Inside each block, genes are ordered according to
the median rank of their regulators. The rankings of interactions
were obtained with Random Forests and K= p21.
Found at: doi:10.1371/journal.pone.0012776.s002 (8.11 MB TIF)

Figure S3 Ranking of the regulators for all genes on the E. coli
network. Each row in a figure corresponds to a gene. Dots in each
row represent the positions in the Random Forests ranking of the
regulators of this gene. Genes are ordered on the y-axis according
to their number of regulators in the gold standard network; those
having the same number of regulators are grouped inside an
horizontal block. Inside each block, genes are ordered according to
the median rank of their regulators. Only known transcription
factors where used as input genes. The ranking of interactions was
obtained with Random Forests and K= ! nTF.
Found at: doi:10.1371/journal.pone.0012776.s003 (3.06 MB TIF)
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