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Abstract
We propose a new penalty function which, when
used as regularization for empirical risk mini-
mization procedures, leads to sparse estimators.
The support of the sparse vector is typically a
union of potentially overlapping groups of co-
variates defined a priori, or a set of covariates
which tend to be connected to each other when
a graph of covariates is given. We study theo-
retical properties of the estimator, and illustrate
its behavior on simulated and breast cancer gene
expression data.

1. Introduction
Estimation of sparse linear models by the minimization of
an empirical error penalized by a regularization term is
a very popular and successful approach in statistics and
machine learning. Controlling the trade-off between data
fitting and regularization, one can obtain estimators with
good statistical properties, even in very large dimension.
Moreover, sparse classifiers lend themselves particularly
well to interpretation, which is often of primary importance
in many applications such as biology or social sciences. A
popular example is the penalization of a !2 criterion by the
!1 norm of the estimator, known as lasso (Tibshirani, 1996)
or basis pursuit (Chen et al., 1998). Interestingly, the lasso
is able to recover the exact support of a sparse model from
data generated by this model if the covariates are not too
correlated (Zhao & Yu, 2006; Wainwright, 2006).

1This work was undertaken while Guillaume Obozinski was
affiliated with UC Berkeley, Department of Statistics.
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While the !1 norm penalty leads to sparse models, it does
not contain any prior information about, e.g., possible
groups of covariates that one may wish to see selected
jointly. Several authors have recently proposed new penal-
ties to enforce the estimation of models with specific spar-
sity patterns. For example, when the covariates are parti-
tioned into groups, the group lasso leads to the selection
of groups of covariates (Yuan & Lin, 2006). The group
lasso penalty for a model, also called !1/!2 penalty, is the
sum (i.e., !1 norm) of the !2 norms of the restrictions of the
model to the different groups of covariates. It recovers the
support of a model if the support is a union of groups and
if covariates of different groups are not too correlated. It
can be generalized to an infinite-dimensional setting (Bach,
2008). Other variants of the group lasso include joint selec-
tion of covariates for multi-task learning (Obozinski et al.,
2009) and penalties to enforce hierarchical selection of co-
variates, e.g., when one has a hierarchy over the covariates
and wants to select covariates only if their ancestors in the
hierarchy are also selected (Zhao et al., 2009; Bach, 2009).

In this paper we are interested in a more general situation.
We assume that either (i) groups of covariates are given,
potentially with overlap between the groups, and we wish
to estimate a model whose support is a union of groups, or
(ii) that a graph with covariates as vertices is given, and we
wish to estimate a model whose support contains covari-
ates which tend to be connected to each others on the graph.
Although quite general, this framework is motivated in par-
ticular by applications in bioinformatics, when we have to
solve classification or regression problems with few sam-
ples in high dimension, such as predicting the class of a
tumour from gene expression measurements with microar-
rays, and simultaneously select a few genes to establish a
predictive signature (Roth, 2002). Selecting a few genes
that either belong to the same functional groups, where
the groups are given a priori and may overlap, or tend to
be connected to each other in a given biological network,



Group Lasso with Overlap and Graph Lasso

could then lead to increased interpretability of the signature
and potential better performances (Rapaport et al., 2007).

To reach this goal, we propose and study a new penalty
which generalizes the !1/!2 norm to overlapping groups for
the first case, and propose to cast the problem of selecting
connected covariates in a graph as the problem of selecting
a union of overlapping groups, with adequate definition of
groups, for the second case. We mention various properties
of this penalty, and provide conditions for the consistency
of support estimation in the regression setting. Finally, we
report promising results on both simulated and real data.

2. Problem and notations
For any vectorw ∈ Rp, ‖w‖ denotes the Euclidean norm of
w, and supp (w) ⊂ [1, p] denotes the support of w, i.e., the
set of covariates i ∈ [1, p] such that wi $= 0. A group of co-
variates is a subset g ⊂ [1, p]. The set of all possible groups
is therefore P([1, p]), the power set of [1, p]. Throughout
the paper, G ⊂ P([1, p]) denotes a set of groups, usually
fixed in advance for each application. We say that two
groups overlap if they have at least one covariate in com-
mon. For any vector w ∈ Rp, and any group g ∈ G, we
denote wg ∈ Rp the vector whose entries are the same as
w for the covariates in g, and are 0 for other other covari-
ates. However, we use a different convention for elements
of VG ⊂ Rp×G the set of |G|-tuples of vectors v = (vg)g∈G ,
where each vg is this time a separate vector in Rp, which
satisfies supp (vg) ⊂ g for each g ∈ G. For any differen-
tiable function f : Rp → R, we denote by ∇f(w) ∈ Rp

the gradient of f at w ∈ Rp and by ∇gf(w) ∈ Rg the
partial gradient of f with respect to to the covariates in g.

3. Group lasso with overlapping groups
When the groups in G do not overlap, the group lasso
penalty (Yuan & Lin, 2006) is defined as:

∀w ∈ R
p , ΩG

group (w) =
∑

g∈G

‖wg‖ . (1)

When the groups in G form a partition of the set of covari-
ates, then ΩG

group (w) is a norm whose balls have singulari-
ties when some wg are equal to zero. Minimizing a smooth
convex risk functional over such a ball often leads to a so-
lution that lies on a singularity, i.e., to a vector w such that
wg = 0 for some of the g in G.

When some of the groups in G overlap, the penalty (1)
is still a norm (if all covariates are in at least one group)
whose ball has singularities when some wg are equal to
zero. Indeed, for a vector w, if we denote by G0 ⊂ G the
set of groups such that wg = 0, then

supp (w) ⊂
(

⋃

g∈G0
g
)c

.

Figure 1. Balls for ΩG
group (·) (left) and ΩG

overlap (·) (right) for the
groups G = {{1, 2}, {2, 3}} where w2 is represented as the ver-
tical coordinate.

We see that this penalty induces the estimation of sparse
vectors, whose support in typically the complement of
a union of groups. Although this may be relevant for
some applications, with appropriately designed families of
groups — as considered by (Jenatton et al., 2009) — , we
are interested in this paper in penalties which induce the
opposite effect: that the support of w be a union of groups.
For that purpose, we propose instead the following penalty:

ΩG
overlap (w) = inf

v∈VG ,
P

g∈G vg=w

∑

g∈G

‖vg‖ . (2)

When the groups do not overlap and form a partition of
[1, p ], there exists a unique decomposition of w ∈ Rp as
w =

∑

g∈G vg with supp (vg) ⊂ g, namely, vg = wg for
all g ∈ G. In that case, both penalties (1) and (2) are the
same. If some groups overlap, then we show below that this
penalty induces the selection of w that can be decomposed
as w =

∑

g∈G vg where some vg are equal to 0. If we
denote by G1 ⊂ G the set of groups g with vg $= 0, then we
immediately get w =

∑

g∈G1
vg , and therefore:

supp (w) ⊂
⋃

g∈G1
g .

In other words, the penalty (2) leads to sparse solutions
whose support is typically a union of groups, matching
the setting of applications that motivate this work. In the
rest of this paper, we therefore investigate in more details
ΩG
overlap (.), both theoretically and empirically.

Figure 1 shows the ball for both norms in R3 with groups
G = {{1, 2}, {2, 3}}. The pillow shaped ball of ΩG

group (·)
has four singularities corresponding to cases where either
only w1 or only w3 is non-zero. By contrast, ΩG

overlap (·)
has two circular sets of singularities corresponding to cases
where (w1, w2) only or (w2, w3) only is non zero.

4. Some properties of ΩG
overlap (.)

We first analyze the decomposition of a vector w ∈ Rp as
∑

g∈G vg induced by (2). For that purpose, letV(w) ⊂ VG
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be the set of |G|-tuples of vectors v = (vg)g∈G which reach
the minimum in (2), i.e., which satisfy

w =
∑

g∈G vg and ΩG
overlap (w) =

∑

g∈G ‖vg‖ .

The optimization problem (2) definingΩG
overlap (w) is a con-

vex problem and its objective is coercive, so that the set of
solutionsV(w) is non-empty and convex. Moreover,
Lemma 1. w (→ ΩG

overlap (w) is a norm.

Proof. Positive homogeneity and positive definiteness hold
trivially. We show the triangular inequality. Consider
w,w′ ∈ Rp; let (vg)g∈G and (v′

g)g∈G be respectively op-
timal decompositions of w and w′ so that ΩG

overlap (w) =
∑

g ‖vg‖ and ΩG
overlap (w′) =

∑

g ‖v′
g‖. Since (vg +v′

g)g∈G

is a (a priori non-optimal) decomposition of w + w′, we
clearly have ΩG

overlap (w + w′) ≤
∑

g∈G ‖vg + v′
g‖ ≤

∑

g(‖vg‖ + ‖v′
g‖) = ΩG

overlap (w) + ΩG
overlap (w′).

Using the conic dual of (2), we give another formulation of
the norm ΩG

overlap (.) yelding some important properties.
Lemma 2. 1. It holds that:

ΩG
overlap (w) = supα∈Rp:∀g∈G,‖αg‖≤1 α

'w . (3)

2. A vector α ∈ Rp is a solution of (3) if and only if there
exists v = (vg)g∈G ∈ V(w) such that:

∀g ∈ G , if vg $= 0, αg = vg

‖vg‖
else ‖αg‖ ≤ 1 (4)

3. Conversely, a G-tuple of vectors v = (vg)g∈G ∈ VG

such that w =
∑

g vg is a solution to (2) if and only if
there exists a vector α ∈ Rp such that (4) holds.

Proof. Let us introduce slack variables t = (tg)g∈G ∈ RG

and rewrite the optimization problem (2) as follows:

min
t∈RG ,v∈VG

∑

g∈G

tg s.t.
∑

g∈G

vg = w and ∀g ∈ G, ‖vg‖ ≤ tg .

We can form a Lagrangian for this problem with the dual
variables α ∈ Rp for the constraint

∑

g∈G vg = w, and
(β, γ) ∈ VG×RG with ‖βg‖ ≤ γg for the conic constraints
‖vg‖ ≤ tg, and get:

L =
∑

g∈G

tg + α'
(

w −
∑

g∈G

vg

)

−
∑

g∈G

(

β'
g vg + γgtg

)

.

The minimum of L with respect to the primal variables t

and v is non trivial only if γg = 1 and αg = −βg for any
g ∈ G. Therefore, we get the dual function:

min
t,v

L =

{

α'w if γg = 1 and αg = −βg for all g ∈ G ,

−∞ otherwise.

By strong duality (since, e.g., Slater’s condition is fulfilled),
the optimal value ΩG

overlap (w) of the primal is equal to the
maximum of the dual problem. Maximizing this dual func-
tion over γg = 1, ‖βg‖ ≤ γg and αg = −βg is equivalent
to maximizing α'w over the vectors α ∈ Rp such that
‖αg‖ ≤ 1 for all g ∈ G, which proves (3). To prove the
second point, we note that the variables (t,v,α,β, γ) are
primal/dual optimal for this convex optimization problem
if and only if the Karush-Kuhn-Tucker (KKT) conditions
are satisfied, i.e., if and only if, for all g ∈ G:



















supp (vg) = g, ‖vg‖ ≤ tg and w =
∑

g∈G vg

supp (βg) = g, ‖βg‖ ≤ γg

αg = −βg and γg = 1

β'
g vg + γgtg = 0

Eliminating β and γ with the stationarity conditions, all
conditions are fulfilled if and only if w =

∑

g∈G vg and for
all g ∈ G, (i) either vg = 0 and ‖αg‖ ≤ 1, (ii) or vg $= 0
and αg = vg/‖vg‖. If a pair (α,v) fulfills these conditions,
then we obtain a primal/dual solution by taking tg = ‖vg‖,
βg = −αg and γg = 1. This proves points 2 and 3.

Denote by G1 the group-support of w, i.e., the set of groups
belonging to the support of at least one optimal decompo-
sition of w: G1 = {g ∈ G | ∃v = (vg)g ∈ V(w), vg $= 0}
and J1 the corresponding set of variables J1 = ∪g∈G1

g.
Lemma 3. Let α be an optimum in the formulation (3) of
the ΩG

overlap (·) norm, then αJ1
is uniquely defined.

Proof. Consider any solution v = (vg)g∈G of (2). Let α be
any optimal solution of (3). Since (v,α) form a primal/dual
pair, they must satisfy the KKT conditions. In particular,
for all g such that vg $= 0, αg is defined uniquely by αg =

vg

‖vg‖
. Since this is true for all solutions v ∈ V(w), αJ1

is
uniquely defined.

Corollary 1. For any v,v′ ∈ V(w) and for any g ∈ G,

‖vg‖ ×
∥

∥v′
g

∥

∥ = 0 or ∃γg ≥ 0 s.t. v′
g = γvg . (5)

Proof. If vg $= 0 and v′
g $= 0, let α be solution of (3), by the

previous lemma αg is unique and αg = vg

‖vg‖
=

v′
g

‖v′
g‖
.

5. Using ΩG
overlap (.) as a penalty

We now consider a learning scenario where we use
ΩG
overlap (w) as a regularization term to the minimization of
an objective functionR(w), typically an empirical risk. We
assume that R(w) is convex and differentiable in w, and
consider the optimization problem:

minw∈Rp R(w) + λΩG
overlap (w) , (6)
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where λ > 0 is a regularization parameter. We first de-
rive optimality conditions for any solution of (6). For that
purpose, let us denote AG(w) the set of vectors α ∈ Rp

solution of (3).
Lemma 4. A vector w ∈ Rp is a solution of (6) if and only
if −∇R(w)/λ ∈ AG(w).

Proof. The proof follows from the same Lagrangian based
derivation as for Lemma 2, adding only the loss term.

Remark 1. By point 2 of Lemma 2, an equivalent formula-
tion is the following: a vector w ∈ Rp is a solution of (6) if
and only if it can be decomposed as w =

∑

g∈G vg where,
for any g ∈ G, vg ∈ Rp, supp (vg) = g, and if vg = 0 then
‖∇gR(w)‖ ≤ λ, and ∇gR(w) = −λvg/‖vg‖ otherwise.

6. Consistency
Before we present a consistency result on ΩG

overlap (.), we
will need the following lemma.
Lemma 5. Assume that for all w′ in a small neighbor-
hood U of w, w′ admits a unique decomposition (v′

g)g∈G

of minimal norm supported by the same set of groups G1

as w. Writing ηg = ‖vg‖, there exists a neighborhood U0

of wJ1
in R|J1| and a neighborhood U ′

0 of (αJ1
, ηG1

) in
R|J1|×|G1| such that there exists a unique continuous func-
tion φ : wJ1

(→ (αJ1
(w), ηG1

(w)) from U0 to U ′
0.

Proof. The dual problem (3) is equivalent to the saddle-
point problem minα maxη L′(α, η, w) s.t. ηg ∈ R+ with
lagrangian L′(α, η, w) = −α'w +

∑

g∈G
ηg

2
(‖αg‖2 − 1)

and KKT conditions:






















∀g ∈ G, ‖αg‖2 ≤ 1, (primal feas.)
∀g ∈ G, ηg ≥ 0, (dual feas.)
∀i ∈ [1, p],−wi +

(

∑

g(i ηg

)

αi = 0, (stationarity)
∀g ∈ G, ηg(‖αg‖2 − 1) = 0, (comp.slack.)

By stationarity, (vg)g∈G defined by vg = ηgαg is a decom-
position of w; it is optimal because it satisfies property 3 of
lemma 2; finally we have ηg = ‖vg‖ consistently with our
definition of ηg(w). For anyw with the same set of support-
ing groups G1, we have ‖αg(w)‖ = 1 for all g ∈ G1 and
ηg = 0 for all g ∈ G\G1. For allwJ1

with group-support no
smaller than G1, the corresponding pair (αJ1

(w), ηG1
(w))

is therefore a solution of the set of non-linear equations:
{

∀i ∈ J1,−wi +
(

∑

g(i ηg

)

αi = 0

∀g ∈ G1, ‖αg‖2 − 1 = 0
(7)

In other words consider the function

F : R|J1|×|J1|×|G1| → R|J1|×|G1|

(wJ1
,αJ1

, ηG1
) (→

(
(

−wi +
[

∑

g(i ηg

]

αi

)

i∈J1

(‖αg‖2 − 1)g∈G1

)

,

then (7) is equivalent to F (wJ1
,αJ1

, ηG1
) = 0. We use the

implicit function theorem for non-differentiable function of
(Kumagai, 1980). The theorem states that for a continuous
function F : R|J1| × R|J1|×|G1| → R|J1|×|G1| such that
F (w0, (α0, η0)) = 0, if there exist open neighborhoods
U ⊂ R|J1| and U ′ ⊂ R|J1|×|G1| of w0 and (α0, η0) respec-
tively, such that, for all w ∈ U , F (w, ·) : U ′ → R|J1|×|G1|

is locally one-to-one then there exist open neighborhoods
U0 ⊂ R|J1| and U ′

0 ⊂ R|J1|×|G1| of w0 and (α0, η0), such
that, for all w ∈ U0, the equation F (w, (α, η)) = 0 has a
unique solution (α, η) = φ(w) ∈ U ′

0, where φ is a con-
tinuous function from U0 into U ′

0. By continuity of the
addition, the product and the Euclidean norm, the above
defined F is continuous. For each w fixed, F (w, ·) is bijec-
tive, because of the assumption of the existence of a unique
decomposition in a neighborhood of w. Applying the theo-
rem of (Kumagai, 1980) then yields the desired result.

We are now ready to prove the consistency of ΩG
overlap (.).

Consider the linear regression model Y = Xw̄ + ε , where
X ∈ Rn×p is a design matrix, Y ∈ Rp is the response
vector and ε ∈ Rp is a vector of i.i.d. random variables with
mean 0 and finite variance. We denote the true regression
function by w̄. We assume that

1. (H1) Σ := 1
nX'X 0 0

2. (H2) There exists a neighborhood of w̄ in which (2)
has a unique solution.

If G1 is the set of group supporting the unique solution of
(2), we denote G2

∆
= G\G1 and J2

∆
= [1, p ]\J1. For con-

venience, for any group of covariates g we note Xg the
n × | g | design matrix restricted to the predictors in g, and
for any two groups g, g′ we note Σgg′ = X'

g Xg′ . We can
then provide a condition under which minimizing the least-
square error penalized by ΩG

overlap (w) leads to an estimator
with the correct support. Consider the two conditions:

∀g ∈ G2, ‖ΣgJ1
Σ−1

J1J1
αJ1

(w̄)‖ ≤ 1 (C1)

∀g ∈ G2, ‖ΣgJ1
Σ−1

J1J1
αJ1

(w̄)‖ < 1 (C2)

Lemma 6. With assumptions (H1-2), for λn → 0 and
λnn1/2 → ∞, conditions (C1) and (C2) are respectively
necessary and sufficient for the solution of (6) to estimate
consistently the group-support of w̄.

Proof. We follow the line of proof of (Bach, 2008) but
consider a fixed design for simplicity of notations. Let
us first consider the subproblem of estimating a vector
only on the support of w̄ by using only the groups in
J1 in the penalty, i.e., consider w1 ∈ RJ1 a solution of
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minwJ1
∈RJ1

1
2n ‖Y − XJ1

wJ1
‖2 + λnΩG1

overlap (wJ1
) . By

standard arguments, we can prove that w1 converges in
Euclidean norm to w̄ restricted to J1 as n tends to in-
finity (Fu & Knight, 2000). In the rest of the proof we
show how to construct a vector w ∈ Rp from w1 which
under condition (C2) is with high probability a solution
to (6). By adding null components to w1, we obtain a vec-
tor w ∈ Rp whose support is also J1, and u = w − w̄
therefore satisfies supp (u) ⊂ J1. A direct computation
of the gradient of the risk R(w) = ‖Y − Xw‖2 gives
∇R(w) = Σu − W , where W = 1

nXε. From this
we deduce that u = Σ−1

J1J1
(∇J1

R(w) + WJ1
), and since

∇J1
R(w) = −λnαJ1

(w) we have :

∇J2
R(w) = ΣJ2J1

Σ−1
J1J1

(WJ1
− λnαJ1

(w)) − WJ2
.

To show that w is a feasible solution to (6) it is enough to
show that ∀g ∈ G2, ‖∇gR(w)‖ ≤ λn. Moreover, since
the noise has bounded variance, ΣJ2J1

Σ−1
J1J1

WJ1
−WJ2

=

X'
J2

[

1
nXJ1

Σ−1
J1J1

X'
J1

− I
]

ε is
√

n-consistent and

1
λn

‖∇gR(w)‖ ≤ ‖ΣgJ1
Σ−1

J1J1
αJ1

(w)‖ + Op(λ−1
n n−1/2).

By Lemma 5, we have that αJ1
is a continuous function

of w in a neighborhood of w̄ so that wJ1

P→ w̄J1
im-

plies αJ1
(w)

P→ αJ1
(w̄). Since we chose λn such that

λ−1
n n−1/2 → 0, we have

1
λn

‖∇gR(w)‖ ≤ ‖ΣgJ1
Σ−1

J1J1
αJ1

(w̄)‖ + op(1).

Hence the result for the sufficient condition. Symmetri-
cally, for the necessary condition we have

1
λn

‖∇gR(w)‖ ≥ ‖ΣgJ1
Σ−1

J1J1
αJ1

(w̄)‖ − op(1).

7. Graph lasso
We now consider the situation where we have a simple
undirected graph (I, E), where the set of vertices I = [1, k]
is the set of covariates and E ⊂ I × I is a set of edges
that connect covariates. We suppose that we wish to es-
timate a sparse model such that selected covariates tend
to be connected to each other, i.e., form a limited num-
ber of connected components on the graph. An obvious
approach is to consider the prior ΩG

overlap (.) where G is
a set that generates by union the connected components.
For example, we may consider for G the set of edges,
cliques, or small linear subgraphs. As an example, con-
sidering all edges, i.e., G = E leads to Ωgraph(w) =
minv∈VE

∑

e∈E ‖ve‖ s.t.
∑

e∈E ve = w, supp (ve) = e .

Alternatively, we will consider in the experiments the set
of all linear subgraphs of length k ≥ 1. Although we have

no formal statement on how to chose k, it intuitively con-
trols the size of the groups of connected variables which
are selected, and should therefore be typically chosen to
be slightly smaller than the size of the minimal connected
component expected in the support of the model.

8. Implementation
A simple way to implement empirical risk minimization
using ΩG

overlap (.) as the regularizer is to explicitly dupli-
cate the variables in the design matrix, i.e., to replace
X ∈ Rn×p by X̃ ∈ Rn×

P

|g| defined by the concatena-
tion of copies of the design matrix restricted each to a
certain group g, i.e., X̃ = [Xg1

,Xg2
, ...,Xg|G|

], where
G = {g1, . . . , gG}. To see this, denote ṽg = (vgi)i∈g and
ṽ = (ṽ'

g1
, . . . , ṽ'

g|G|
)' , and consider that, for an empiri-

cal risk of the form R(w) = R̃(Xw), we can eliminate w
from (6) to get R(w) = R̃(X(

∑

g vg)) = R̃(X̃ṽ) and thus
for the full objective : R̃(X̃ṽ) + λ

∑

g ‖ṽg‖. That way the
vector ṽ ∈ R

P

|g| can be directly estimated from X̃ with a
classical group lasso for non-overlapping groups. We im-
plemented the approach of (Meier et al., 2008) to estimate
the group lasso in the expanded space. Note that (Roth
& Fischer, 2008) provides a faster algorithm for the group
Lasso. When there are many groups with important over-
lap however, an alternative implementation without explicit
data duplication, e.g., with a variational formulation simi-
lar to the one of (Rakotomamonjy et al., 2008) might be
more scalable.

9. Experiments
9.1. Synthetic data: given overlapping groups

To assess the performance of our method when overlap-
ping groups are given as a priori, we simulated data with
p = 82 variables, covered by 10 groups of 10 variables
with 2 variables of overlap between two successive groups:
{1, . . . , 10}, {9, . . . , 18}, . . . , {73, . . . , 82}. We chose the
support of w to be the union of groups 4 and 5 and sampled
both the support weights and the offset from i.i.d. Gaussian
variables. Note that in this setting, the support can be ex-
pressed as a union of groups, but not as the complement of a
union. Therefore, ΩG

overlap (.) can recover the right support,
whereas by construction ΩG

group (·) using the same groups
would be unable to recover it.

The model is learned from n data points (xi, yi), with yi =
w'xi + ε, ε ∼ N (0,σ2), σ = |E(Xw + b)|. Using an !2
loss R(w) = ‖Y − Xw − b‖2, we learn models from 50
such training sets. On Figure 2, for each variable (on the
vertical axis), we plot its frequency of selection in levels of
gray as a function of the regularization parameter λ, both
for the lasso penalty and ΩG

overlap (.).
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Figure 2. Frequency of selection of each variable with the lasso
(left) and ΩG

overlap (.) (right) for n = 50 (top) and 100 (bottom).

For any choice of λ the lasso frequently misses some vari-
ables from the support, while ΩG

overlap (.) never misses any
variable from the support for a large part of the regulariza-
tion path. Besides, we observed that over the replicates, the
lasso never selected the exact correct pattern for n < 100.
For n = 100, the right pattern was selected with low fre-
quency on a small part of the regularization path. ΩG

overlap (.)
on the other hand selected it up to 92% of the times for
n = 50 and more than 99% on more than one third of the
path for n = 100. We tried the same experiment for various
n and as long as n was too small for the lasso to recover the
right support, the group regularization always helped.
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Figure 3. Root mean squared error of overlapped group lasso and
lasso as a function of the number of training points.

Figure 3 shows the root mean squared error of both meth-
ods for various n. For both methods, the full regulariza-
tion path is computed and tested on three replicates of n
training and 100 testing points. The best average parame-
ter is selected and used to train and test a model on a fourth
replicate. On a large range of n, ΩG

overlap (.), not only helps
to recover the right pattern, improves the regression per-
formance. A possible explanation is that if several vari-
ables from the support are correlated in the design matrix

X , the lasso selects one and is less robust than ΩG
overlap (.)

which uses all the variables. Note that when enough train-
ing points become available (last point on Figure 3), Fig-
ure 2 shows that the selected model is generally better but
still not correct whereas ΩG

overlap (.) selects the right model,
even if it does not give much lower error anymore.

9.2. Synthetic data: given linear graph structure

We now consider that the prior given on the variables is
a graph structure and that we are interested by solutions
which are connected components on this graph. As a first
simple illustration, we consider a chain. We use w ∈ Rp,
p = 100, supp (w) = [20, 40]. The nodes of the graph are
the variables wi, the edges are all the pairs (wi, wi+1), i =
1, . . . , n. The model’s weights, offset and the 50 training
examples (x, y) are drawn using the same protocol as in
the previous experiment. We take for the groups all the
sub-chains of length k. We present the results for various
choices of k and compare to the lasso (k = 1).
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Figure 4. Variable selection frequency with ΩG
overlap (.) using the

chains of length k (left) as groups, for k = 1, 2, 4, 8.

Figure 4 shows the frequency of each variable selection
over 20 replications. Here again, using a group prior helps
the pattern recovery. We also observe as expected that the
choice of k plays a role in the improvement.

9.3. Synthetic data: given non-linear graph structure

Here we consider the same setting as in the linear case,
except that instead of a chain we are given a grid structure
on the variables. Each node is connected to the 4 nodes
above, below, left and right. The support is a 20-variable
region in the center of the grid, x-axis 4 to 7, y-axis 4 to 8.
As groups, we use all the 4-cycles, which is a natural prior
given the graph topology and the expected pattern.
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Figure 5 shows the variable selection frequency of each
variable for both methods at a fixed λ (chosen in both cases
to give the best behavior). ΩG

overlap (.) seems to generally
give better selection performances than lasso.

Besides, we observed that on each run, variables incor-
rectly selected where always unions of groups whereas the
lasso selected disconnected variables on the graph. We
made the same observation for the linear graph case. This is
an expected property of our method, and implies that even
if variables which are not in the model are selected, they en-
ter the model as large connected components, whereas the
false positive of the lasso are more randomly distributed on
the graph, often as isolated variables. This is an interesting
property for real applications because it may then be easier
to discard manually a few large connected components of
false positives, than many isolated variables (assuming of
course that the right variables are selected as well).
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Figure 5. Grid view of the variable selection frequencies with the
graph setting. Left: lasso, right: ΩG

overlap (.) using 4-cycles as
groups. n = 30 training points, λ is arbitrarily fixed.

9.4. Breast cancer data: pathway analysis

An important motivation for our method is the possibility
to perform gene selection frommicroarray data using priors
which are overlapping groups. For example, one may want
to analyse microarrays in terms of biologically meaning-
ful gene sets. In most such analysis, genes discriminating
the classes (e.g. tumors leading to metastasis versus non-
metastasis) are selected in a first step, then enrichment anal-
ysis is performed by looking for gene sets in which selected
genes are overrepresented (Subramanian et al., 2005). Sev-
eral organizations of the genes into gene sets are available
in various databases. We use the canonical pathways from
MSigDB (Subramanian et al., 2005) containing 639 groups
of genes, 637 of which involve genes from our study.

We use the breast cancer dataset compiled by (Van de Vi-
jver et al., 2002), which consists of gene expression data
for 8, 141 genes in 295 breast cancer tumors (78 metastatic
and 217 non-metastatic). We restrict the analysis to the
3510 genes which are in at least one pathway. Since the
dataset is very unbalanced, we balance it by using 3 repli-
cates of each metastasis patient (keeping all duplicates in
the same fold during cross-validation).

Table 1. Classification error, number and proportion of pathways
selected by the "1 and ΩG

overlap (.) on the 3 folds.

METHOD "1 ΩG
OVERLAP (.)

ERROR 0.38 ± 0.04 0.36 ± 0.03
# PATH. 148, 58, 183 6, 5, 78
PROP. PATH. 0.32, 0.14, 0.41 0.01, 0.01, 0.17

We estimate by 3-fold cross validation the accuracy of a
logistic regression with !1 and ΩG

overlap (.) penalties, using
the pathways as groups. As a pre-processing, we keep the
300 genes most correlated with the output (on each training
set). λ is selected by cross validation on each training set.

Table 1 shows the results of both methods. Using
ΩG
overlap (.) instead of the !1 penalty leads to a slight
improvement in the prediction performances, and much
sparser solutions at the pathway level, which makes the se-
lected model easier to interpret.

9.5. Breast cancer data: graph analysis

Another important application in microarray data analysis
is the search for potential drug targets. In order to iden-
tify genes which are related to a disease, one would like
to find groups of genes forming connected components on
a graph carrying biological information such as regulation,
involvement in the same chain of metabolic reactions, or
protein-protein interaction. Similarly to what is done in
pathway analysis, (Chuang et al., 2007) built a network by
compiling several biological networks and performed such
graph analysis by identifying discriminant subnetworks in
one step and using these subnetworks to learn a classifier
in a separate step. We use this network and the approach
described in section 7, taking all the edges on the network
as the groups, on the breast cancer dataset. Here again,
we restrict the data to the 7910 genes which are present
in the network, and use the same correlation-based pre-
processing as for the pathway analysis.

Table 2 shows the results of the logistic regression with
!1 and ΩG

overlap (.). Here again, both methods give similar
performances, with a slight advantage for ΩG

overlap (.). On
the other hand, while the !1 mostly selects disconnected
variables on the graph, ΩG

overlap (.) tends to select variables
which are grouped into larger connected components on the
graph. This would make the interpretation and the search
for new drug targets easier.

10. Discussion
We have presented a generalization of the group lasso
penalty, which leads to sparse models with sparsity pat-



Group Lasso with Overlap and Graph Lasso

Table 2. Classification error and average size of the connected
components selected by the "1 and ΩG

overlap (.) on the 3 folds.

METHOD "1 ΩG
OVERLAP (.)

ERROR 0.39 ± 0.04 0.36 ± 0.01
AV. SIZE C.C. 1.1, 1, 1.0 1.3, 1.4, 1.2

terns that are unions of pre-defined groups of covariates,
or, given a graph of covariates, groups of connected covari-
ates in the graph. We obtained promising results on both
simulated and real data.

From a theoretical point of view, we gave both sufficient
and necessary conditions for the correct recovery of the
same union of groups as in the decomposition induced by
ΩG
overlap (·) on the true optimal parameter vector. It still re-
mains to characterize when the latter decomposition has the
smallest number of groups. The situation where several de-
compositions exist should be analyzed. Also, the construc-
tion of an adaptive version of the Group Lasso with over-
lap that could possibly generalize the scheme proposed by
(Bach, 2008) would be of interest.

From a practical point of view, although algorithms for the
standard group Lasso can be used to implement ΩG

overlap (·),
more dedicated and scalable algorithms could be designed
for cases with large overlaps.

Future work should compare more systematically
ΩG
overlap (·) and ΩG

group (·) empirically and theoretically.

Acknowledgments
This work was supported by ANR grant ANR-07-BLAN-
0311 and the France-Berkeley fund. The authors thank Bin
Yu and Michael Jordan for useful discussions.

References
Bach, F. (2008). Consistency of the group lasso and multi-
ple kernel learning. J. Mach. Learn. Res., 9, 1179–1225.

Bach, F. (2009). Exploring large feature spaces with hier-
archical multiple kernel learning. Adv. Neural. Inform.
Process Syst., 105–112.

Chen, S. S., Donoho, D. L., & Saunders, M. (1998).
Atomic decomposition by basis pursuit. SIAM J. Sci.
Comput., 20, 33–61.

Chuang, H.-Y., Lee, E., Liu, Y.-T., Lee, D., & Ideker, T.
(2007). Network-based classification of breast cancer
metastasis. Mol. Syst. Biol., 3, 140.

Fu, W., & Knight, K. (2000). Asymptotics for Lasso-type
estimators. Ann. Stat., 28, 1356–1378.

Jenatton, R., Audibert, J.-Y., & Bach, F. (2009). Struc-
tured Variable Selection with Sparsity-Inducing Norms.
INRIA - Ecole Normale Supérieure de Paris.

Kumagai, S. (1980). An implicit function theorem: Com-
ment. J. Optim. Theor. Appl., 31, 285–288.

Meier, L., van de Geer, S., & Bühlmann, P. (2008). The
group lasso for logistic regression. J. Roy. Stat. Soc. B,
70, 53–71.

Obozinski, G., Taskar, B., & Jordan, M. (2009). Joint co-
variate selection and joint subspace selection for multi-
ple classification problems. Stat. Comput.. To appear.

Rakotomamonjy, A., Bach, F., Canu, S., & Grandvalet, Y.
(2008). SimpleMKL. J. Mach. Learn. Res., 9, 2491–
2521.

Rapaport, F., Zynoviev, A., Dutreix, M., Barillot, E., &
Vert, J.-P. (2007). Classification of microarray data using
gene networks. BMC Bioinformatics, 8, 35.

Roth, V. (2002). The generalized lasso: a wrapper approach
to gene selection for microarray data. Proc. Conference
on Automated Deduction 14, 252–255.

Roth, V., & Fischer, B. (2008). The group-lasso for gen-
eralized linear models: uniqueness of solutions and effi-
cient algorithms. Int. Conf. Mach. Learn., 848–855.

Subramanian, A., et al., (2005). Gene set enrichment
analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc. Natl. Acad. Sci.
USA, 102, 15545–15550.

Tibshirani, R. (1996). Regression shrinkage and selection
via the lasso. J. Royal. Statist. Soc. B., 58, 267–288.

Van de Vijver, M. J., et al., (2002). A gene-expression sig-
nature as a predictor of survival in breast cancer. N. Engl.
J. Med., 347, 1999–2009.

Wainwright, M. J. (2006). Sharp thresholds for high-
dimensional and noisy recovery of sparsity (Technical
Report 709). UC Berkeley, Department of Statistics.

Yuan, M., & Lin, Y. (2006). Model selection and estimation
in regression with grouped variables. J. R. Stat. Soc. Ser.
B, 68, 49–67.

Zhao, P., Rocha, G., & Yu, B. (2009). Grouped and hi-
erarchical model selection through composite absolute
penalties. Ann. Stat. To appear.

Zhao, P., & Yu, B. (2006). On model selection consistency
of lasso. J. Mach. Learn. Res., 7, 2541–2563.


