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INTRODUCTION

The summing and nuclear norms of linear operators merit
recognition as very basic concepts in Banach space theory, even at quite an
elementary level. They have powerful applications to a variety of Banach
space questions, and they generate a theory that is interesting and elegant in its
own right. It is hoped that the pages that follow will go some way towards
justifying these assertions. The only prerequisite is a beginner's course on
normed linear spaces. As well as the confirmed Banach space specialist, our
topic has something to offer to analysts whose main interest is, for example,
approximation theory or operator theory.

The origins of the subject can be traced to Khinchin's inequality
(published in 1923) and to Orlicz's deduction (1933) that for every
unconditionally convergent series I xn in Lp (where 1 < p < 2), I ||xn||2 is
convergent. In 1947, Macphail showed that in &v such a series may have I ||xn||
divergent. Dvoretzky and Rogers then proved that the same applies in every
infinite-dimensional Banach space. From this, it was a short step to define an
"absolutely summing operator" to be one for which Z l|Txn|| is convergent for
every unconditionally convergent series Zxn. Further, Macphail's work showed
how this property is equivalent to a certain numerical quantity being finite:
this is the Ml-summing norm" n^T). The idea generalizes easily to give norms
Tip for each finite p £ 1. The most interesting, and "natural", cases are p = 1,2,
and in this book our account will be largely concentrated on these cases. For
operators between Hilbert spaces, n2 coincides with the classical Hilbert-Schmidt
norm.

The "nuclear" norms vp (for 1 $ p $ °°) are dual, in a very natural
sense, to the summing norms: vpi is dual to 77p, and vx to ordinary operator
norm.

It is the norms themselves, rather than the corresponding classes of
p-summing and p-nuclear operators, that have proved to be of such value in
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Banach space theory: hence our title. In the case of vp, it will be enough for
our purposes to confine attention to operators of finite rank. There are close
connections between these norms and other numerical quantities that are the
essential tools of the subject, such as projection constants, Banach-Mazur
distances and basis constants. Indeed, for finite-dimensional spaces, the
projection constant X(X) is precisely v«>(Ix). The quantity nfix) can itself be
regarded as a constant characteristic of the space. It is so closely related to the
projection constant that at times both can be evaluated together. We show how
this calculation can be done for the spaces Jn and Jn.

The central theorem of the subject is Pietsch's theorem on the
existence of a dominating functional for p-summing operators. In the case p =
2, this theorem combines with the nice properties of Hilbert spaces to show that
(i) every 2-summing operator can be factorized through a Hilbert space, and
(ii) 2-summing operators can be extended, with the value of n2 preserved (in
other words, n2 is the notion that delivers a "Hahn-Banach" theorem for
operators).

Pietsch's theorem also provides a beautifully simple proof that the
projection constant of an n-dimensional space, and the distance to 4n, are not
greater than ^n. This application on its own is perhaps enough to justify the
claim that these norms have a rightful place is Banach space theory. Another
good application is the Gordon-Lewis proof that the ordinary space of operators
on 4n has a basis constant that grows with n.

Some of the deepest results in the theory involve the comparison
of different summing norms for operators between certain spaces. Theorems of
this sort were initiated by Grothendieck, and the most important one is the
result known as "Grothendieck's inequality", which is coming to be recognized as
one of the really major theorems in Banach space theory. Part of the
fascination of this theorem is its abundance of equivalent formulations. It can
be (and often is) stated in terms of bilinear forms or tensor products instead of
summing norms, and it has important applications in harmonic analysis. This
illustrates again how intricately these norms are connected with other topics of
established interest. The notions of type 2 and cotype 2 constants are the key
to a wider formulation of results of this sort. In particular, the essence
of Grothendieck's inequality is generalized by Maurey's theorem stating that all
spaces of cotype 2 are "2-dominated".

There is a constant interplay between finite-dimensional and
infinite-dimensional spaces. Some of the results are specifically concerned with
finite dimensions. Others, including Grothendieck's inequality, apply to infinite-
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Xi
dimensional spaces, but with all the real work taking place in a finite-
dimensional context. Pietsch's theorem itself does not require any element of
finite dimensionality, but (as remarks above show) many of its applications do.

The summing and nuclear norms are examples (arguably the most
important ones) of "operator ideal" norms, and thereby provide an introduction
to the rapidly growing research area that is becoming known as operator ideals.

Concepts and definitions are introduced gently, with plenty of
simple examples (these seem to be almost entirely lacking in the existing
literature). Proofs are generally complete, though the details of some of the
examples are left to the reader. The author is strongly committed to the
principle that proofs should be as simple and direct as possible, and that they
should give a "feel" for why a result is true, as well as establishing it formally.
A number of the results in this book appear with a proof that is substantially
simpler than the original one - though in most cases the author does not claim
any of the credit for this. In other instances - such as the derivation of
Khinchin's inequality with the best constant - a satisfactorily simple proof is
still awaited. There are several instances where two alternative proofs are
given, since both contribute something to the understanding. Results and
examples are numbered consecutively in each section. Moderately important
results are designated "proposition", and the most important ones "theorem".
Exercises are scattered through the text, appearing at the point where they are
most relevant.

The list of references is intended both to point the way to further
reading and to pay some respect to those who have developed the highly
satisfying theory presented here. I have endeavoured to give just enough
attributions to identify the main landmarks in this development - but this does
not amount to an attempt to give a systematic historical survey.

Sections 1 to 11 contain the core material, and need to be read
more or less in order. The remaining sections deal with a selection of further
topics, and are independent of each other.
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0. BANACH SPACE BACKGROUND

Normed linear spaces, Hilbert spaces

We assume that the reader is familiar with the notions normed
linear space, Banach space, inner product space, Hilbert space, and with the
really basic facts about such spaces. Here we give a brief summary of the
results that are particularly relevant to our purposes. Proofs are given only
when it cannot be confidently asserted that they are to be found in any
elementary text on the subject. At the same time, we establish some notation.

We use the same notation || || for the norms in the various spaces
considered, except when it is necessary to distinguish different norms. The
(closed) unit ball in a normed linear space X (denoted by Ux) is the set
{x € X : ||x|| S 1}.

The scalar field may be either IR or <E . Most results will apply
to both cases simultaneously, or with minor modifications for the complex case.
Exceptions to this will be pointed out.

0.1. Every Hilbert space has a (finite or infinite) orthonormal
basis (b:). For each element x,

X - I <X,b:> b : ,
J J J

||X||2 = I |<X,bj>|2 .

(This means in the sense of "summation" when (b:) is uncountable,
but our main interest is in the finite-dimensional case.)

Operators

A linear operator T (from one normed linear space to another) is
continuous if and only if there exists M such that ||Tx|| ^ M||x|| for all x € X.
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2

We will use the word "operator" to mean "continuous linear operator". The
(linear) space of operators from X to Y will be denoted by L(X,Y), and we
write L(X) for L(X,X). "Operator norm" is defined on L(X,Y) by:

||T|| = sup{ ||Tx|| : x € Ux} .

This is a norm, and ||TS|| « ||T||.||S|| .
An operator T is an isometry if ||Tx|| = ||x|| for all x. Spaces

X,Y are said to be isometric if there is an isometry of X onto Y. An
operator T is an isomorphism if it is bijective and T/T1 are both continuous.
Spaces X,Y are said to be isomorphic if there is an isomorphism of X onto Y.
The Banach-Mazur distance between X and Y is then defined to be

d(X,Y) = inf { PUrr11| : T an isomorphism of X onto Y}.

Though not truly a "distance" (or metric), this is a measure of the similarity of
X and Y. Clearly, d(X,Y) > 1, with equality when X is isometric to Y.
Also, d(X,Z) S d(X,Y) d(Y,Z).

We say that T is an M-open operator of X onto Y if, given
y 6 Y, there exists x € X with Tx = y and ||x|| $ M||y|| .

Duality and the Hahn-Banach theorem

Operators mapping into the scalar field (JR or (E ) are called linear
functional. The space of all continuous linear functionals on X, with operator
norm, is the dual space X*.

The Hahn-Banach theorem is the basic theorem on extension (and
existence) of linear functionals. There are two versions, as follows. A
real-valued function p (on a real linear space X) is sublinear if p(Xx) = Xp(x)
and p(x+y) $ p(x) + p(y) for all x,y e X and X £ 0.

0.2 Theorem, (i) Let X be a real linear space, Xx a linear
subspace and p a sublinear real function on X. Let fx be a linear functional
defined on Xv with fx(x) $ p(x) for all x € E. Then there is a linear
functional f on X that extends fx and satisfies f(x) ^ p(x) for all x € X.

(ii) Let X be a normed linear space (real or complex), Xx a
linear subspace. Let fx be a continuous linear functional defined on X r

Then there is a linear functional f on X that extends fx and satisfies
llfll - llfill •
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3

0.3 Corollary. Let x0 be an element of a normed linear space X.
Then there is an element f of U x * such that f(x0) = HxJI .

0.4 Corollary. Any normed linear space X embeds isometrically
into its second dual X**, under the mapping J defined by : (Jx)(f) = f(x) for
f € X*. (If J maps onto X**, then X is said to be reflexive).

A norming subset of Ux* is a subset K such that ||x|| =
sup {|f(x)| : f € K} for all x € X.

For T in L(X,Y), the adjoint (or dual) operator T* in L(Y*,X*)
is defined by : (T*g)(x) = g(Tx) for g € Y*, x € X.

05. ||T*|| = ||T||. Hence if X is isomorphic to Y, then d(X*,Y*)
« d(X,Y), with equality if X,Y are reflexive.

Some particular spaces

We denote by 4co(S) the set of all bounded functions (real or
complex, according to context) on a set S, with norm defined by : ||x|| =
sup { |x(s)| : s € S}. We write simply &„ for JJIN ), and J&£ for JLm(S) when S
= {1,2, ... ,n} ; of course, *£ is simply IRn or d? with the above norm. (We shall
normally regard elements of JRn, dP as functions on {1,2, ... ,n}, hence we use
the notation x(j) for the jth term).

When K is a compact topological space, we denote by C(K) the
space of all continuous real (or complex) functions on K, with norm defined as
for MS).

The symbol *£ (for p £ 1) denotes JRn (or d?) with norm :

||x||p = ( I |x(i)lp)1 / p .

In particular, HxHj = £ |x(i)| . Further, J2p denotes the space of all infinite

sequences x for which ||x||p (defined in the same way) is finite. We shall
distinguish "real J&2 " and "complex Up " when it matters.

The norm of J?n (or *2) is derived from the "natural" inner
product:

<x, y > = £ x ( i ) ^ ( i ) .
I

Every n-dimensional Hilbert space is isometric to Un .
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We use the notation e: for the sequence (finite or infinite) having
1 in place j and 0 elsewhere.

The identity in JRn (or (E*1) , regarded as an operator from *£ to
ig , will be denoted by 1 ^ .

06- lllifjll = IHiflll - 'n •

Proof. Easy, except Hx^ $ ^n ||x||2. This follows from

E(|x(i)| - c)2 Z 0, with c = i llxll! .

07. The duals of Jn, *n, *S are isometric to *2, *n, *n

respectively (and the dual of *£ to l^t , where p + p' = !)• In each case,
the functional corresponding to an element y is fv, where fv(x) = £ x(i)y(i).

y y x
The spaces Lp(/i) will occasionally be mentioned in examples, but

nothing of importance in this book depends on measure theory.

Finite-dimensional spaces

0.8 Theorem. Every linear mapping defined on a finite-
dimensional normed linear space is continuous. Consequently all n-dimensional
normed linear spaces (over the same field) are isomorphic.

0.9 Corollary. If X is finite-dimensional, then U x is compact.

If dim X - n, then by elementary algebra, dim X* = n. Hence
X is isometric to X** and d(X*,Y*) « d(X,Y). In fact, if {bv ... ,bn} is a
basis of X, then the dual basis of X* is {fr ... ,fn} , where the fj are defined
by : fi(xj) = ©ij . Clearly if UbjH = 1, then Hfjll > 1.

0.10 Theorem. Let X be a n-dimensional normed linear space.
Then there exists a basis {bv ... ,bn} of X, with dual basis {fr ... ,fn} , such
that ||bj|| = ||fj|| = 1 for all i. (Such a basis is called an Auerbach basis).

Proof. Take any basis {ar ... ,an} of X, and let T be the
corresponding isomorphism of X onto IRn (or d?). Given elements xv ... ,xn of
X, let D(xr ... ,xn) be the determinant of the matrix with columns
Tx r ... ,Txn . Then D is a continuous function on Xn, since it is formed by
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taking sums and products of coordinate functionals. Hence D attains its
maximum absolute value on the compact set (Ux)n, say at (bv ... ,bn). Write
D(br ... ,bn) = M, and define

fi(x) = I D(bls ... ,x, ... ,bn)

(in which bj is replaced by x). Then f^bj) = 1, and |fj(x)| $ 1 for x € Ux.
By the elementary properties of determinants, fj is linear and fj(bj) = 0 for
i * j .

0.11 Corollary. If dim X = n, then d(X , J?S) « n, d(X, Jn) « n.
If dim X = dim Y = n, then d(X,Y) S n2 .

Proof. With {bj} as in 0.10, let Tx = Z f ^ x ^ e i£ . We have
max |fi(x)| « ||x|| ^ E|fi(x)| , hence ||Tx|| ^ ||x|| ^ n||Tx|| .

Some statements about infinite-dimensional spaces are really
statements about their finite-dimensional subspaces. This motivates the
following definition. If X,Y are normed linear spaces, we say that Y is
finitely represented in X if, given any finite-dimensional subspace Yx of Y and
6 > 0, there is a subspace Xx of X such that d(Xp Yx) < 1 + 6. This says
that all the finite-dimensional subspaces of Y are "nearly isometric" to subspaces
of X.

Embedding in

0.12 Proposition. Every normed linear space is isometric to a
subspace of *oo(S) for some set S, and to a subspace of C(K) for some compact
space K.

Proof. Let S = Ux* . Given x in X, define Jx in J2«>(S) by :
(Jx)(f) = f(x). It follows from 0.3 that ||Jx|| = ||x|| . The same construction
proves the second statement, since Ux* is compact in the weak-star topology,
and Jx is continuous with respect to this topology. (Familiarity with the
weak-star topology is not really needed for the purposes of this book).

For the first statement in 0.12, it is clearly enough for S to be a
norming subset of Ux*.

An important variation of this for finite-dimensional spaces is :
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6
0.13 Proposition. Let dim X = n and 6 > 0. Then there exist

N and a subspace Xo of *£ such that d(X, Xo) $ 1 + 6.

Proof. The set Sx* = {f € X* : ||f|| = 1 } is totally bounded, so
contains elements f v ... ,fN such that, given any f € Sx*, we have ||f - f j|| ^ 6
for some i. For x 6 X, let Jx be the element [fx(x), ... ,fN(x)] of *£ . Using
0.3, we have

(1-6) ||x||

A variant of this gives precise isometric embedding into a close
copy of

0.14. Let dim X = n and 6 > 0. Then there exist N and a
space Y such that d(Y, *£) $ 1 + 6 and X is isometric to a subspace of Y.

Proof. Let T : X - *£ be such that ||x|| $ ||Tx|| « (l + 6)||x|| for
all x in X. Let U* be the unit ball of *£, and let Y be K$* with the norm
defined by taking as unit ball the convex cover of U<o U T(UX). One verifies
easily that the conditions hold.

Extensions and projections

Let X be a subspace of a normed linear space Y. A projection
of Y onto X is an operator P : Y - X such that Px = x for all x 6 X. If
there is such a projection, then X is said to be complemented in Y; it must
then be a closed subspace, since X = ker(I - P).

0.15 Proposition. If Y is a Hilbert space, X a closed subspace,
then there is a projection (the "orthogonal" projection) P of Y onto X with
||P|| = 1. The kernel of P is X . If X is finite-dimensional, then P is given
by:

Py = I <y,bi> b{

where {bj} is an orthonormal basis of X.

A normed linear space X is said to be injective if there is a real
number X such that the following holds: given any normed linear space E, a
subspace Ex and Tx in L(EX, X), there is an extension T in L(E, X) with
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||T|| $ XHTJI . We define X(X) to be the infimum of such X.

0.16. If X is isomorphic to Y, then X(Y) $ d(X,Y) X(X) .

Proof. Elementary.

0.17 Proposition. For any set S, X^^S)] = 1.

Proof. Let Ex be a subspace of E, and let Tx be an operator
from Ex to J«>(S). For each s € S, define fs € E* by fs(e) - (T^Xs). Then
l|fsll * IITJI . By the Hahn-Banach theorem, fs can be extended to gs € E*
with ||gs|| S HTJI . For e € E, define (Te)(s) = gs(e).

0.18 Corollary. If dim X - n, then X(X) $ d(X, *£) « n.

Proof. By 0.16, 0.17, 0.11 .

0.19 Proposition. The following statements (for a given space X)
are equivalent:

(i) X(X) S X ,
(ii) if X is isometric to a subspace Xo of a space Y, and 6 > 0,

then there is a projection P of Y onto XQ with

(iii) for some set S, X is isometric to a subspace Xo of J<o(S),
and for every & > 0, there is a projection P of JtJ^S) onto
Xo with ||P||

Proof. (i) implies (ii). We have X(X0) = X. The projection P
is obtained by extending I~ .

(ii) implies (iii), clearly.
(iii) implies (i). Let Ex be a subspace of E, and Tx an

element of L(Er Xo). By 0.16, there is an extension f in L(E, MS)) with
I|T|| = UTJI . With P as in (iii), let T = PT. Then T is in L(E,XQ), extends
Tx and has ||T|| * (1 + 6) XHTJI . Hence X(X) = X(X0) « (1+6)X .

Because of the equivalence with (ii), X(X) is called the projection
constant of X. We will see that in fact for n-dimensional X, both X(X) and
d(X, 4n) are not greater than ^n (compare 0.11 and 0.18). We shall also
describe the evaluation of the projection constants of 4n and 4n.
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Orderings; linear lattices

The (real) spaces JRn, Jp, J«>(S), C(S), Lp(/z) all have a natural
partial ordering defined "pointwise" : x i y means x(s) $ y(s) for each s.

In general, a real linear space is said to be a linear lattice (or
Riesz space) if it has a partial ordering ^ such that :

(i) if x ^ y and y ^ x, then x = y ;
(ii) if x $ y, then x + z $ y + z for all z ;
(iii) if x £ 0 and X * 0, then Xx £ 0 ;
(iv) any two elements have a supremum.

The supremum of x and -x is denoted by |x|. The above examples are clearly
linear lattices, and |x| is the function given by : |x|(s) = |x(s)| . Note that
|x| ^ y is equivalent to -y ^ x $ y.

A norm on a linear lattice is a lattice norm if :
(i) 0 « x « y implies ||x|| S ||y|| ,

and (ii) || |x| || = ||x|| for all x.
The space is then called a normed lattice. The above examples are all normed
lattices.

A linear mapping T between linear lattices is positive if Tx £ 0
whenever x £ 0. This definition applies in particular to linear functionals,
thereby giving a partial ordering of the dual space. The functional fy on IRn

defined by fy(x) = Ix(i)y(i) is positive if and only if y £ 0.
The spaces J?]f, l v LX(M) have the special property that

yix l̂l = I||Xj|| for positive elements (in general, normed lattices with this
property are called L-spaces).

The above terminology will be used where appropriate, but we do
not assume any knowledge of the general theory of normed lattices.

£1 and £„ spaces

These notions are the key to the extension of certain results to the
infinite-dimensional case. However, they can be omitted without serious loss.

We will say that a Banach space X is an Ep-space if for every
finite-dimensional subspace E of X and I > 0, there is a finite-dimensional
subspace F such that E C F C X and d(F, J p ) S 1 + 6, where N = dim F.

(This is not quite the usual terminology; according to this, X is an
"Xp ^-space" if we have d(F,Jp) $ X ; hence our definition equates to an
"*p i+g"sPace f ° r every 6 > 0".)
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We only need the fact the certain naturally arising spaces are E«>
or Ex spaces. The next lemma is useful for this purpose.

0.20 Lemma. The following is sufficient for X to be an £p-space.
Given bv ... ,bn € X and 6 > 0, there is a finite-dimensional subspace F of
X such that d(F, *£) « 1 + 6 (where N = dim F) and dist(bj,F) < 6 for
each i.

Proof. Given E, let {bj} be an Auerbach basis of E. . Let F be
as stated, with 6 replaced by 6' = 8/2n2. For each i, take fj € F with
Hbj-fjU < 6'. Essentially, we modify F by replacing the bj's by the fj's. Define
J : E - F by Jbj = fj. One verifies easily that ||b - Jb|| $ nS'||b|| for
b € B. We may assume n&» S \ : then ||b -Jb|| S 2ng'||Jb|| . Let P be a
projection of F onto J(B) with ||P|| $ n (see 0.18), and define T on F by :

Tx = J-xPx + (I - P)x.

Then T(F) contains B, and

Tx - x • J"1Px - Px = b - Jb ,

where b « J^Px. Hence ||Tx-x|| ^ 2n6l||Px|| ^ 2n26'||x|| » 6||x|| , from
which ||T||. HT-1!!

0.21. ix is an Ej-space, and c0 (the space of sequences tending
to 0) is an E

Proof. Let EN = lin(ej, ... ,eN). This is isometric to lj*, J?£ in
the two cases. Given elements b r ... ,bn and 6 > 0, there exists N such that
dist(bis EN) < 6 for each i.

0.22. If M is a positive measure on a measure space, then L^/z)
is an Ej-space, L^/z) an E^-space.

Proof. In both cases, simple functions are dense. Hence if
elements bv ... ,bn and 6 > 0 are given, there are disjoint measurable sets
Av ... ,AN (with finite measure in the case of L^M)) such that dist(bj, F) ^ 6
for each i, where F is the subspace spanned by the characteristic functions of
the A-r It is easily seen that F is isometric to i j 1 , *£ in the two cases.
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In particular, J«>(S) is an E^-space. By 0.12, it is clear that the
property of being an E^-space is not inherited by subspaces.

For readers with sufficient grounding in General Topology, we
show also that C(K) is an E^-space. We use the fact that if {Gr ... ,GN) is an
open covering of a compact, Hausdorff space K, then there exist non-negative
continuous functions gj such that gx+ ... +gN = 1 and gj(s) = 0 for s not in Gj
(a "partition of unity"). The covering might as well be chosen so that each G|
contains a point sj not in the other Gj : clearly, we then have gj(sj) = 1.

0.23 Lemma. Under these conditions, lin(gp ... ,gN) is isometric
to *£ .

Proof. L e t g = £ X : g ; . E v a l u a t i o n a t S: s h o w s t h a t llgll £ IX-Ij i i i i

for each i. Conversely, if M = max |X-| , then

|g(s)| « M I gi(s) = M

for all s.

0.24 Proposition. If K is a compact, Hausdorff space, then C(K)
is an

Proof. Take elements fx, ... ,fn and 6 > 0. Let M be an integer
such that Hf̂ ll « MS for each i, and write the numbers rS (r = -M, ... ,M-1 ,M)
as \ v ... ,Xk. For (rlf ... ,rn) in {1, ... ,k}n , let

G(rls ... ,rn) = {s : If^x) - X,.! < 6 for each i} .

These sets form an open covering: remove any that are empty or contained in
the others, and let B be the set of remaining (rp ... ,rn). Choose corresponding
functions gr r to form a partition of unity. We must show that each f: isrr...,rn i

close to the linear subspace spanned by these functions. We do this for fr Let

h i " Z {xrx, ... ,rn " (ri» - >rn> € B> •

Choose s € K. There exists p such that Xp * f^s) < Xp + 6. Then s
belongs to GCr̂  ... ,rn) only for rx = p and rx = p + 1 (in which case
Xr = Xp + S). Hence

Xp Zgpj r^ m ^ ( s ) + (Xp+
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(summation over all elements of B of this form)

- Xp + 6 I g p + 1 , r 2 , ... ,rn(s) .

Hence Xp « h^s) < Xp+1 , so |fx(s) - h^s)! « 6 .
The argument can be adapted for the complex case.

A deeper analysis (see, e.g. [CBS]) shows in fact that %x and £»
spaces (in the sense defined here) can be characterized as follows:

(a) X is an J^-space if and only if X is isometric to LX(M) for
some M,

(b) X is an E^-space if and only if X* is an 2^-space.
The following, weaker result concerning the dual of an £<»-space is easier to
prove and sufficient for our purposes.

0.25. If X is an X^-space, then X* is finitely represented in i r

Proof. Let F be a finite dimensional subspace of X *, and take
6 > 0. There is a finite-dimensional subspace E of X such that for each
f € F, we have ||Rf|| * (1-6) ||f|| , where Rf - f|E . (To prove this, take fj as
in 0.13 and xj € U x with fj(xj) > 1-6). By taking a larger subspace if
necessary, we may assume that d(E, j£ ) $ 1 + 6 . It follows that d(E*, ft™)
$ 1 + 6, and hence (by restriction of the isomorphism involved) that
d[R(F),G] < 1 + 6 , where G is a subspace of if. So d(F,G) S (l + 6)/(l-6).
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1. FINITE RANK OPERATORS: TRACE AND 1-NUCLEAR NORM

Representation of finite-rank operators

Let X,Y be normed linear spaces. We denote by FL(X,Y) the
space of all continuous linear operators from X to Y with finite-dimensional
range. The dimension of the range is called the rank of the operator.

Given f e X* and y € Y, we denote by f €> y the rank-one
operator T : X - Y defined by : Tx = f(x)y for x € X. Clearly, we have
llf ® yll = llfll -llyll •

Any element T of FL(X,Y) is expressible (in many different ways)
in the form

m
ilx

 f i • y\ . (i)

with m £ rank T. For example, if (bp ... ,bn) is a basis of the range T(X),
then there are unique elements fj of X* such that for each x € X,

Tx = .? fjWbi .

Note that if (bp ... ,bn) is a basis of X, and (fr ... ,fn) is the dual basis
of X*, then

Ix - I f i • t>i . (2)

Representations of the form (1) do not need to have the elements y-x belonging
to T(X). For instance, if E is a subspace of X, then the expression in (2) can
serve as a representation of IE (regarded as a mapping E -* X) , even when
none of the bj belong to E.

We start with two very simple results on representations.
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\A_ Let T be in FL(X,Y), and suppose that T = I f j <8> yj .
i

Then :
(i) for U in L(Y,Z), UT = £ f{ * (Uyi) ,

(ii) for S in L(V, X), TS = J (S^fj) * y i .

Proo/. For x € X and v € V, we have

UTx = I fi(x)(Uyi) ,

TSv = I fi(Sv)yi .

In particular, given a basis (bv ... ,bn) of a finite-dimensional
space X, with dual basis (fr ... ,fn), we have "natural representations:

T = I f: <8> (Tb:) for T € L(X,Y),
1 l x

S - I (S*f:) <8> b: for S 6 L(V,X) .
l 1 l

1.2. Let T be in FL(X,Y), with T = £ f: <8> y. Then

I

T* - E Yi • fi . T « - J p f i » 5 i ,
where y -» y is the natural embedding of a space into its second dual.

Proof. We have Tx = I f:(x)y: for x € X. So for g € Y*,
I l 1

(T*g)(x) = g(Tx) « Sfi

Hence T*g = £ g(y;)f: . This proves the statement for T*, and the statement
I

for T** follows.

Trace

The reader may already be familiar with the following simple
algebraic facts.

1.3 Proposition. Let T be FL(X), and suppose that

m n
T = X fi «> Xi = .1 g: <8> y; .

l—i i— l J J

Then I fi(xi) = I gj(yj) .
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n

Proof. We show by induction that if .E fj ® xj = 0 , then

E fj(x^) = 0. This is clearly true for n = 1. Assume it for a certain n, and

suppose that
n+i

E f: ® x: = 0.
i=i l 1

If the xj are linearly independent, then fj = 0 for all i, so the statement holds.
Assume that the x̂  are linearly dependent, so that (with suitable indexing)

n
xn+i ~ J^J ixi •

Then

x i f n + i

so the induction hypothesis gives

n

n
= i=i *^X^ + ^n+i(xn+i) »

as required.

Hence, for T in FL(X), we can define the trace of T to be

£ fj(x}) , where £ fj ® x̂  is any representation of T. Trace is clearly a

linear functional on FL(X). Note that by 1.2, trace T* = trace T.

1.4 Example. Let X have basis (bx, ... ,bn), and let T € L(X)

be given by : Tbj = £ a^bj , (so (ajj) is the matrix of T with respect to (bj)).

Then trace T = £ a::-
J JJ

Proof. Let (fj) be biorthogonal to (bj). Then

trace T - S fj(Tbj) - I «jj .

1.5 Example. Let H be a finite-dimensional Hilbert space, with
orthogonal basis (ep ... ,en). Then for T in L(H),

trace T = £ < Te:, e: > .
I
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Proof. This follows from the fact that Tx = I <x,e-1 > Tej for
x € H.

1.6 (i) If dim X = n, then trace I x = n.
(ii) If P is a projection of rank n, then trace P = n.

Proof, (i) is a special case of (ii). Let P be a projection onto E,
and let (bp ... ,bn) be a basis of E. Then

for x € X, where f|(bj) = 8jj, since Pbj = bv Hence

trace P = £ f;(b:) - n .
1 l *

Trace is not defined on FL(X,Y), where Y + X. However, if S
is in FL(X,Y) and T is in L(Y,X), then trace (TS) exists. In this context, we
have:

L7. If S is in FL(X,Y) and T is in L(Y,X), then

trace (TS) = trace (ST).

Proof. Let S = E fj €> yj . Then TS = E fj ® (Tyj), hence
trace (TS) = E fj^yj). Also, by 1.1, ST - E(T*fj) <8> y^ so trace (ST) =
E (T*fi)(yi) = E fiCryj) .

For each T in L(Y,X), a linear functional <t>T on FL(X,Y) is
defined by : tf>T(S) = trace (TS). Furthermore, if X is finite-dimensional, then
all functionals on L(X,Y) are of this form:

1.8. Let X be finite-dimensional, and let $ be a linear functional
on L(X,Y). Then there exists T in L(Y,X) such that #S) = trace (TS) for
all S in L(X,Y).

Proof. Given any y € Y, define a corresponding functional 4> on
X* by : (KO - 0(f ® y). The functional 0 corresponds to an element Ty of
X, that is : <Kf ® y) - f(Ty) for all f in X*. This defines an element T of
L(Y,X), and if S = f <8> y, we have #S) • f(Ty) = trace (TS) . Hence the same
holds for all S in L(X,Y).
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Remarks (1) When both X and Y are finite-dimensional, elements

S of L(X,Y) correspond to matrices (oq j), and of course an element 4> of the
dual identifies with a matrix (3j j) by the relation

1 J *>J J'x

It is easy to reconcile this with 1.8 : the expression is exactly trace (TS), where
T is the operator in L(Y,X) corresponding to (3j j).

(2) The proof of 1.8 remains valid (for functionals on FL(X,Y)) if
X is reflexive and there is a K such that |<Kf ® y)l * K||f||.||y|| for all f,y.
If X is not reflexive, the same reasoning gives an operator T that maps into
X** instead of X ; we return to this question in section 17.

Now let X,Y be any normed linear spaces, and let oc be some norm
defined at least on FL(X,Y) (not necessarily on the whole of L(X,Y)). Define

a*(T) = sup {|trace (TS)| : S € FL(X,Y) , o<S) S 1}

for those elements T of L(Y,X) for which this is finite (denote the set of such
T by L ^ ^ X ) ). Then a* is a norm on La*(X,Y) : it is called the dual (or
conjugate) norm to a under trace duality. Of course, oc*(T) is simply the norm
of <t>T as a functional on [FL(X,Y),a] , and 1.8 shows that if X is
finite-dimensional, then L ^ ^ X ) identifies with the Banach space dual of
[L(X,Y),a].

Note that this definition has been framed in an unsymmetrical
manner : a is only applied to finite-rank operators, but a* it not restricted in
this way. The point of doing this will soon become apparent. However,
when both X and Y are finite-dimensional, everything is straightforward : the
dual of [L(X,Y),a] is [L(Y,X),a*] , and conversely.

Exercise. Let X be finite-dimensional, and let a be a norm on
L(X,Y) such that a(S) * ||S|| for all S. Show that a*(g <8> x) « ||g||. ||x|| for
all g € Y*, x € X, and hence that L<X*(Y,X) is the whole of L(Y,X) .

We now proceed to identify the norm oc for which a* is ordinary
operator norm.
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1-nuclear norm

Let X,Y be normed linear spaces. The 1-nuclear norm vx is
defined on FL(X,Y) as follows:

v^T) = inf { I Hfill.Hyill : T =* J fj » yj } ,

in which all finite representations of T are considered, of whatever length.
Equivalently, vx(T) is the infimum of I ||T||| over expressions of T as Z Tj ,
a finite sum of rank-one operators.

1.9. vx is a norm, and vx(T) > ||T|| . Further :
(i) vx(f « y) - ||f||.||y|| ,
(ii) Vl(BT) « ||B|| Vl(T), v^TA) « vx(T) ||A|| (whenever

BT and TA are defined),
(iii) vx(T*) ^ vx(T), with equality when Y is finite-dimensional

(or reflexive).

Proof. The equality vx(XT) = |X| vx(T) is trivial. The fact that
V^TJ+TJ) * v i ( T i ) + vi(T2^ *s s e e n ^y combining suitable representations for Tx

and T2 (note that this will give a representation of greater length).
If T = Y. fj <8> y{ and ||x|| ^ 1 , then

||Tx|| ^ I IfitxM.llyjII ^ E llfjll-llyill .

Hence ||T|| « I Hfjll-llyill , so ||T|| ^ vt(T). This completes the proof that
vx is a norm, and (i) follows, since ||f <8> y|| = ||f||.||y|| .

(ii) and (iii) follow from the corresponding statements in 1.1 and
1.2 (note that if Y is reflexive, then all representations of T* are of the form
given in 1.2).

We list some further immediate comments:
(1) Clearly we have |trace T| * vx(T) for T in FL(X).
(2) If Tx is a restriction of T, then v^TJ $ vx(T).
(3) The extension problem is trivial for v r If Xx is a subspace

of X, and we are given Tx in FL(XpY), then, for any 6 > 0, there is an
extension T of Tx in FL(X,Y) with vx(T) $ (l + ̂ v^Tj). This is obtained by
choosing a suitable representation Efj <8> yj for Tx and taking Hahn-Banach
extensions of the f j,

(4) Any norm (for operators) satisfying conditions (i) and (ii) of
1.10 is called an operator ideal norm. We shall be meeting many further
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examples of such norms. From the way it is defined, it is clear that vx is the
largest possible operator ideal norm.

Exercise. Show that for T in L(X,Y*), v^T*) = vx(T) .

(Consider the mapping f : Y - X* defined by : (fy)(x) = (Tx)(y).).

The Auerbach basis theorem (0.10) gives :

1.10. (i) If dim X - n, then v±(Ix) = n.

(ii) If rank T = n, then vx(T) « n||T||.
(iii) Let E be an n-dimensional subspace of X. Then there is a

projection P of X onto E with vx(P) = n (and any projection has vx(P) £ n).
n

Proof. (i) An Auerbach basis expresses Ix as I f| <8> bj , with
||f .|| . Ub̂ l = 1 for each i. Hence vx(Ix) S n . Conversely, v ^ ) 5»
trace I x = n .

(ii) Let T(X) = Z. Then dim Z = n, and T = IZT, so

(iii) As in (i), vt(P) Z trace P = n. To obtain equality, take
an Auerbach basis (b^fj) of E and extend the functionals fj.

The promised result on duality is completely straightforward:

1.11 Proposition. Under trace duality, the dual of vx is ordinary
operator norm. In other words, for T in L(Y,X),

||T|| = sup { |trace (TS)| : S 6 FL(X,Y), vx(S) ^ 1 }

and if X is finite-dimensional, then the Banach space dual of [L(X,Y),vx]
identifies with [L(Y,X), || || ].

Proof. If vx (S) ^ 1, then

Itrace (TS)| « vx(TS) ^ ||T|| vx(S) « ||T|| .

Take 6 > 0. There exists y0 € Y with ||yo|| = 1 and
IITyJI ^ (1-S) ||T|| . There exists f0 € X* with ||f J| = 1 and

fo(Tyo) - ||Tyo|| * (\ - Z) ||T|| .
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Let So = f0 <8> y0. Then V^SQ) = 1 and fo(Tyo) = trace (TS0). The statement
follows.

By the Hahn-Banach theorem, we deduce:

1.12 Corollary. If X is finite-dimensional and S is in L(X,Y),
then there exists T in L(Y,X) with ||T|| = 1 and trace (TS) = v^S).

(A direct proof of this is by no means as simple as 1.11 !).
By remark (2) after 1.8, we can allow X to be reflexive instead of

finite-dimensional in 1.11 and 1.12.
The dual of || ||, in the sense that we have defined, is not v r

since an operator for which ||T||* is finite certainly does not need to be of
finite rank. We return to this question (which is not really central to our
purposes) in section 16.

Using 1.12, we can derive a variant of 1.9 (iii).

1.13. If X is finite-dimensional (or reflexive) and S is in
FL(X,Y), then vx(S*) = v^S).

Proof. We have already vx(S*) « vx(S). Let T be as in 1.12

Then

vx(S) = trace (TS) = trace (S*T*) « vx(S*)

since ||T*|| = 1 .

One can in fact show that vx(S*) = vx(S) without restrictions on
X or Y. This is best proved using "local reflexivity", and we defer it to
section 17.

Note. An operator T is said to be "nuclear" if it is expressible
00

as I f : ® y: with £ ||f;||.||y:|| finite. A norm is then defined by taking the
l I

infimum of such sums. This is the usual definition of "nuclear norm". Even
for finite rank operators, it allows representations of infinite length, and
consequently can differ from our v r However, one can show that the two
definitions do coincide when either X or Y is finite dimensional. For the
purposes of this book, it will be enough to confine attention to finite-rank
operators and vx as we have defined it.
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Some particular cases

It is not, in general, at all easy to compute vx(T) for a particular
operator T. However, there are certain situations where it is relatively simple,
and we now describe a few of them.

n
1.14. For any operator T on *£, vx(T) = Z IITcjH .

Proof. The obvious expression Tx = £x(i) Te: shows that
1 x

Suppose that T = Z f; ® y; , with ||y:|| = 1 for each j. Then
j J J J

||Tx|| « I |fj(x)| for all x. Now ||fj|| = J |fj(ei)| , so

I IITCiH * I I |f j(ei)| = I ||f :|| .
i J i J J

This shows that v, (T) £ £ ||Te:|| .i j i

1.15 Let T be the operator from X into Jn given by : Tx =

J f i (x)e i (so that fj = T*Ci). Then v^T) = I \\r{\\ .

Proof. By 1.9, vx(T) = vx(T*). The statement follows, by 1.14.
(A direct proof is also easy).

For operators between finite-dimensional Hilbert spaces, a
characterisation of vx(T) can be derived from the spectral theorem. This can
be stated (for both real and complex scalars) as follows: there exist finite
orthonormal sequences (ej) in X, (fj) in Y and numbers X: £ 0 such that

Tx = Z X- <x,e:> f: for X € X.
j= i J J J

The numbers x| are the eigenvalues of T*T.

1.16. Let X, Y be finite-dimensional Hilbert spaces. Let T be
in L(X,Y), with spectral decomposition as above. Then

vt(T) = X Xj

= inf { X l|Tb;|| : (bj) an orthonormal base of X } .
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Proof. If (b:) is any orthornomal base of X, then

Tx m I <x,b:> Tb:
J J J

for x 6 X, which shows that vx(T) $ £ l|Tbj|| . Also, the given expression

implies that v^T) $ IX-

There is an operator S in L(Y,X) with ||S|| = 1 and Sf: = e: for

each j. Clearly, trace (ST) « IXJ. Hence vx(T) > trace (ST) = EXj .

(Though informative, this result is not actually needed for our
later developments).

Exercise. Let T be in FL(X,Y) and 6 > 0. Show that for some
k there are operators Tx in L(X, j£ ) and T2 in L(*£ ,Y) such that T = T2TX

and HTJI = 1, vx(T2) « (1 + 6) vx(T) .

Dependence on the range space

Suppose that T is in FL(X,Y), and that its range is contained in a
certain subspace Yx of Y. Let Tx be the same mapping regarded as an
element of FL(X,YX). It is clear that we must distinguish Tx from T when
considering the nuclear norm. Among the representations Z f j # ŷ  of T, only
those having yj € Yx are allowable for T r Consequently, vx(Tx) £ vx(T).

The following example illustrates the distinction nicely.

1.17 Example. Let Y - Jn , and

Y, = {y € Y : I y(i) - 0 } ,

so that dim Yj = n-1. Let Tx = IY , and let T be the same mapping

regarded as an element of L(YX ,Y ) .
By 1.10, vx(Tx) = n-1. For T, we have the obvious expression

n
T = I e: ' ® e: ,i=i * 1

in which ej' is the functional on Y% defined by ej'(y) - yW- It is
elementary that ||ei • || « \ . Hence vx(T) ^ n/2 (in fact, equality holds, by
1.15).

This example also illustrates the effect of allowing representations
of any length when defining v r If we were to allow only representations of
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length n -1 (= rank T), we would in fact only be considering representations of

If, in the above situation, there is a projection P of Y onto Yx

and if I f| <8> y- is a representation of T, then I fj 0 (Pyj) is a representation
of T r Hence we have v^T^ $ ||P|| vx(T).

A further statement in the positive direction is:

1.18. Let T be in FL(X,Y) and 6 > 0. Then there is a
finite-dimensional subspace Yx of Y such that (with Tx defined as above)
v ^ T J S (l + gJv^T).

Proof. There is a representation I fj <8> y- for T with
E llfill.llyill * (l + SJv^T). The statement follows on putting Yx =
lin (yp ... ,yk).

Exercise. Let X be infinite-dimensional, and let S be an operator
in FL(X*,Y) that can be represented in the form I x̂  <8> y-x , where x̂  e X (in
other words, a weak-star continuous operator). Show that vx(S) can be
obtained using only such representations. (By 1.18, we may assume Y
finite-dimensional, hence Y = Z* and S = T* for some T in L(Z,X)).

Relationship with tensor products

We finish this section by describing (rather briefly) how the above
results translate into statements about tensor products. This is not very
important for our development, but it is a notion that is widely used in the
literature.

The algebraic tensor product X <8> Y is the set of elements of the
n

form I x: <B> y- which may be regarded as operators from X* to Y (or equally
l 1 1

from Y* to X). If X or Y is finite-dimensional, it equates with the space of
all such operators (and in any case, FL(X,Y) equates with X* <8> Y). Given a
norm a on X ® Y, the tensor product X €>a Y is defined to be the completion
of (X <8> Y, a).

If a is ordinary operator norm, the result of this is called the
"injective" tensor product, usually denoted by X €>gY or X ® Y. The "projective"
tensor product, denoted by X <8>̂  Y or X ® Y, is derived from the norm y(u) =
inf { I ||xj||.||yj|| : u = I xj ® yj }. For finite-dimensional X, this coincides with
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v r so our results on vt can be regarded as results on this kind of tensor
product. In particular, 1.11 equates the dual of X ®y Y (for finite-dimensional
X) with X* <8>£ Y*. Actually, there is a simple description of this dual that
does not require finite-dimensionality, which we now describe (it will be used
once, in section 10).

Let B(X,Y) be the space of all bilinear forms on XxY, with norm
defined by

||3|| = sup { |3(x,y)| : ||x|| « 1 , ||y|| * 1 } .

There is a natural isomctry between B(X,Y), L(X,Y*) and L(Y,X*), given by:

3(x,y) = (T3x)(y) = (U3y)(x) .

Exactly as in 1.3, one shows that if 3 is in B(X,Y) and u is in X <8> Y, then
the expresssion E 3(x-,yj) is independent of the representation Z Xj <8> yj for u
and hence can be used to define a corresponding functional 3 on X <8> Y. By
essentially the same proof as 1.11, we now have:

1.19 Proposition. The dual of (X ®y Y) is isometric to B(X,Y).

Proof. With the above notation, we have

|3(u)| S ||0|| Z HXJII . llyjH ,

and hence ||3|| $ ||3|| . For any 6 > 0 there exist xo,yo with ||xo|| = ||yo|| and
|3(xo,yo)| = |3(x0 <8> yo)| > ( 1 - 6 ) ||3|| . Hence ||3|| = ||3||. Finally, given any
functional 4> on X ®y Y, we have 4> = 3, where 3 is defined by 3(x,y) =
« x <8> y).

It is instructive to sec how this result translates back into the
notation of 1.11. Since (FL(X,Y),vx) equates to (X* <8> Y, 7), its dual can be
identified with B(X*,Y), and hence with L(X*,Y*) or L(Y,X**). It is now clear
why we needed reflcxivity to equate this with L(Y,X).

While it might be said that this particular result has gained in
both clarity and generality by the tensor product presentation, this is not an
option when we come to the summing norms. These are defined for operators
in terms of their action, and arc in no way limited to finite-rank operators, or
to operators approximablc by finite-rank ones.
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Z FINITE SEQUENCES OF ELEMENTS : THE QUANTITIES

The definition and equivalent forms

The following notion is used in defining the summing and nuclear
norms (other than Vj). The results in this section are not deep, but they will
greatly facilitate our later deliberations on these norms.

Let p £ 1, and let (xv ... ,xk) be a finite sequence of elements of
a normed linear space X (real or complex). We define

I£p(xlf ... ,xk) = sup {(E |f(xi)|P)1/P : f € Ux«} .

(There is no generally accepted notation for this. Many writers do without a
special notation, repeatedly writing out the right-hand side. Pietsch [OI] uses
wp where we use Mp.)

Clearly, the ordering of the finite sequence makes no difference,
and f*p(x) = ||x|| for a "sequence" consisting of one element x. By the
Hahn-Banach theorem, if the xj belong to a subspace E of X, then Mp(x15 ... ,xk)
is the same when evaluated in E and in X. Further immediate properties are
summarized in the next result (the proofs are obvious).

2J_ (i) /zp(oclX, ... ,akx) = (I l a / ) 1 ^ ||x|| .
(ii) max llxjll « Mp(xp ... ,xk) M E llxil|p)1/p .

(iii) If p < q, then Mp(S) > Mq(S) for any finite sequence S.
(iv) If T is an operator on X, then

p ... ,Txk) S ||T|| np(xv ... ,xk)

(v) Mp(Xl, ... ,xn)P < Mp(xx, ... ,xk)P + Mp(xk+1, ... ,xn)P .

Note that >„" would be simply max ||xj||. In fact, our real
interest is in fix and M2» and we proceed to look at these separately. We show
that (1) the functionals in the definition can be restricted to a norming subset,
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and (2) the definitions can be formulated purely in terms of norms of linear

combinations E X^, avoiding the dual space.

2.2. Let xv ... ,xk be elements of X, and let K be a norming

subset of Ux*. Let

A' = sup { I |f(Xi| : f 6 K } ,

B = sup { | |I XjXiH : |Xi| « 1 for each i} ,

B1 = sup { | |I ctjxjll : I04I = 1 for each i} .

Then A1 - B = Bp = ml(xv ... ,xk).

Proof. Let A « ^(x^ ... ,xk). Clearly, A1 $ A and B1 S B.
We complete the proof by showing B $ A1 and A « B1.

Let |X̂ | ^ 1 for each i, and take S > 0. There exists f € K such
that

(1-5) llZXjXill « |f(EXiXi)| = IZXjfCxi)! « Z|f(xi)| * A' .

This shows that (1-6)B « A1 for all 6 > 0, so B « A1 .
Now choose f e Ux*. For each i, take ocj with |<XJ| = 1 and

aif(Xi) = |f(Xi)|. Then

I |f(Xi)| = fffajXi) « HZajXiH 4 B» .

Hence A S B ' .

Remarks. (1) Hence in the real case, iix(xv ... ,xk) is the greatest
of the 2k numbers ||S1x1+ ... +5̂ x̂ 11 , with each 6- chosen from {-1, 1} . In the
complex case, the supremum in B1 is attained, by compactness, but not as the
maximum of a finite set.

(2) If the supremum in B' is attained at Zajx ,̂ then the
supremum in the original definition is attained by f satisfying f(Za-Xj) = ||ZocjXj||
hence c^f^) = |f(Xi)|.

2.3 Let x p ... ,xk be elements of X, and let K be a norming
subset of X*. Let

C = sup { (IlfCxj)!2)^ : f € K> ,

D = sup { ||ZXiXi|| : ZIXjl2 « 1} .

Then C = D = M2(xr ... ,xk).
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Proof. Let C = n2(xv ... ,xk). Clearly C1 « C. We show

C « D < C1.
Let E IXjl2 $ 1 and S > 0. There exists f € K such that

|E X ^ M * (1-6) IIEXjXill .

By Schwarz's inequality, |E XjfCxj)! « (E |f(xi)|2)^ S C . Hence C1 > (l-S)D
for all 6 > 0, so C1 > D.

Now choose f € Ux*. There exist numbers Xj with E |Xj|2 = 1 and

2)** = E XjfCxj) « ||E X^ll ^ D .

Therefore C S D.

Hence we have

II EXiXi|| ^ (E IXil2)** ^ (Xi , ... ,xk) .

In the same way, one finds that

Mp(xlf ... ,xk) = sup{ ||E XjXiH : E \\tf>' i 1} ,

where ^ + ^i - 1 .

Z4. For fr ... ,fk in X* and p = 1,2,

f£p(flf ... ,fk) = sup { ( E l f ^ P ) 1 ^ : x € Ux}

Proof. U x (or strictly, the corresponding set in X**) is a norming
set of functionals on X*.

We can now show that the quantities Mp equate with the norms of
certain operators having the elements as "rows" or "columns."

Z5 (i) For S in L(j£, X), ||S|| = Ml(Ser ... ,Sek).
(ii) For S in L(j£, X), ||S|| = M2(Ser ... ,Sek).
(iii) Let T in L(X,*£) be given by : Tx - £ f^xjcj , where fj € X*.

Then ||T|| = y f r . . . ,fk) (p - 1 or 2).

Proof. (i) We have

||S|| = sup { ||Sx|| : ||x|U ^ 1}

= sup { || E x(i)(Sei)|| : ||x|U ^ 1} .
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This equals ii1(Sev ... ,Sek), by 2.2.
(ii) Similar to (i), using 2.3.
(iii) This follows at once from 2.4.

Exercise. Show that

H1(oc1xv ... ,«kxk) $ (I lo^2)** M2(x

Some particular cases

For spaces of the form J?«(S) (in particular, J&£) or C(K), there is a

very simple interpretation of IL'

Z6. In J^S) or C(K),

Mp(x1} ... ,xk)P = HUxilPlI for p = 1,2.

Proof. The point-evaluation functionals &s(x) = x(s) form a
norming set. The statement follows, by 2.2, 2.3.

In particular, if elements xj of 4«>(S) have disjoint support, then

^(Xp ... ,xk) = M2(xp ... ,xk) = max \\x-fi .

2.7. If xls ... ,xk are positive elements of J2n (or JĴ , then

^(Xp ... ,xk) = Z 11x̂ 1 ,

M2(xls ... ,xk) = (I ||Xi||2)^ .

Proof. Let f be the functional defined by f(x) = I x(i). Then
||f|| = 1 and f(x) = ||x|| for positive x. The statements follow.

2.8. Let e r ... ,ek be orthonormal elements of an inner-product
space. Then

Ii2(ct1ev ... ,«kek) = max |oj|.

Proof. Both statements follow at once from the equality

together with 2.2 and 2.3.
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The last three results enable us to tabulate the values of

Mp(er ... ,en) in l£, Jn, *n :
jj n jj n jjii

^ 1 ' n

M2 1 1 ^n .

2.9 Example. Let xx = (1,1) , x2 = (1,-1). In the space l\ , we

have ||xx + x2|| = \\xx - x2|| = 2, so M1(x1,x2) = 2. Since UxJI = 2, we also have

\L2(xvx2) = 2.

The reader may care to calculate Mp(xpx2) in i\ and i« .

2.10. If xv ... ,xk are positive elements of any normed lattice,
then /tjtxj, ... ,x^) = || E x̂ || .

Proof. If | \ } | ^ 1 for each i, then | E X x̂j| ^ E xj , so we have

We now state one result on interchanging the rows and columns of
a matrix. Given elements ap ... ,am of IRn, we can define elements ax, ... ,an

of IRm by : aTj(i) = aj(j). We use the notation yf^ to mean Mp with respect to
II llq •

2.11. With this notation, we have

M<i> ( a p ... ,an) = »l\X*v ... ,am) .

Proof. Let f be the functional on IRn defined by f(a) = I t:a(j).
J J

T h e n

J | f ( a i ) | = Z \ l U * i ( i ) \ = I I E t : a : ( i ) | = I I E t i a d l ! .
I • i j J 1 i j J J i J J 1

The statement follows on considering the supremum for all choices of tj with
Itjl * 1.

(Alternatively, one can deduce 2.11 from 2.5).

There are further results of this kind, though we will not require
them. For example:

Exercise. Show that H2
1\^v ... ,an) = H^(2LV ... ,am).
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Further results on inner-product spaces

2.12 Proposition. For elements x̂  of an inner-product space,

M1(xr ... ,xk) > (SHxill2)^

Proof, We show by induction that there exist 6p ... ,$k in {-1,1}
such that ||Z &i*ill2 * E llxjll2 . Assume this statement for sequences of length
k, and let xv ... , x k + 1 be given. Choose 6p ... ,Sk as just stated, and write

y = L &x;. The statement for k+1 follows at once from the equality
l * *

l|y + xk+1||2 + lly-xk+1||2 = 2||y||2 + 2||xk+1||2 .

We will return to this property later. We now look briefly at the
problem of identifying the scalars oq such that || I oqxj|| is the element at which
\LX or \L2 is attained. We include this because it is illuminating, but it will not
be used again.

2.13. Let x r ... ,xk be elements of an inner-product space, and
let av ... ,<xk be scalars such that |<x-| = 1 and

||I OCJXJH = n1(xv ... ,xk) .

For F C {1, ... ,k}, write SF = I {oqxj : i € F}, and let F' be the complement of
F. Then <SF, SFi> is real and non-negative for each F. The converse is
true in the real case.

Proof. Clearly, ||SP + SFi|| ^ ||SF + aSFi|| for all a with |a| = 1
(and in the real case, this is sufficient). For real scalars, the result follows at
once by taking a = -1. In the complex case, choose a such that a <SF, SFi>
= |<SF, SFi>|. Then

||SF + ocSp.H2 = ||SF||2 + ||SF,||2 + 2|<SF, SFi>| .

The statement follows.

2.14 Example. In real 42, let

xx = (1, 0), x2 = (J , %\ x3 = (J , - '§),

so that <xx, x2 > = <xx ,x3 > = \ and <x2,x3> = - \ . By 2.13,

Ii1(x1,x2,x3) = ||xx+ x2 + x3|| = 2.
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The choice of scalars Xj such that || Z XjXj|| = tf2(xr - ,*k) can be

described as follows. Let A be the matrix (<XJ,XJ>). If y = E t(i)xj, then
<y, y> = <At, t>. Hence we require the t with ||t||2 = 1 for which <At, t> is
largest. By the theory of positive definite operators, this occurs when t is an
eigenvector corresponding to the largest eigenvalue XQ of A, and we have

, ... ,xk)2 = XQ = ||A|| .

A note on complex scalars

Any linear space X over C can, of course, be regarded as a linear
space over IR (which we denote by XR). This leads to competing definitions of
Mp, which we denote (temporarily) by ^ and MR . When formulated in terms
of ||I XjXj|| , tfp allows complex scalars, while MR only allows real ones. So
clearly Mp(S) > MR(S) for any S. Conversely, it is easy to see that

if (S) « 2/zR(S) , MC(S) « V2 /zR(S)

(the second statement is most easily seen from the dual formulation of M2). TO
give examples of inequality, one need go no further than C itself; the
corresponding real space is J&2 , and one has, for example,

M£(1, i) = 2, j £ ( l , i) = '2 .

The comparison has more point when elements of real *!} , C(S),
etc. are regarded as elements of the corresponding complex space. In JR̂ S) or
C(S), 2.6 shows that Mp and MR then coincide. We indicate briefly by
examples what can happen in other cases.

2.15 Example. Let xv x2 be as in 2.9. We saw that
nf(xvx2) = 2. However, ||Xl + ix2|| = 2^2, so H^(xvx2) Z 2^2 .

2.16 Example. Let H be a complex Hilbert space, and let
x p ... ,xk be elements such that <x ,̂x:> is real for each i j . Then
M2 (x r ... ,xk) = MR(xr ... ,xk) . (This follows easily from the fact that ||u+iv||2

= Hull2 + ||v||2 when <u,v> is real).

Exercise. Consider 2.14 again. Use 2.13 to show that ii^{xvx2,xs)

is attained at xx + ax2 + ax3, where a = \ +^|i , having the value 3/^2 . (This

shows that the converse implication in 2.13 is not true in the complex case).
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3. THE SUMMING NORMS

The definition and immediate consequences

Let T be an operator between normed linear spaces. For (finite)
p > 1, the p-summing norm 77p is defined by

np(T) = sup { ( I ||TXi||P) !/P : fip(xlf ... ,xk) S 1 } ,

where Mp is defined as in section 2. In this, all finite sequences (x )̂ are
considered: there is no restriction on the length k. Clearly, for any elements
xj, we have (for example) :

Z HTxill « 77 ^ T ) M!(xls ...,xk) .

The operator T is said to be "p-summing" if 77p(T) is finite (some writers insert
- somewhat unnecessarily - the word "absolutely"). We denote Pp(X,Y) the set
of all p-summing operators from X to Y. Note that "n^ would be ordinary
operator norm.

Generally, we shall present our results in terms of 77X and 772,
rather than general p. These are the "natural" cases, and, as we shall see, each
has some special characteristics of its own. (Where appropriate, the reader may
treat it as an exercise to fill in the details for other p).

3.1. Pp(X,Y) is a linear subspace of L(X,Y), and 77p is a norm
on it. Further:

77p(T) >, ||T|| ,

77p(BT) « ||B|| 77p(T) ,

77p(TA) « 77p(T) ||A|| .

Proof. Clearly, 77p(T) * ||T|| , since Mp(x) = ||x||.
The only property whose verification is non-trivial is

77p(S + T) $ 77p(S) + 77p(T). We give the proof of this for the case p = 2.
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Let n2(xv ... ,xk) « 1 . Write ||SXi|| = *b \\Tx{\\ = &>v ||(S + T)Xi|| = yy

Then y- ^ a- + 6j , so

* (Iai2)1 / 2 + (I0!2)1/2 (by Minkowski's inequality)

« 772(S) + 7I2(T) .

The following very simple result is of great help in understanding
the meaning of the summing norms, and in obtaining an estimate for them in
particular cases. As we shall see in section 5, it can actually serve as an
alternative definition in the finite dimensional case.

3.2 Proposition. Let p £ 1. Suppose that there are functional
f15 f9, ... (a finite or infinite sequence) such that ||Tx||p S £ |f:(x)|p for all x.1 J J

Then

77p(T) « (EHfjHP^/P .

Proof. Let Mp(xls ... ,xk) S 1. Then

I |fj(xi)|P « ||fj||P for each j ,

so

X HTxjIlP * I Slf/XiJlP ^ 5 ||fj||P ,

In particular, TT^T) $ vx(T) for finite-rank operators.

3.3. If T is 1-summing, then it is 2-summing, and 772(T) ^ n^T).

Proof. Let M2(xi » • •• >xk) ^ 1 » anc^ choose positive scalars X̂  .
For f in Ux* , we have

I Xjlffri)! ^ (5 x^)1/2 ,
1 i i j i

since I |f(xj)|2 ^ 1 . Hence M1(X1x1, ... ,XkxR) S ( J X J 2 ) 1 / 2 , so

j: Xj IITxjH ^ (J Xj2)1/2 nx(T) .

The result follows on putting Xj = HTXJU.
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Similarly, of course, one can show that Hq(T) S np(T) for p ^ q.
We now list a number of immediate consequences of the definition

and the above results.
(1) Since np is defined in terms of the action of T on finite sets

of elements, we have:

7Zp(T) = sup { np(T|E) : E a finite-dimensional subspace of X } .
00

Also, if (En) is a sequence of subspaces with U En dense in X, then

7Zp(T) = sup 77p(T|En) .

(2) If T is in L(X,Y) and Y is a subspace of Z, then 7Zp(T)
(unlike nuclear norm) is the same when T is regarded as an element of L(X,Z).

(3) For a rank one operator T = f <8> y, we have (using 3.2)

*p(T) = ||T|| - ||f||.||y|| for any p.

Hence np is an operator ideal norm.

(4) If dim X = n, then, by 3.2 and 3.3,

772(IX) « n^Ix) « vx(Ix) = n .

Hence all operators of rank n are 1-summing, with ^(T) ^ n||T|| (since T =
IYT).

For a finite-dimensional space X, ^ ( 1 ^ can be regarded as a
constant in some way descriptive of the space; sometimes we write n^X)
instead of n^Ix). Clearly for isomorphic spaces X, Y, we have

fl^Y) $ d(X,Y) ^(X) .

In principle, the same is true of n2(Ix), but we shall see that in fact this equals
^n for every n-dimensional space (and hence that I x is never 2-summing when
X is infinite-dimensional).

If T is an isometry of X onto itself, then it is clear from the
identities T = TIX and I x = T"XT that np(T) = np(Ix) •

(5) In the definition of 7?p, finite sequences of any length are
allowed. If the definition is modified by restricting the length to a certain n,
then we obtain a norm which we denote by nLn' . Clearly 77̂  n)(T) increases
with n and tends to np(T) as n -» » . For operators of rank n, one might
expect 77p(n)(T) to bear some relation to 77p(T). Later examples and results will
reveal the extent to which this is the case.
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(6) It is routine to verify that if Y is complete, then so is
[Pp(X,Y), 7Tp] (though this is not important for our purposes).

In general it is by no means easy to calculate np(T) for a
particular operator T, even when T is quite simple. In this section, we will
describe a few cases in which it does happen to be easy. Some of the results
obtained are not just included for practice: they will be used in the ensuing
general theory.

For now, consider diagonal operators in JRn . As before, l^
denotes the identity in JRn, and if T is an operator from JRn to R m , then Tp q

denotes T regarded as a mapping from 4p to &™ .

3.5. Let T be the operator diag (<xv ... ,0^) in lRn. If each of p,
q is either 2 or « , then 7T2(Tpq) = (E OCJ2)1/2 . In particular, ^(I^11^) = ^n .
(Similarly for (I?1 ).

Proof. In J?1* and J« , we have ii2(cXi ... ,en) = 1 . Hence

n2(Tpq)* > EHTejII2 = E V .

For x in JR11 ,

HTxIl2 « ||Tx||22 = I a i
2x(i)2 .

This is of the form I fj(x)2 , where yfjll = aj . By 3.2, it follows that

Note. We have shown that in this case, 772(T) = n

The premulti plication lemma and n^x)

3.6. (i) Let T be in /^(X.Y) and 6 > 0. Then there exist k
and an operator A in L(j£,X) such that ||A|| = 1 and n^TA) ^ (1-S) n^T).

(ii) Let T be in P2(X,Y) and 6 > 0. Then there exist k and an
operator A in L(je^,X) such that ||A|| = 1 and 7?2(TA) Z (1-6) 7Z2(T) . Further,
if rank T = n, we may take k ^ n.

Proof, (i) There exist elements xj of X with Ii1(xv ... ,xk) = 1
and I HTxjH ^ (l-^n^T). Define A : & - X by: Aei = x{ . Then
||A|| = 1 by 2.5) and I JITAe^ ^ (1-6) n^T). Since ^(e^ ... ,ek) = 1 in
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l&, we have n^TA) > (1-6) ^(T).
(ii) The first statement is proved as in (i). Suppose that

rank T = n. Let N = ker(TA), H = N -̂ and let P be the orthogonal projection
onto H. Write Ax = A|H . Then TAX is one-to-one, so dim H $ n . Also,
TA(x - Px) = 0 for all x in l\ , so TA = TAXP. Hence n2(TA) S Tl^TA^,
and Ax is the required mapping.

3.7 Corollary. If rank T = n, then

7T2(T) = sup {772(T|E) : dim E = n} .

Proof. Take E = AX(H) .

3.8 Proposition. Let X be any n-dimensional normed linear space.
Then n2(Ix) « ^n .

Proof. By 3.6, there exist a Hilbert space H with dim H $ n
and an operator A : H - X with ||A|| = 1 and 7I2(A) £ (1-6) 7I2(IX). By
3.5, n2(IH) < ^n . Since A = AIR , we have

7I2(A) « ||A|| 'n = ^ n .

It follows that if rank T = n , then 772(T) $ ^n \\T\\ .
We shall see in section 5 that in fact n2(Ix) = ^n for any

n-dimensional space X.

Operators between Hilbert spaces

For any operator T between Hilbert spaces, there is a very
satisfactory characterisation of 7Z2(T) :

3.9 Proposition. Let H p H2 be Hilbert spaces (of finite or
infinite dimension), and let T be a 2-summing operator from H1 to H2. Then:

(i) 779(T)2 = £ ||Te:||2 for any orthonormal base (e:) of H •
£ j 1 1 1

(ii) 772(T*) = 7I2(T) .

Proof. For any finite set F of indices, we have \L2{ty i € F} = 1,
and hence I HTejH2 « 772(T)2. Therefore I HTê l2 ^ 772(T)2 (in the sense of

summation if (e )̂ is uncountable) .
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For y in H2 , we have ||T*y||2 - I <T*y, c{ >2 = £ <y, T e ^ 2 .

Hence by 3.2,

772(T*)2 « I \\Te-f S 772(T)2 .

Now let (f:) be an orthonormal base of H2 . For x in H p we
have ||Tx||2 $ £ <Tx, f j >2 = E <x, T*fj>2 . Hence, in the same way,

7I2(T)2 « I ||T*fj|| S 7I2(T*)2 .

The statements follow. (Of course, the complex case requires the insertion of
modulus signs.)

In other words, for operators between Hilbert spaces, n2 coincides
with the "Hilbert-Schmidt" norm.

Clearly, we have shown in 3.9 that if dim Hx = n , then
7I2(T) = 772<n)(T) .

It follows from 3.9 that an inner product (inducing the norm n2)
can be defined on P2(HX, H2) by setting

< S, T > = I <Se:. Te: > (= trace T*S) ,
I

this sum being independent of the choice of orthonormal base.
Note that for the operator T : *n - Jm with matrix (ccj :), we

have

7Z2(T)2 = I I Icq/ .
1 1 j ^J

In the proof of 3.9, we have in fact established the following
statement for the cases where only one of the two spaces is a Hilbert space :

3.10. Let Hx, H2 be Hilbert spaces, with orthonormal bases (ej),
(fj) respectively. Let X, Y be normed linear spaces. Then :

(i) for S in />2(Hp Y),

772(S*)2 « I HSe/ « 7T2(S)2 ;

(ii) for T in />2(X, H2),

I HT*f jllH2(T)2 < v nnr*f.,,2
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3.11 Example. Let S = I2
2l , T = I<2

2 . Then S = T*. We
have seen (3.5) that 7I2(S) = V2 . We show that 7Z2(T) » 1 , establishing
that inequality can hold in both statements in 3.10. (We shall see in section 6
that in fact n2(l{^\ ) = 1 for all n.)

Consider the orthonormal base (fj, f2), where fx = ^ ( 1 , 1),
f2 = ^ ( 1 , -1). By 3.10, 7T2(T)2 S HSfJI2 + ||Sf2||2 = 1 . Equality holds, since
I|T|| = 1 .

This example also shows that in the situation of 3.10, E HSê l2

and Z l|T*fj||2 are not independent of the choice of base.

We mention the following easy consequence of 3.9, though it is not
central to our development:

3.12. Let H r H2 be infinite-dimensional Hilbert spaces. Then
the finite-rank operators are dense in [P2(Hr H2), n2 ]. Hence every
2-summing operator between Hilbert spaces is compact.

Proof. Let (ea) be an orthonormal base of H r By 3.9, the set of
ea with Tea * 0 is countable, so can be expressed as a sequence (en).
Let

n
Tnx = E <x, e:> Te: .

n i=i 1 1

Then

772(T-Tn)2 = ^ UTejII2 - 0 as n - <*> .

3.13 Example. Define T in L(J&2) by : (Tx)(n) = j=- x(n) for all

n. Then T is compact, but not 2-summing, since I l|Tej||2 is divergent.

Operators on L^-spaces

For operators on *£ , there is a very simple - and useful -

characterisation of flj :

3.14. Let T be an operator from *£ to any normed linear space
Y. Then

^(T) = 7z(n)(T) = vx(T)
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Proof. Since ii1(cv ... ,en) = 1 , we have 7l(n'(T) £ I l|Tej|| .

Conversely, the natural expression T = I ej <8> (Tej) gives vx(T) $ I IITe l̂ .

This re-proves 1.15. Also, it shows that if T = diag (<xr ... ,ocn),
then n^Tooq) = E |a-| for each q > 1.

Exercise. For an operator T defined on c0, prove that ^ (T) =

We can deduce a general relationship between nv vx and projection
constants.

3.15. If X is finite-dimensional and T is in L(X,Y), then

Proof. It is enough to prove this for the case where X is a
subspace of J« for some k, (by 0.13, X is nearly isometric to such a subspace).
Let P be a projection of *£ onto X. Then TP maps from u£ to Y and
extends T. Hence, by 3.14,

3.16 Corollary. If dim X = n, then X(X) nx(X) Z n .

Proof. Apply 3.15 with T = I x .

In the following, L^ denotes any of the spaces J&£ , 4«>(S), C(K),
. There is a useful variant of 3.2 for operators defined on a subspace of

La, • This is really quite general, since every normed linear space can be
regarded as a subspace of 4«>(S) for a suitable S (see 0.12). We use the fact
that Loo is both a lattice and an algebra : given an element x, there are
well-defined elements |x| and x2 .

3.17 Let X be a subspace of Lo, , and let T be an operator
defined on X. Suppose that there is a positive linear functional 4> on L a such
that ||Tx||p $ 0(|x|P) for all x in X. Then np(T)p * Wl
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Proof. Choose elements xj of X . Recall from 2.6 that

Mp(xx, ... ,xk)P = | |I|x|P||

Assume that the value of this is not greater than 1. Then

X ||Txil|P * EfllxjlP) = «J|Xi|P) * ||fl| .
1 1 1 1 1 1

Notes (1) There is no requirement here that |x|P belongs to X
when x does. But clearly, if this condition is satisfied, then it is enough for
0 to be defined on X.

(2) In the complex case, it is sufficient if 4> is defined on real
L«>. However, if it is defined on complex Loo, the meaning of "positive" is that
0(x) is real and positive whenever x is real and positive.

The converse of 3.17 is in fact true as well. This is Pietsch's
theorem, the fundamental theorem on p-summing operators. We give an
account of it in section 5.

From 3.17, we obtain at once one of the classical
infinite-dimensional examples of p-summing operators:

3.18 Example. Let I = [0,1], and let Jp be the formal identity
mapping from C(I) to Lp(I). Then np(Jp) = 1 for p = 1, 2.

Proof. Let 0(x) = f x. Then \\<p\\ = 1 (as a functional on C(I))

and ||Jpx||P = 4>(|x|P) •

In the same way, if g is in LJ(S,M) and Tg is the multipication
operator from C(S) to L^S.tf) given by Tg(f) = fg , then n^Tg) = ||Tg|| -
llgll,.

It is not very hard to show that J2 is not 1-summing. However,
an easier example is as follows :

3.19 Example. Define T : 4oo - *2 by (Tx)(n) = ^ x(n) . Then

||Tx||2 = l i 2 x ( n ) 2 . This equals 0(x2), where 0 is a positive functional having

||0|| = E - 2 . Hence T is 2-summing. It is not 1 -summing, since ii1(cv ... ,en) =

1 for all n, while I HTê l is divergent.

Cambridge Books Online © Cambridge University Press, 2009Downloaded from Cambridge Books Online by IP 171.67.128.228 on Fri Jul 13 22:16:13 BST 2012.
http://dx.doi.org/10.1017/CBO9780511569166.005

Cambridge Books Online © Cambridge University Press, 2012



40

We now establish some nice facts about positive operators defined
on (real) L^ or a sublattice (that is, a subspace X such that |x| belongs to X
whenever x does). For a positive operator on any normed lattice, we have that
if |x| $ y, then |Tx| * Ty (since -Ty S Tx $ Ty), hence ||Tx|| $ ||Ty||. In
particular, ||Tx|| S ||T(|x|)|| .

Let e be the element of L^ with constant value 1. The unit ball
of La, is the set of x satisfying |x| $ e. Hence for a positive operator (or
functional) on L«>, we have ||T|| = ||Te|| .

3.20. Let Lx denote any of the spaces *n, &v L^jx). Let X
be a linear sublattice of L«>, and let T be a positive operator from X into L r

Then 7TX(T) = ||T||.

Proof. There is a linear functional 4) on Lx such that || 0|| = 1
and 0(y) = ||y|| for all y £ 0 (this is the characteristic property of Lx as a
normed lattice). For x e X, we have

But ||T*0|| $ ||T||, so the statement follows, by 3.17.

3.21 Example. Let T be the operator from 4«> to l\ defined by
Tex = (1,1), Te2 = (1,-1). Then ||T|| = 2 (e.g. by 2.9), while n^T)

= 4. So 3.20 certainly does not hold for non-positive operators.

We now show, by a different method, that a similar statement
holds when lv nx are replaced by J2, n2.

3.22. Let X be a linear sublattice of L», and let T be a positive
operator from X into 4n or &2. Then 772(T) = ||T||.

Proof. Let Tx = I f .(x)c: , so that ||Tx||2 = J f : (x) 2 . (Remark:j J J j J

fj = T*ej). By 3.2,

772(T)2 ^ I ||fj||2 .

If X contains e, the statement follows at once, since

I ||f:||2 = I f:(e)2 - ||Te||2 = ||T||2 .
J J J J

We now show that this equality still holds when X does not contain e. We
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must show that Z ||f:||2 S IITII2 for each N. Take 6 > 0. For each j , there is a
l J

positive element x: of the unit ball such that fj(xj) > O"5) llfjll • Let
y = sup(xp ... ,xN) . Then ||y|| S 1 and fj(y) * fJ(XJ) for each j , so

N N
HTy||2 = Zfj(y)2 ^ (1-S)2 Z ||fj||2

Exercise. Let T be a positive operator from (the whole of) L^ to

J?2. Use the fact that (x -ce)2 * 0 to show that f(x)2 S f(x2)f(e) for a
positive functional f. Deduce the existence of a functional <t> as in 3.17.

Finally, we show that for operators on Lm (or a sublattice), the
norms np are "monotonic". Simple examples show that this is not true for
operators on other normed lattices.

Define (temporarily) np(T) in the same way as np(T), except that
only positive elements xj are allowed. (We come back to this idea in section
18). Clearly, if 0 « S S T, then 7I+(S) « 7l£(T) .

3.23. Let X be a sublattice of LB, Y any normed lattice. For
positive operators from X to Y, np(T) = n£(T) . Hence if 0 ^ S $ T,
then 77p(S) « np(T) .

Proof. This follows at once from the fact (special to L«!) that
MpOxJ, ... ,|xk|) = mp(xv ... ,xk), together with ||Tx|| « ||T(|x|)|| .

Infinite series

We show next how 1-summing operators can be characterized in
terms of their actions on infinite series. This description provided the original
motivation for the study of such operators.

A sequence (xn) in X is said to be summable (or the series Ix n to
be "unconditionally Cauchy") if, given 6 > 0, there exists N such that
Mx(xN+1, ... ,xp) ^ S for all p > N. This is clearly equivalent to the statement
that I \ n x n is a Cauchy series for every bounded scalar sequence (Xn).

The sequence (xn) is said to be weakly summable if there exists M
such that jijfxj, ... ,xn) $ M for all n. It is easily seen that this is equivalent
to either of the following statements:
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(a) I |f(xn)| S M for all f in Ux* ,

(b) Z x
n

x n *s a Cauchy series whenever Xn -» 0 .

Also, by applying the uniform boundedness theorem to the set of all finite sums
ZX x̂j with each |X}| $ 1 , one sees that it is equivalent to the statement that
Z|f(xn)| is convergent for each f in X*.

3.24. Let T be an operator. The following statements are
equivalent:

(i) T is 1-summing,
(ii) Z l|Txn|| is convergent whenever (xn) is weakly summable,
(iii) Z ||Txn|| is convergent whenever (xn) is summable.

Proof. Clearly, (i) implies (ii) and (ii) implies (iii). To show
that (iii) implies (i), suppose that T is not l-summing. For each n, there is a
finite sequence Sn such that Mx(Sn) « 2"n, while Z{||Tx|| : x € Sn} > 1.
Form a sequence (xn) by taking the elements of Sv S2, ... in turn. Then it
is clear that (xn) is summable and Z ||Txn|| is divergent.

Similarly, T is 2-summing if and only if Z ||Txn||2 is convergent
whenever Z |f(xn)|2 is convergent for all f in X*.

The mixed summing norm n21

A "hybrid" summing norm n2 x is defined as follows:

7T21(T) = sup{(Z||Txi||2)1/2 : M x̂p ... ,xk) S 1} .

(Similarly, one can define nq p for any p, q £ 1.)
Clearly, we have ||T|| $ n2|1(T) * n2^- O n e verifies as in 3.1

that n21 is a norm and that n2 X(AT) $ ||A|| n2 X(T), etc. As with 77p, we write
772>1(X) for 7T21(IX) .

We would not introduce n21 if it were not for the following fact,
which suggests that it is a more "natural concept" than one might suppose at
first sight. Recall from 2.12 that for elements of an inner product space,

(Z llxiH2)1/2 « M ^ , ... ,xk) .

In other words, we have:
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3.25. For any inner product space H, n2 X(H) = 1 .

It follows that for all operators from or into an inner product
space, 772>1(T) = ||T|| .

We return to a more thorough consideration of n21 in section 14.
In the meantime, our concern with it will be mostly limited to identity
operators. As in 3.24, n2 X(X) being finite is equivalent to Z ||xn||2 being
convergent for every summable sequence (xn) in X. Orlicz (1933) showed that
Lp[0,l] has this property for 1 S p « 2 (we will prove the case p = 1 in section
7, in a rather stronger form). Consequently, an infinite-dimensional space X is
said to have the Orlicz property if 7I2 X(X) is finite.

3.26 Example. Let T be the operator diag (a r ... ,0^) in L(&%).
Exactly as in 3.5, we see that 7Z21(T) = 772(T) - (Eaf)1/2 . In particular, n21(j£)

Historical note

Orlicz's theorem can be regarded as the historical beginning of the
study of summing operators. It was natural to ask next whether, in particular
infinite-dimensional spaces X, the series I ||xn|| is convergent for every
summable sequence (xn). Macphail (1947) recognized that this was equivalent
to asking whether (in our notation) there was an upper bound to n^E) for all
finite-dimensional subspaces E of X. Actually, Macphail considered the
reciprocal of n^E), which became known as the "Macphail constant" of E. He
showed that Ĵ  does not have the above property. Dvoretzky & Rogers (1950)
then proved that the same is true for every infinite-dimensional space. We
shall see in section 5 how easily this result can be derived from the theory as
now developed (though admittedly we will not reproduce the full strength of
the theorem as stated by Dvoretzky and Rogers).

The notion 1-summing for operators other than the identity seems
to have originated in Grothendieck (1955, 1956), under the name "applications
semi-integrales a droite." Grothendieck's work contained a wealth of new ideas
and deep theorems, and indeed underlies a large part of the contents in this
book. However, it is not easy reading ! The development of the theory of
1-summing operators (and norms) in their own right was eventually taken up by
Pelczynski (1962) and Pietsch (1963). The study of p-summing operators (for
other p) was then initiated by Pietsch (1967).
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Further examples

We conclude this section with some miscellaneous further examples.

3.27 Example. In 2.14, we found three elements of (real) JJ2

with HXJII = 1 and n1(xv x2, x3) = 2. It follows that ^(J2) £ | .
The exact computation of nx{l\) is by no means trivial; we

will eventually achieve it in section 8.

3.28 Example. Let H3 be the subspace of it consisting of
elements x such that Zx(i) = 0. It is elementary that H3 is isometric to JB̂ .
We show that n^HJ = 2. (The evaluation of ^ ( i j ) is described in section 7).

It is easy to verify that for x in H3,
4

||x|| « \ .£ |x(i)| .

By 3.2, it follows that 771(H3) « 2. Let xx = (1,-1,0,0), x2 = (0,0,1,-1). Then
M ^ , x2) = 1, while HXJI + ||x2|| = 2 .

3.29 Example. Choose a = (a4, ... ,an) in IRn, and let
u r ... ,un be the elements obtained by permuting the terms of a cyclically.
Let T be the operator in L(J&£) defined by: Tej = uv Then 772(T) = ^n ||a||2.

To show this, observe first that ||Tx|| = |E aa/j\x(i)| , where a is
some permutation of 1,2, ... ,n . Hence, by Schwarz's inequality,

||T||2 ^ (I a i
2) (E x(i)2) .

By 3.2, it follows that 772(T)2 $ Z af .
Clearly, HTujll = I aj2 for each i, and n2{uv ... ,un) = ||a||2 .

The stated equality follows.

3.30 Example. Let E be the operator from i2 to i2© defined by:
Eex = Ee2 = (1,1). Then E = e <8> e, so ^(E) = ||E|| = 1. Define S by :
Sex = (1,1), Se2 = (0,1). Let xx = (1,1), x2 = (1,-1). Then /^(XJ.XJ) = 2,
while ||Sx1|| + ||Sx2|| = 3. Hence we have 0 $ S $ E, but 7T1(S) > n^E)
(compare 3.23).

3.31 Example. Let E be the subspace of J?i consisting of elements
x satisfying x(l) = x(2) + x(3). This is not a sublattice of i|> (though it is a
lattice under its own ordering !). Let J be the "identity" mapping from E to JB̂ .
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Clearly, J is positive. We show that n^J) > ||J|| (in contrast to 3.20). It is
easily shown that ||J|| = 2. Let xx = (2,1,1), x2 = (0,1,-1). Then ^(XJ.XJ) = 2,
while HJxJI + HJxJI - 6. Hence n^J) £ 3.

Exercise. Let Xv ... ,Xn be finite-dimensional spaces, and let X
be the product space Xx x ... x X n , with norm defined by: ||x|| = max ||xj||.
Show that nx(X) = E w^Xj) .
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4. OTHER NUCLEAR NORMS; DUALITY WITH THE SUMMING NORMS

The definition and immediate consequences

The norm vx was considered in section 1. We now introduce
nuclear norms vp for other p (including • ). The definition perhaps seems
rather contrived at first sight, but it will soon be justified by results. In
particular, these norms are in trace duality with the summing norms. As with
the summing norms, we concentrate our account on the "natural" cases p =
1A-.

Let X,Y be normed linear spaces, and let 1 * p < » . Let p '
be the conjugate index : ^ + pi= 1.

For T in FL(X,Y), we define

vp(T) = inf{ (ZHfilP)1/* [£p.(ylf ... ,yk) : T = I f ; <8> y{) ,

v«,(T) = inf{ n1(y1, ... ,yk) : T = I f j <8> y. with each \\f{\\ « 1} .

4.1. v p is a norm on FL(X,Y), and vp(T) £ 77p(T). Further :
(i) vp(f <8> y) = ||f ||. ||y|| ,
(ii) vp (BT) « ||B|| vp(T), vp(TA) « vp(T) ||A|| ,
(iii) if p S q, then vp(T) > vq(T) .

Proof. Take representations

S = I fj ® yj , T = Z g j 9 ZJ
1

with the appropriate quantities approximating to vp(S), vp(T) . For p = », do
this with HfjH = ||gi|| = 1. For p = 2, do it with (I U^H2)** = n2(yv ... ,yk)
(and similarly for T). In each case, the combined representation for S+T
shows that vp(S+T) $ vp(S) + vp(T).

Let T - S fj « yj , with Mpi(yr ... ,yk) = 1. Then
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HE f i (x)yiH * ( E ^ M I ^ / P .

It follows that np(T) S (E ||fillp)1/p, and hence np(T) $ vp(T) (also ||T|| «

Statement (i) now follows, and statement (ii) is easy.
We prove (iii) in the form v»(T) « v2(T) S v^T). First, let

T = E fj €> yj with Hfjll = llyjH and E \\t-f S (1 + 6) v ^ T ) . Since
M2(yr ... ,yk) « (E llvill2)^ , this gives at once v,(T) S E ||fj||2 .

Now let T = E fj <8> yj with n2(yv ... ,yk) - 1 and E UfjH2 «
(l+6)2v2(T)2 . Let aj = (fjl , g i = aj^fj , zj = ajyj . Then T = E gj <8> zj,
and we have (as in 3.3),

I4(z1§ ... ,zk) ^ (E aj2)^ * (1 + 6)V2(T) .

As with v p the following comments apply :
(1) If Tx is a restriction of T, then vp(Tx) ^ vp(T) .
(2) Extensions (with almost the same values of vp) are given by

taking Hahn-Banach extensions of the fj.
(3) One must distinguish between an element of FL(X,Y) and the

same mapping regarded as an element of FLtXjYj) , where Yx is a subspace of
Y.

(4) By 1.2, we have vp(T**) « vp(T) .
The study of the norms vp and the corresponding class of

p-nuclear operators (not restricted to finite rank) was initiated by Persson &
Pietsch (1969).

Trace duality with the summing norms

The definitions of the summing and nuclear norms are ready made
to fit together, as follows :

4,2 Let S € FL(X,Y) and T € L(Y,Z) . Then :
(i) vx(TS) * nx (T) vJS) ,
(ii) vx(TS) * 7I2(T) v2(S) .

Proof. (i) Take 6>0. Let S = I fj 9 y{ , with HfjH = 1 and

MY!, - 'Vk) < (l+«)v«(S) . Then TS = I fj 9 (Tyj) , and
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E HTyill * nl(T)n1(y1 yk)

« (1+6) ^(TJvJS) .

The proof of (ii) is similar. We take I ||f j | | 2 = 1 and
... ,yk) « (1+5) v2(S).

In the same way, one can show that vx(TS) $ 7Tpi(T)vp(S) .

4.3 Proposition. Under trace duality, v£ = n1 and vj = n2

(and v* = 7lp i) . In other words, for T in PX(Y,X) ,

w^T) = sup {|trace (TS)| : S € FL(X,Y), vJS) « 1} ,

and if X is finite-dimensional, then the Banach space dual of [L(X,Y),v«>]
identifies with [L(Y,X), 7IJ (and similarly for 772,v2).

Proof. Take T in L(Y,X). If vJS) « 1, then by 4.2,

Itrace (TS)| * vx(TS) « ^(T

Take 6 > 0. There exist elements yj with n1(yv ... ,yk) = 1
and Z HTyjH > (1 -6) n^T). Take fj € X* with HfjH = 1 and fjCTyj) = ||Tyi||.
Let S = Z fj ^ yj . Then v^S) S 1, and

trace (TS) = I f^Tyj) > (1 - Qir^T) .

For the pair v2, n2 , we reason similarly, choosing fj with j|f||| =
HTyjH and f^Tyj) - HTyjH2 . This gives S with v2(S) ^ 7T2(T) and
trace (TS) * (1 + 6)2 772(T)2 .

4.4 Corollary. If X is finite-dimensional (or reflexive) and S is
in FL(X,Y), then there exists T in L(Y,X) with ^(T) - 1 and trace (TS) =
v^S). Similarly for 772, v2 .

Using the corresponding duality result for vx itself, we can now
interchange ftp i and vp in 4.2 (a fact that is not obvious a priori):

4.5 Let X be finite-dimensional, S € L(X,Y) and T € FL(Y,Z).
Then

v2(T)n2(S) .
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Proof. By 1.12, there is an A in L(Z,X) with ||A|| = 1 and

- trace (A.TS)
= trace (AT.S)
= trace (S.AT)
S TT̂ S) vJAT) (by 4.2)

We defer to section 16 the question of identifying the duals of the
summing norms in the sense that we have defined.

Write vjjn>(T) for the quantity defined like vp(T), but only
allowing representations of length not greater than n (where n, of course, is
not less than the rank of T). We saw in 1.17 that this can differ from vp(T),
and in fact v^) is not a norm. However, the reasoning of 4.2 and 4.3 still
holds to show that n^ i is "dual" to v ^ , and this sometimes yields useful facts
about n^\ .

Special properties of v«>

4.6. If T maps from or into *£ , then

= vLn)(T) = ||T|| .

Proof. First, suppose that T maps from 42 . Then T =
E x(i)(Tei), and ^(Te^ ... ,Tcn) * ||T|| .

Now suppose that T maps into *£ . Let Tx = E fj(x)ej , so
that T = I fj €> ej . Then HfjH S ||T|| for each i, and ILX(CV ... ,cn) = 1.

From this and 4.3, we deduce at once :

4.7. If X is finite-dimensional and T is in L(X, *£) , then
vx(T) = nx(T) (= 7r(n)(T)) .

Recall (3.14) that the same applies to operators on J&£ .
The last two results provide a very nice illustration of the

dependence of vx and v«> on the range space. Let Y be a subspace *2 . Let
J be the inclusion Y -» *2 , and let T be an operator from X to Y. Then JT
is the same mapping, regarded as an operator from X to J?2 , and

v^JT) = IIJTII = ||T|| .
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So if vx(T) is different from n^T), then it is different from v^JT) (and
similarly if v^T) t ||T||). As we shall see, we only need to take T = I y (for
suitable Y) to obtain inequality in both cases.

The concept of an E«>-space (see section 0) is the key to a painless
extension of 4.6 and 4.7 to the infinite-dimensional case.

4.8 Let X be finite-dimensional, Y an an S^-space and T an
element of L(X,Y). Then v^T) = ||T||, vx(T) = ^(T).

Proof. Choose 6>0. There is a subspace Yo of Y, containing
T(X), such that d(Y0,J&£) $ 1 + 6 for some N. Let To be the same mapping
T, regarded as an element of L(X,Y0). Then vx(T) $ ^(TQ) , while
nx(T) = nx(JQ). It follows easily from 4.7 that V^TQ) * (1 + 8) ^(TQ) .
Hence vx(T) $ (1 + S) n^T) . Similarly for va .

Using 4.6, we now derive two equivalent formulations, both very
"natural", of the meaning of v«>.

4.9. Let X be finite-dimensional, and let T be in L(X,Y). Then
v^T) is the infimum of the numbers a for which the following statement
holds : given any space Z containing X, there is an extension T : Z -* Y of T
with ||T|| * a .

Proof. Firstly, for any 6>0, there is an extension T with ||t|| S
vJJ) S (1 + 6) vJT) .

By 0.14, there is a space Z containing X (strictly, an isometric
copy of X) with d(Z, *2 ) $ 1 + 6 for suitable N. Suppose that T has an
extension with ||f || U . By 4.6, v ^ t ) $ a(l + 6) . The statement follows.

4.10 Corollary. If X is finite-dimensional, then v«(Ix) = X(X)
(the projection constant of X).

4.11. Let T be in FL(X,Y). Then v^T) is the infimum of
HTjIUITjH taken over all factorizations T = T2Tr where Tx € L(X, *£) ,
T2 e L(j£, Y) and k is any integer.

Proof. Given such a factorization, we have by 4.6 :

v.(T2) IITjH = IITjILHTJ .
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For the converse, take S>0. Let T = £ f: <8> y- where ||f:|| = 1
j i i i

for each i and ^(yv - ,Yk) * O + &) V<»(T). Define Tx : X - *£ and

T2 : J* - Y by :

Then T = T2Tp HTJI = 1 and by 2.5, ||T2|| S (1 + 6) vw(T) .

Note. For mappings between finite-dimensional spaces, it follows
that vw(T*) equates to the quantity defined in the same way by factorizing T
through *|f of course, Va>(T*) is obtained by interchanging || || and \LX in
the definition of v^T). In general, it bears no relation to v^T). For
example, if T is the identity in J&2, then T* is the identity in 4n , and
v«>(T) = 1, while vJJ*) = \(*n). (But of course v«(T**) - vJJ) when the
spaces are finite-dimensional).

Exercise. Show that for a diagonal operator D from J« to *£,
vp(D) = ||D|| . Deduce that for T in FL(X,Y), vp(T) is the infirmum of
IITJUIDIUITJI taken over factorizations T = T2DT1 , where T\ € L(X, l&) ,
T2 e L(J2p,Y) and D is a diagonal operator from Jl« to J8p .

For identity mappings, vLn^ has a nice interpretation.

4.12. l!et dim X = n. Then

vLn) (Ix) - d(X, i£) .

Proof. Representations of length n for Ix are of the form
E fi ® bj , where (bp is a base of X, and (fj) is the biorthogonal set of
functionals.

Given a base (bj) of X, define an isomorphism *£ -* X by:
Tej = bv Then ||T|| = ^(bp ... ,bn). Further, T"xx = I f^x)^ , so UT̂ H =
max ||f}|| . All isomorphisms are of this form. The statement follows.

Compare this with the equality v«(Ix) = X(X). Of course, X(X) ^
d(X,iS )• It is a long unsolved question whether there is a constant C
(independent of n) such that d(X, *2) $ CX(X) for all n-dimensional spaces X.
We give a partial result in this direction later (12.11).
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Special properties of v2

The outstanding special property of v2 is that it coincides with n2.
This will be proved in section 5. For the moment, we just remark that we
have already (in 3.9) essentially proved this statement for operators between
Hilbert spaces : with the notation used there,

T = I (T*f:) * f: ,
J J J

so V2(T)2 S I ||T*fj||2 = 772(T)2 .

Exercise. Prove by the steps indicated that the value of v2 is
independent of the range space. Given M2(vi> — »vk) = 1 , let Z be a
subspace of Yo = lin(yr ... ,yk). By considering the mappings A : J&2 •* Yo

given by Ae^ = yj , show that there is a projection P of YQ onto Z with
Mo(Pyi, — »Pyir) ^ 1 •

"Lifting" and right inverses

As with the extension problem, the solution to the "lifting" problem
is effectively built in to the definition of vp - though we have to consider
vp(T*) rather than vp(T) (as we know, for p = 1 these coincide). Recall that
we say that Q is an "M-open" operator of Y onto Z if for each z € Z, there
exists y € Y with Qy - z and ||y|| « M||z|| .

4.13. Let X,Y,Z be normed linear spaces (Z finite-dimensional).
Let Q be an M-open operator of Y onto Z. Given T in L(X,Z) and S>0,
there exists Tx in FL(X,Y) such that T = QTX and vp(Tx*) « (1 + C)M vp(T*).

Proof. Express T as I fr «> zr , with Mpp(zx, ... ,zk) ^
(l + 6)vp(T*) and E ||zr||P ^ 1 (for p = «>, ||zr|| * 1 for each r). Let yr be
such that Qyr = zr and ||yr|| * M||zr|| , and let Tx = I fr <8> y r .

The special case Z = X, T » I x gives :

4.14 Corollary. Let X be finite-dimensional, and let Q be an
M-open operator of Y onto X. Then, for any S > 0, there is an operator J
in L(X,Y) such that QJ - Ix and vp(J*) « (1 + 6)M vp(Ix*). Then JQ is a
projection of Y onto J(X).
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For a subspace E of Y, we denote by E° the annihilator of E in
Y*. If E is of codimension n (that is, it has an n-dimensionai complement),
then dim E° = n.

4.15 Corollary. Let E be a closed, n-codimensional subspace of Y
(which may be infinite-dimensional). Then, given S > 0, there exists a
projection P on Y with kernel E and ||P|| $ (1 + 6) X(E°).

Proof. In 4.4, let Q be the quotient map of Y onto Y/E , and
let P = JQ. Then ker P = ker Q = E. Also, (Y/E)* is isometric to E°.
Apply 4.14 with p « « : we have ||J|| $ vJJ*) and vJJ^p) = X(E°) .
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5. PIETSCFPS THEOREM AND ITS APPLICATIONS

The theorem

We now come to the fundamental theorem on p-summing operators.
We have seen (3.17) that if T is an operator defined on a subspace X of J^S)
and if there is a functional <t> on J^S) such that ||Tx||p $ <K|x|p) for all x e X,
then 77p(T)p $ \\$>\\ . Pietsch's theorem states that, conversely, such a functional
<t> always exists. Its application is quite general since, of course, every Banach
space can be embedded in a suitable J«>(S) (note that there is no requirement
that |x|p belongs to X whenever x does). For p = l , Pietsch published the
theorem in a slightly disguised form in (1961), and in more or less the present
form in (1963). The version for general p appeared in (1967).

First, we mention one special case in which the proof is easy.
Suppose that T is defined on *2. Then n^T) = E <xv where cq = ||Tei||
(3.14). Now Tx = I x(i)(Tei), so ||Tx|| S I «j|x(i)|. This is 0(|x|), where
11011 = I otj •

For the general case, we use the following lemma of F.F. Bonsall.
We say that a real-valued function q is "superlinear" if -q is sublinear. A
"wedge" is a subset admitting addition and positive scalar multiplication.

5.1 Lemma. Let Q be a wedge in a (real) linear space X.
Suppose that p is sublinear on X and q is superlinear on Q, with q(y) $ p(y)
for all y € Q. Then there is a linear functional f on X such that

f(x) S p(x) for all x € X ,
f(y) > Q(y) for all y € Q .

Proof. For x in X, define

r(x) = inf (p(x+y) - q(y) : y € Q}.

Since p(x+y) + p(-x) £ p(y) > q(y) , we have r(x) > -p(-x) . It is
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elementary that r is sublinear, and clearly r(x) $ p(x) for x € X, while r(-y) $
-q(y) for y € Q. By the Hahn-Banach theorem, there is a linear functional f
on X with f(x) $ r(x) for all x. Then f has the required properties.

5.2 Theorem. Let X be a linear subspace of J<»(S). Let T be a
p-summing operator defined on X (for any p £ 1). Then there is a positive
linear functional 0 on ^(S) such that ||0|| = np(T)p and

||Tx||P * 0(|x|P) for x € X .

Proof. Consider the case of real scalars first. Let Q be the set
of non-negative functions in J<»(S). Given y € Q, let V(y) be the set of
finite sequences (xp ... ,xk) in X with I |XJ|P S y. Let

q(y) = sup {I IITxjHP : (xp ... fxk) e V(y)} .

For (x r ... ,xk) fn V(y), we have by 2.6 ,

Mp(Xl, ... ,xk)P = Hpx/H S ||y|| ,

and hence

where p = np(T)p. Therefore q(y) ^ p||y|| . It is elementary that q is
superlinear, and clearly for x € X, we have ||Tx||p $ q(|x|p).

By the lemma, there is a functional 0 on ^(S) such that 0(z) *
p||z|| for all z in I^S) (so ||0|| ^ p), and «y) >, q(y) (> 0) for yeQ. In
particular, 0(|x|p) ^ ||Tx||p for x € X.

In the complex case, let J«>(S), *£(S) denote the spaces of
bounded real and complex functions on S respectively. The above proof gives
a positive real functional 0 on 4«,(S) satisfying the stated conditions (it doesn't
matter that X is not contained in ^(S) !). There is an obvious way to extend
0 to give a (complex) linear functional on 4»(S) : let 0(x+iy) = 0(x) + i0(y).
It is elementary that this does not increase ||0||.

Remarks (1) Suppose that X is embedded in C(K) (e.g. with K =
Ux*). Then there is a positive functional 0 on C(K) as stated in the theorem.
By the Riesz representation theorem, this functional can be identified with a
Borel measure on K. The theorem is often quoted in this form. However,
this is to obscure the fact that the theorem is simply a statement about the
existence of a functional, not a statement about measures. For some
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applications (notably the extension theorem) it is important that X can be
embedded in any space of the form U S ) or C(K), not only in C(UX*).

(2) A sketch of an alternative proof is as follows. Assume p = 1.
Let

Fx = {y € U S ) : sup y(s) < 1} ,

F2 = co {|x|P : x € X and ||Tx|| = 1} .

One verifies that Fx and F2 are disjoint. The separation theorem then gives
the required functional.

Given a positive functional <p on U S ) , one obtains a
semi-inner-product by putting <x,y> = <Mxy) (real case) or 0(xy ) (complex case).
Then 0(|x|2) = <x,x> . • This is the key to a number of important applications
specific to the case p = 2, obtained by taking advantage of the nice properties
of Hilbert spaces.

Exercise. Let fp ... ,fn be functionals on C(K). Write I ||fj||2 =
M2. Show that there is a positive functional </> on C(K) such that I fj(x)2 «
0(x2) for all x and ||tf>|| = M2. Is this obvious without Pietsch's theorem ?

Exercise. Adapt the proof of 5.2 to obtain the following variant
for lattices. Let T be a 1-summing operator on a normed lattice X. Then
there is a positive functional 0 on X such that ||<f>|| = n^T) and ||Tx|| S <ft|x|)
for all x € X.

(However, the converse is not true. This will be clarified in
section 18).

Operators on finite-dimensional spaces.

As a first application of Pietsch's theorem, we obtain the promised

converse of 3.2.

5.3 Proposition. Let T be an operator on a finite-dimensional
space X, and let 6>0, p £ 1. Then there exist elements fp ... ,f^ of X* such
that ||Tx||P S I |f:(x)|P for all x € X, and

J J

; (i + c) V T ) •
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Proof. It is sufficient to prove the statment (without 6) for the
case when X is a subspace of some JQ», since every X is almost isometric to
such a subspace (see 0.13).

Let 0 be the functional given by Pietsch's theorem. We can
express 0 in the form

0(y) = i; ccjPy(j) ,

where ||0|| = E OCJP = np(T)p . Then ||Tx||p S E |fj(x)|p for xeX, where
fj(x) = ccjx(j) . Clearly, ||fj|| « Oj .

Notes. (1) The number of functionals in 5.3 is bounded by the k
for which X is embedded in fl« . It is easy to see that this number may have
to exceed the rank of T. Consider the identity in an n-dimensional space X.
We show later that there are cases for which nfix) * ^2n . Suppose we have
n functionals fj such that ||x|| « E |fi(x)l for all x. Then the f} are linearly
independent, so there exist b: € X such that fj(b:) = 6^: . From our
hypothesis, ||bi|| « 1, so HfjH > 1, and hence E flfjH > n .

(2) Let K be a norming subset of Ux*. The near-isometric
embedding into J« is of the form

Ax = [hx(x), ... ,hk(x)]

where the h: are in K. From the way that co-ordinate functionals were used
in the proof, it is clear that the f: in 5.3 can be taken to be scalar multiples
of elements of K.

We have seen very easily (3.14, 4.6) that for operators defined on
*£ , vi(T) = ft^T) and v^T) = ||T||. We can now show that the same is
true for general p (and in particular, p = 2).

5.4 Proposition. For any operator T on J&S, we have vp(T) =
7ip(T) for all p.

Proof. We assume 1 < p < • . Let 0 be the functional given by
Pietsch's theorem, so that

0(x) « X; ocjpx(j) ,

where ||0|| = E a:p = np(T)p. Let K be the set of j for which «j > 0. For
j € K, let fj(x) = ojx(j) and Uj = ccj-^Tej). For other j , let fj = Uj = 0.
Then
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Tx = E x(j) (Tc;) = I. f ;(x)u: .
J J J J J

Clearly, I ||f :||p = E <x:p = np(T)p . The result follows if we can show that
PpiOip ... ,uk) S 1. Take scalars Xj with I |Xj|p $ 1. Then I XjUj = Tx,
where x(j) = a ] 1 *; for j € K (and 0 otherwise). Hence

||lXjUj||p = ||Tx||p « I ajp|x(j)|p = I |Xj|p « 1 ,

which proves the required statement.

As in 4.7, we have at once by trace duality :

5.5 Corollary. If X is finite-dimensional and T is in L(X, J&S),
then vp(T) = 77p(T) = 7r(p

n)(T) for all p.

For the case p = 2, we will see below that the same statement
holds for operators on any finite-dimensional space.

An application to finite-dimensional spaces

Before continuing with the general discussion of Pietsch's theorem,

we describe a beautiful application of our results on 2-summing norms.

5.6 Theorem. Let (X, || ||) be an n-dimensional normed linear
space (real or complex). Then :

(i) there is an inner product on X giving a norm | U such that
||x|| « |x|0 « ^n ||x|| for all x € X ; hence d(X,Jn) « ^n ;

(ii) X(X) ^ vn .

Proof. We give the details for the real case. The complex case
requires routine minor modifications.

(i) Embed X in a space MS). By 3.8, 772(IX) « vn. So by
Pietsch's theorem, there is a positive linear functional <t> on J«>(S) such that
||0|| ^ n and ||x||2 ^ 0(x2) for all x e X. Define a semi-inner-product on
4»(S) by putting <x,y> = 0(xy). The corresponding seminorm | |^ satisfies

ly|02 = «y2) ^ n||y2|| = n||y||2

for all y € MS). Also, ||x||2 S 0(x2) = |x|^2 for all x 6 X (so | |^ is a
norm, not just a seminorm, on X).
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(ii) Let P be the orthogonal projection of J»(S) onto X with
respect to | |^. (The fact that | |^ is only a seminorm on 4<x>(S) doesn't matter :
Py = I <y,bj> bj , where (bp is an orthonormal base of X). Then

HPyll « IPyl̂  * ly|0 * Vn ||y|| ,

so ||P|| S vn. (In fact, the inequality ||Py||2 $ <Ky2) shows that na(P) S ^n.)

5.7 Corollary. If X,Y are any two n-dimensional normed linear
spaces, then d(X,Y) * n.

Notes (1) Statement (i) in 5.6 was originally proved by F. John
(1948), by much harder methods. Statement (ii) was derived from John's result
by Kadec & Snobar (1971).

(2) It is elementary that d(Jn, Jn) = ^n (see 6.10), so the ^n in
(i) is best possible. Also, we will show in section 6 that Jn and *n have
projection constants not less than ^n/2 (though not actually equal to ^n).

(3) Gluskin (1981) has shown that there exists C such that for
each n, there are n-dimensional spaces X,Y with d(X,Y) £ Cn. As mentioned
earlier, it is not known whether d(X, *£) « C X(X) (or « C^n ) for all
n-dimensional X.

(4) By 4.15, it follows that if E is a closed, n-codimensional
subspace of Y (not necessarily finite-dimensional), then there is a projection P
with kernel E and ||P|| « (1 + 6 / n .

Factorization and extension

In 5.6, we have seen one example of what can be done (in the case
p = 2) using the inner product derived from Pietsch's functional. We now
show how the same idea leads to a factorization theorem for 2-summing
operators in general. This result is also known as Pietsch's theorem, though a
version was published by Pelczynski (1962), and the idea is present in
Grothendieck (1956). At the same time, we obtain a "Hahn-Banach" theorem for
operators : any 2-summing operator can be extended without increasing the value
of 772.

Let 4> be a positive functional on 4«»(S). As before, a
semi-inner-product is defined on ^(S) by: <x,y> = <M*y) (or 0(xy) in the
complex case). Let | |^ be the associated seminorm. The quotient by
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{x : |x|^ = 0} is an inner product space (in the case of *£, this just amounts
to leaving out some of the co-ordinates). The completion of this inner product
space is a Hilbert space, which we denote by L2(<f>). Note that this
construction has nothing to do with measure theory ! By a slight abuse, we
continue to use the notation < > and | |^ in L2(0). Let J be the natural
mapping from 4«>(S) to L2(0) : strictly, this is the formal identity followed by
the quotient mapping. Then |Jx|^2 = <Kx2), so (by 3.17) we have n2(J)2 $ ||<f>||.
We are now ready to formulate the factorization theorem :

5.8 Theorem. Let X,Y be normed linear spaces (Y complete), and
let T be a 2-summing operator from X to Y. Then there exist a Hilbert space
H and operators Tx : X - H and T2 : H - Y such that T = T2TX and
n2(Tx) = n2(T),

Proof. Embed X in some fi«,(S). Let # be the functional given
by Pietsch's theorem, and let L2(<f>) and J be as above. Clearly, 7T2(J) $ n2(T).
Let Tx = J|x, and let H be the closure of J(X) in L2(0). For x 6 X, we have

In particular, if Txx = 0, then Tx = 0, so we can define T2 on TX(X) by:
T2(Txx) = Tx. Further, ||T2(TlX)|| $ |Tl X|0 , so ||T2|| « 1. Extend T2 by
continuity to the domain H.

If Y is incomplete, we still obtain a factorization as above, with H
a (possibly incomplete) inner product space.

We now make use of the existence of orthogonal projections in
Hilbert spaces to derive the stated extension theorem.

5.9 Theorem. Let X be a subspace of a normed linear space X1?

and let Y be a Banach space. Let T be a 2-summing operator from X to Y.
Then T has an extension Tx : Xx -> Y with n2(Tx) = 772(T).

Proof. Embed Xx in a space H«>(S). Continue to use the above
notation. Let P be the orthogonal projection of L2(0) onto H, and let Tx =
T2PJ. Then Tx extends T and

7T2(Ta) « ||T2P|| 772(J) « 772(T) .
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Exercise. Use orthogonal projections to show that the operator T2

in 5.8 can be taken to be one-to-one.

How much of the above construction applies to other p, in
particular p = 1 ? A seminorm || \\x is defined by : Uxllj = <KM)- By
taking the quotient with {x : \\\\\x = 0} and then the completion, we obtain a
space which we denote by 1^(0). One can show that this is indeed an
Ej-space. For a 1-summing operator, the method of 5.8 gives a factorization
through a subspace of Lj(0). However, this subspace need not be
complemented or an 2^-space.

A simple example is enough to show that 1-summing operators
cannot be extended with preservation of n1 (although, of course, they must have
2-summing extensions !).

5.10 Example. Let E be a subspace of *£ isometric to Jn (there
is such a subspace with N » 2n). We show later (7.12) that ^(Ig) $ ^2n .
Let P : J?£ -» E be an extension of IE, in other words, a projection onto E.
By 3.14 and 1.10, JI^P) - vx(P) Z n .

The equivalence of v2 and n2

The extension theorem gives at once the promised generalization

of 5.4 :

5.11 Theorem. Let T be any operator defined on a
finite-dimensional space. Then v2(T) = 7I2(T).

Proof. Let T be in L(X,Y). As usual, it is sufficient to consider
the case where X is a subspace of some 4». There is an extension Tx : J» •* Y
with n^Tj) = 772(T) (note that T(X) is finite-dimensional, so complete). By 5.4,
v2(Tx) = ^(Tj). The statement follows.

We will see later (section 17) that the same holds for all finite-rank
operators, even when defined on infinite-dimensional spaces.

Because of 5.11, we can replace v2 by n2 in the duality results of
section 4. In particular, from 4.2 we have vx(TS) « 772(T)7T2(S) for S with
finite-dimensional domain. Without any finite dimensionality restrictions, we
deduce :
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5.12 Proposition. If S is in />2(X,Y) and T in />2(Y,Z), then TS is

in ^(X.Z), and ^(TS) « n2(T) 772(S).

Proof. Let Xx be a finite-dimensional subspace of X1 and let

S i = S 'x • T h e n

^(TS^ « V^TS^ S 7 7 ^ ) 7 ^ ) $ 772(T)7I2(S) .

The statement follows.

We are now in a position to replace the inequality in 3.8 (which
has served us so well) by equality :

5.13 Proposition. For any n-dimensional normed linear space X,

we have f ^ x ) s ^n *

Proof. Since I x = Ix
2, we have

n = Vl(Ix) « 7T2(IX)2 .

Hence Wj(Ix) > vn . Further, we' deduce :

5.14 Corollary. If X is infinite-dimensional, then Ix is not
2-summing. Nor is any isomorphism between infinite-dimensional spaces.

Proof. n2(Ix) would have to exceed ^n for all n. If an
isomorphism T were 2-summing, then T-1T = Ix would be too.

Hence I x (for infinite-dimensional X) is not 1-summing either.
Recall that by 3.24 this means that there is a summable sequence (xn) in X
with I ||xn|| divergent. This is the theorem of Dvoretzky & Rogers (1950).

Further applications

We finish this section with some further applications specific to
infinite dimensions. These results are not essential for our later theory, and
the reader is at liberty to leave them out.

5.15. If X,Y are Banach spaces, and if there is a 2-summing
operator mapping X onto Y, then Y is isomorphic to a Hilbert space.
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Proof. By 5.8, Y is the image of a Hilbert space under a
continuous linear mapping. Such a space is isomorphic to a Hilbert space.

We have already seen (3.12) that any 2-summing operator between
Hilbert spaces is compact. By the factorization theorem, the same is true for
operators from a Hilbert space to a Banach space. In the general case, we
have two weaker properties:

compact.
5.16. Any 2-summing operator between Banach spaces is weakly

Proof. The operator factorizes through a Hilbert space.

An operator T is "completely continuous" if ||Txn|| -*• 0 whenever
(xn) is weakly convergent to 0. This is equivalent to T(K) being norm-compact
whenever K is weakly compact. If X is reflexive or X* is separable, then all
completely continuous operators on X are compact. As a generalization of the
above statement for Hilbert spaces, we have :

5.17. Any 2-summing operator between Banach spaces is completely
continuous.

Proof. Embed X in a space C(K), and let <t> be as in Pietsch's
theorem. Let xn -» 0 weakly in X. Regarded as elements of C(K), this says
that xn(t) - 0 for each t € K. Hence x^ - 0 weakly, so </>(x̂ ) -» 0. It
follows that ||Txn|| -» 0.

5.18 Corollary. If S and T are 2-summing, then TS is compact.

Proof. This follows from S being weakly compact and T
completely continuous.

It can actually be shown that the product of two 2-summing
operators is nuclear, in the sense mentioned after 1.13 (this strengthens both 5.18
and 5.12).

We saw in 3.13 that compact operators, even between Hilbert spaces,
are not always 2-summing. Conversely, there are 2-summing (even 1-summing)
operators that are not compact (see 6.2).
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6. AVERAGING : TYPE 2 AND COTYPE 2 CONSTANTS

The basic averaging result and its applications

So far, we have been essentially concerned with general results.
The emphasis will now shift to results applying to particular spaces, or to put
it another way, to properties of particular spaces that are (or can be)
formulated in terms of the summing and nuclear norms. The following very
simple "averaging" result underlies or motivates a high proportion of this work.

Let D n denote {-l,l}n, the set of 2n elements of form 6 =
(6 p ... ,6n) with each t{ e {-1,1} .

We make repeated use of the obvious fact that for fixed, distinct
integers i,j,

I 6:6: = 0 .
6€D n * J

Since D n is a subset of JRn, we can form inner products in the usual way
between elements of D n and elements of !Rn (or C ).

6.1 Proposition. Let K be IR or € . Then :

(i) I = l n Z 6 • 6 . That is, for x « Kn ,
n

x = I E <x,£>£ .
2" «€Dn

(ii) For x,y 6 Kn ,

i n £ E D <x,£> <£,y> = <x,y> .
n

(iii) For x € K n ,

i n e i D Kx,O|* = Mil .
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Proof. Component j of — I <x,6> 6 is
2 o

When i * j , we have I Sj Sj = 0 , and clearly I I 6j2 = 1 . Hence the

above expression equals x(j), and (i) is proved. Statement (ii) follows on taking
the inner product with y, and statement (iii) is obtained by putting y = x .

Recall that I^n^ denotes the identity in JRn (or 0?), regarded as
an operator from JGp to J&5 , and Ip q denotes the identity operator from 4p to
Jq (for p $ q). Proposition 6.1 enables us to evaluate o Î̂ 11 )̂ (where a is
one of the summing or nuclear norms) in several of the cases not covered by
our earlier results. In certain cases, this does not grow with n : this leads to
a corresponding infinite-dimensional version.

6.2 Proposition. v ^ I ^ i ) = fl^I^ nL) = 1 for each n ; further,

Proof. The statement for vx follows at once from 6.1 (i), since
IISHco = 1 for each S ; of course, this is the norm when 6 is regarded as a
functional on J2n.

This gives nfii ») = 1- Let En denote the obvious copy of 4n

in &v For any operator T on lv we have 7I1(T) = sup ^1(T|E ) ; hence
n n

Remarks. (1) Hence also n2(l1<x>) = 1 .

(2) Ix co is not compact.

(3) Let T be the operator diag(a15 ... ,0^). As before, let T p Q

denote T regarded as an operator from i p to 4 n . Note that ||TX J| = ||TX dl

= max |a-| (= M, say). Since T1<x> = l1 OC>T1 x, we have that v i ( T i «>) *
vi(*i 00) I|TX x|| , and hence vx(Tx <») = M.

6.3 Proposition. 7T2(I^n£) = 1 for each n; 7T2(I12) = 1 .

Proof. The statement for l\n\ follows at once from 3.2 and

6.1(iii) (again, ||S|| = 1 as a functional on 4n). The statement for l12 follows

as in 6.2.
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6A Vi(I(in)
2) = v ^ I ^ l ) = 'n .

Proof. 6.1(i), with appropriate norms, shows that both quantities
are not greater than ^n . Equality for Ix 2 (temporarily, we drop the
superscript (n)) follows from :

Similar reasoning applies to I2».

Let 4P^(S) denote the value of M2(S) in J?£ . Statement (iii) of
6.1 is ready made to give us the value of /^ (Dn) :

6J. M2
2)(Dn) = / iP (D n ) = 2 n / 2 , while ^kDJ = ^n 2 n / 2 .

Proof. Consider ^ (the other cases are similar). We have

] 2 = sup { ^<x,g>2 : ||x|U ^ 1 }

= 2 n sup {||x||22 : ||x|U « 1 }

- n2n .

With this, we can calculate the summing norms in three more cases:

6A 772(l(2
n)) = nfi^l) = n2(lin\) = n .

Proof. If J denotes any of these operators, then the expression
shows that vx(J) $ n, so 77p(J) ^ n .

Now /z2
2) (Dn) = 2 n / 2 » w h i l e

Hence 772(l(n{) > n . The other two quantities are clearly not less than
772(l(n)) . (Alternatively, we have from 4.2 and 5.11 :

n = trace(I11) $ "2(I1>2) n2(I2>1) = &2(I2|1) )•

Exercise. Give a direct proof that ^ 2 ( I i ] ) = ^n (of course, this
is a special case of 5.13).
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We summarize in tabular form what we now know about
from the above results and those of sections 1 and 3 :

CO

2

1

q=«
n
^n
1

2
n
n

'n

1
n
n
n

2
'n
'n

1
n
n

00

n
'n

2
n

1
n
n

The remaining cases for n^ are not at all trivial; they will emerge from the
results of sections 7 and 8. We leave it to the reader to summarize what we
know so far about

Vector averaging and a property of Hilbert spaces

There are various ways to generalize 6.1. If we replace the

scalars x-v y-x by vectors and functionals, we obtain the following :

6.7 Proposition. Let xv ... ,xn be elements of a linear space X,
and let fv ... ,fn be functionals on X. For & € Dn, write

I i i ' j i i

Then

In particular, if X is an inner-product space, then

Proof. For a particular 6 ,

g J (ye) + .1 .

Summation over 6 gives the first statement, and the second statement follows at
once.
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6.8 Corollary. Given elements xv ... ,xn of an inner-product
space, there exist 8, 6 € Dn such that

I 8iXi ||2 S I

(This re-proves 2.12, and gives an opposite inequality as well).

6.9 Corollary. For any inner-product space H, n^n\n) i ^n ,
with equality if dim H > n .

Proof. Given n elements x p ... ,xn, we have by 6.8,

E ||Xi|| « 'n (EllxiH2)^ « ^n ^ ( x ^ ... ,xn) .

Equality occurs for n orthonormal elements.

We shall see in section 8 that n^lj) > ^n , so 77̂  Jn) * n[n\i^)
This result has a nice application to Banach-Mazur distances :

6.10 Proposition. d ( C Jn) - d(*n, JJn) = vn .

Proof. The identity operator shows that both quantities are not
greater than ^n . Equality for *£ follows from the fact that 7z(n)(iS) = n .
The statement for 4n follows by duality.

Of course, it is easy to deduce 6.10 from 6.8 without mentioning
n\n\ For example, let S : *n -> Jn be an isomorphism with ||S|| = 1.
Then there exists 6 € D n with ||Z S^SepI^ « ^n. Since ||E ^ejllj = n, this
shows that US"1!! > ^n .

Exercise. With the notation of 6.7, show that

j n f H • yg - } h • xi

and M2{yg : 6 € Dn} = 2n/2 /£2(x1, ... ,xn) .

(These statements generalize 6.1 (i) and 6.5 respectively).

Exercise. For any operator T on Jn, show that

7I2(T) « M2(Tex, ... ,Ten).
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Type 2 and cotype 2 constants

Given a finite sequence (xp ... ,xn) of elements of a normed linear
space, write

fi ^ 21**
P2(xx, ... ,xn) = 1 1 llyglr12 5€Dn J

where yg = I Ŝ Xj . (The notation p2, like Mp, is not standard).
Proposition 6.7 says that for elements of an inner product space,

p2(X l , ... ,xn) = (IllxiH2)^ .

Motivated by this, we define the type 2 constant T2 and the
cotype 2 constant *2 of a normed linear space X as follows:

T2(X) = sup{p2(Xl, ...,xn) : I ||Xi||2 « 1} ,

K2(X) = sup {(I ||Xi||2)^ : p2(Xl, ... ,xn) « 1} .

The space X is said to be of type or cotype 2 if the corresponding constant is
finite. Clearly we have T2(H) = K2(H) = 1 for any inner-product space H.
At this stage, we restrict our account to the really elementary facts related to
these concepts. The connection with summing and nuclear norms will unfold
in later sections. First, some immediate remarks on the definitions

(1) If T is an operator, then p2(Txp ... ,Txn) S ||T|| p2(xr ... ,xn).
(2) If X is a subspace of X, then T2(XX) S T2(X), K2(XX) «

K2(X). Since the definitions involve only finitely many elements, we have

T2(X) = sup (T2(X1) : Xx a finite-dimensional subspace X} ,

and similarly for K2. Further, if Y is finitely represented in X (for the
meaning of this, see section 0), then T2(Y) $ T2(X), etc.

( 3) p2(xls ... ,xn) S n1(xv ... ,xn), since ||yg|| « M1(x1, ... ,xn) for
each S. Hence n2 X(IX) ^ *2(X). In words, cotype 2 implies the Orlicz
property.

(4) Clearly, the definitions of T2, K2 can be applied to linear
operators : we simply replace xj by Txj on the left-hand side. Then T2(X)
equates to T2(IX). In particular, K2 can be thought of as a modification of
7I2, in which p2 replaces \L2. The statement in (3) becomes n2)i(T) * K2(T)-

(5) An alternative expression for p2(xp ... ,xn)2, which the reader
will often encounter in the literature, is
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Jo *
where rp ... ,rn are the first in Rademacher functions on [0,1]. This is the
same, since for each I e Dn, the set {t : q(t) • Sj for each i} is an interval
of length l / 2 n .

(6) The definitions only use real scalars.

6.11. P2(xr ... ,xn) £ M2(xr ... ,xn). Hence *2(T) $ 772(T) for any
operator T, and if dim X = n, then K2(X) $ ^n .

Proof. Take f € Ux*. We have f(yg) = I6if(xi), and hence
by 6.1(iii),

I f(xi)2 = I n £f(yg)2 < I n £ llygll2 = P2(X l , ... ,xn)2 .

6.12. For isomorphic spaces X,Y, we have

T2(Y) ^ d(X,Y) T2(X), K2(Y) ̂  d(X,Y) K2(X) .

For T2 (but not K2) we have the following stronger statement : if there is an
M-open operator T of X onto Y with ||T|| « 1, then T2(Y) ^ M T2(X). Hence
if E is a subspace of X, then T2(E*) ^ T2(X*).

Proof. We just prove the "stronger statement" for T2. Take
elements y± of Y with E Hŷ l2 ^ 1. There are elements Xj of X with Txx = ŷ^
and HXJII ^ Mllyjll . Then p2(xr ... ,xn) ^ MT2(X). Since ||T|| < 1. it follows
that p2(yls ... ,yn) ^ MT2(X).

The reader should reflect on why a similar argument cannot be
used to prove the "stronger statement" for *2. Examples below will show that
no such statement is true.

Clearly we have from 6.12 and 5.6 that for any n-dimensional
space X, T2(X) S ^n and (again) *2(X) « vn .

6.13 Example K2(*S) = T2(^) = ^n .

T2(JBS) - • as n -* • .

Proof. In l£, ||I gjcjll = 1 for all 6, so p2(er ... ,en) = 1 ,
while I llejH2 = n .
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In Jn, we have px(ev ... ,en) - n, while (I HcjH^̂  = vn.
The final statement follows from the fact that 4n embeds

isometrically into *£ for a suitable N. This is achieved (in the real case) by
associating with x € i j the function x on D n defined by : x(6) = <x,S>.
Hence N = 2n, and we have shown that T2(j£) £ n.

The most interesting result of this sort on elementary spaces is
that it1 is of cotype 2. This will be proved in section 7.

6.14. For any normed linear space X,

K2(X*) $ T2(X), K2(X) « T2(X*) .

Proof. The second statement follows from the first, since *2(X)
« K2(X**).

Let T2(X) = a . Take fp ... ,fn e X* and 8 > 0. There are
elements \{ of X with \\x-j\\ = ||f.|| and f ^ ) > (1 + S)-1Hfi||2. Write
yg = Z giXi, g6 = Z Sjfi . Then

I ||f^l2 « (1+6) 5 r{(x{)

by 6.7

S (1 + 5) 2-"/2 (SllgjU^cailXill2)**
6 1

by the definition of <x Since ||xj|| = ||fj||, this gives

Hence K2(X*) S (1 + 8) a .

In exactly the same way, one has K2(T*) ^ T2(T) for an operator T.
The above remark about Hx shows that T2 and K2 cannot be interchanged.

For general p, "type p" and "cotype p" constants are defined in the
same way, replacing (Z ||x|||2)^ by (Z ||XJ||P) 'P , but leaving p2 unchanged
(actually, pp is "equivalent" to p2). Clearly, even IR1 is only of type p for
p ^ 2 and cotype p for p £ 2. The study of these concepts was initiated by
Maurey & Pisier (see especially (1976)).
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Averaging operators : a general result on trace duality

We now describe one way in which the averaging notion can be
applied to operators. Roughly speaking, "averaging" any operator on Kn

reduces it to a multiple of the identity. This leads to a general trace duality
result on l ( n ) . The idea is due to Garling & Gordon (1971). As before, K
denotes IR or C .

6.15. Let S be be any operator in L(Kn), and let Se: = £ <x--e:
J i J

for each j. For S in Dn, let Ug be the operator diag(Sls ... ,&n). Let

Then So = diag (an , ... ,o

Proof. For each j , we have SUgej = SjSej, and hence

U £ SU £ e j = 8j UjSej = £j Z ocjj Sjej

m "Ji eJ + i i j £iSJ a i j e i •

Summation over S € D n gives the statement.

6.16. Let S,S0 be as in 6.15, and define H € L(Kn) by :
H e i = ei+i ^or ^ ^ i ^ n-1, Hen = e r Then

I H-rS0Hr = (trace S) I<n) .

Proof. For any permutation o of {1, ... ,n}, let H a be the
operator defined by : H ^ = eo( i ) . Then H ^ S Q H ^ = «a(i),a(i)ei • N o w

let a be the particular permutation given by a(i) = i + 1 for i < n, a(n) = 1.
The elements a(i), a2(i), ... ,an(i) are 1, ... ,n in some order. The statement
follows.

6.17 Proposition. Let a be any operator ideal norm, a* its dual
under finite-dimensional trace duality. Then, for any p,q,n,

W) «(lW) = n .

Proof. The quantity under consideration is of course not less
than n. There is an element S of L(*£, j[J) such that o<S) = 1 and trace S =
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^n£). In both Jg and J*}, we have (with the above notation) ||Ug|| = ||H||
= 1. Hence a(UgSUg) ^ 1 (as an operator from J?£ to 4JJ) , and a(S0)
« 1. So by 6.16,

(trace S) o d ^ ) S I o(H-rS0Hr) S n a(S0) $ n .

This proves the statement.

6.18 Corollary. For each p and n, X(JB£) n^p) = n .

6.19 Corollary. Suppose that d(X, ig) = C for some p. If
cc, a* are as in 6.17, then a(Ix)cc*(Ix) $ C2n .

Proof. We have «(IX) < Coc(I^n^), and similarly for a*.

6.20 Example. Let X = *£ x j n , with norm defined by :
||(x,y)|| = max(||x||, ||y||). Then dim X = 2n and ^(X) > w^jj) = n . As we
will see in section 7, X(nJ) £ ^n/2, and hence we have X(X)771(X) Z nvnj2 .
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7. MORE AVERAGING : KHINCHIN'S INEQUALITY AND RELATED
RESULTS

Khinchin's inequality

Section 6 was concerned with statements derived from the easy
"averaging" result 6.1, or variants of it (all equalities). We now prove an
inequality that is distinctly less easy; it was discovered by Khinchin as long ago
as 1923. (The spelling Khinchin is the correct romanization according to the
system normally used in English. However, the French version Khintchine is
often encountered). The inequality deals with the average of |<S,x>| instead of
<6,x>2. As we shall see, it is of fundamental importance in the study of nv

projection constants and cotype 2 constants.
Let x = (xp ... ,xn) be an element of JRn (in this section, we write

x̂  rather than x(i)). Write

First, note that px(x) $ ||x||2. This follows from 6.1(iii) and the elementary
fact that for positive numbers ap ... ,aN,

(proof : £ (aj-c)2 * 0 , with c = £ ^+ . . .4^ ) ) .

Khinchin's inequality is the remarkable statement that, conversely,
px(x) £ C||x||2 for a certain C independent of n and x. Before proving it, we
note that a very simple example is enough to show that C $ 1/̂ 2 .

7.1 Example Let x = (1,1 ) € JR2. Then px(x) = i(2+0) = 1 ,

while ||x||2 = V2 .

We will give two proofs of the inequality. One of them depends
on the following lemma (which is used again in section 11).
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7.2 Lemma. I I <S,x>4 « 3||x|| \ .
2 6eD

We have

l|x||4 = (J X i
2 ) 2 * I xf + 2 .1. X i

2 x : 2 .
1 1 * 1 1 1<J * J

In the sum I <&,x>4, summation over 6 gives 0 for the terms

involving S^:3 (=SjSj), 6 i s j 6k2 ( - ^ j ) a n d 5 i S j S k5 i (iJ»k,i distinct). The
remaining terms in <6,x>4 are

2 x i
2I X i

4 + 6 . 1 . x i
2 x i

1 1<J l J

(note that (j) = 6). This expression is therefore the average of <&,x>4, and the
statement follows.

7.3 Theorem. There exists C > 1/^3 such that for any n and
any x e !Rn,

C ||x||2 S Pl(x) ^ «x||2 ,

where px is defined as above.

Proof 1. For all real t, we have |t| £ § t2 - \ t4 , since the

greatest value of t - £t3 for t > 0 occurs at t = 1, and is | . Hence

by 6.1 and 7.2 (we write || || for || ||2). Hence

^ ^ - ^ 3 (||xj| . || j3j
||x|| 2

Since p1(x)/||x|| is unchanged if x is replaced by Xx, we have

i f • i <-*>
for all u > 0. The greatest value of u-u3 occurs when 3u2 = 1, giving

PlW ^3 I 2 . I
I1x|| 2 ^ 3 ^ J "
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Proof 2. This uses complex numbers (although the conclusion,

again, is only for real Xj). Write

g(6) = (1 + i6lXl) ... (1 + i6nxn) .

Then

|g(6)|2 = (1 + xx
2) ... (1 + xn

2)

Consider the sum I <S,x>g(S). It is clear that the only term that

does not give 0 when summed over all 6 is i(xx
2 + ... + xn

2). Hence

In

and therefore

So if ||x|| = 1 , then px(x) £ 1 / /e (note : t e " ^ is greatest when t - 1).
This proves the theorem, this time with constant l/^e .

Notes (1) One can check that 7.2 and Proof 1 adapt for complex
scalars. However, we will deduce the complex case as part of a more general
extension to Hilbert spaces.

(2) For many years, the best constant known for the inequality
was the 1/^3 obtained in proof 1. It was eventually shown by Szarek (1976)
that the best constant is in fact 1/^2, so that the simple example in 7.1 is
already the extreme case. Known proofs of this fact are surprisingly hard,
and will not be reproduced here (see, for example, Haagerup (1982)). However,
in stating further results that depend on Khinchin's inequality, we shall allow
ourselves to assume the inequality with constant 1/^2 .

(3) There are in fact "Khinchin inequalities" for each p £ 1.
Write

pP« - ( i . 51«
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Then there are constants Ap, Bp such that

Ap||x||2 Bppp(x) « Bp| |

for all x € lRn (it is trivial that Ap 1 for p £ 2 and B p = 1 for p $ 2).
Note that 7.2 is the case p = 4; the proof is an extension of this method, and
shows that Bp $ C^p for a constant C. See for example [CBS I], 2b. Using
this, one can extend some of the applications below to p other than 1,2.

Exercise. Fill in the details of the following proof of Khinchin's
inequality (with the right constant 1/^2) for n $ 4. Assume xx £ ... £ x4 £ 0,
||x||2 = 1. Squaring shows that 3xx + x2 + x3 + x4 £ 2^2. Let Ak be the
following eight elements of D4 : those S with at most one -1 , and those with
Sx = 1 and two -Vs. These add up to (6,2,2,2), so

Exercise. Show that if 0 S x $ y, then px(x) ^ Px(y). (Consider
the case where only one coordinate is different).

Hubert space version and eolype 2 constant of &x

Let x p ... ,xn be elements of a normed linear space X. As
before, write yg = ES^Xj and

P l ( x l f . . . ,xn) = In I ||ye|| .
n

Then, as for scalars, p1(xv ... ,xn) ^ P2(*v - »x
n)«

Now consider lRk with the natural ordering and any lattice norm
(see section 0), in particular any || ||p. Given elements x-, there is an obvious
"pointwise" definition of the element

z = a xj*)*.

By applying Khinchin's inequality to each coordinate, we have

< z < %

and hence

x, ... ,xn).
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In 4^ we have, clearly, ||z||2 = £ ||x:||2 . Hence we have proved
* 1

the following extension of Khinchin's inequality to inner-product spaces :

7.4. Let x p ... ,xn be elements of a (real) inner-product space.
Then

In particular, Khinchin's inequality holds for complex numbers.

Proof. We may assume that the space is Jn . The above
remarks prove the left-hand inequality, and the right-hand one follows from
p2(xr ... ,x
since C =
p2(xr ... ,xn) = (I ||xj||2)^ (6.7). The statement for complex numbers follows,

*2 •

The statement holds in fact for complex inner-product spaces too,
since a real inner product, inducing the same norm, is defined on such a space
by <x,y>R = Re<x,y> .

In order to apply (1) to &v we need information about ||z||. This
is provided by the following simple lemma : the property of lt1 it describes is
known as "2-concavity".

7.5 Lemma. Let \ v ... ,xn be elements of (real) jejf or &v

and let z = (£ x:2)^. Then ||z||2 £ I ||x:||2 .
I x *•

Proof. Let ||xj|| = X-. By Schwarz's inequality,

I X. |xj| $ (J \i
2)^ z .

Now

\\l \ |x:| || = I XjllxjH = I \{
2 ,

so

(I X

Notes (1) Clearly, this applies also to complex Jtv with
z = (Z Ixjl2)^ (note that |xi| and z are still elements of real &1 !).
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(2) Similar reasoning shows that 0(z)2 > Z 0(*j)2 for any
positive functional on JR .

7.6 Proposition. Let X be ^ or ^ (real or complex; k > 2).
Then n2 X(X) « *2(X) - V2. In the real case, H21(X) = ^2 .

Proof. By (1) and 7.5, we have

(I Hx/ )* « ||z|| « ^2 P l(xl f ... ,xn)

so that K2(X) $ ^2 (note that our statement is slightly stronger, in that px

appears instead of p2). Of course, n2 X(X) $ *2(X).
To prove equality where stated, let xx = (1,1), x2 = (1,-1).

Then ||xx + x2|| « ||xx - x2|| = 2, so p2(xrx2) - 2 , and ^ x , ) = 2 in
the real case. But (HxJI* + ||x2||2)** = 2^2 .

Of course, the same applies to any subspace of lv and to any
space (like L^/x) or C(S) ) that is finitely represented in i j (for LX(M), the above
proof can be applied directly). As mentioned earlier, the statement for n2 x

was proved by Orlicz (1933), in what can be regarded as the article that
originated the whole theory of summing operators.

7.7 Corollary. If E is any n-dimensional subspace of l r then
d(E, J5) >, ^Jl .

Proof. K2(E) * V2 , while K,(J£) - ^n .

Notes. (1) Since z - I (Z yg
2)^ , we have from 7.5 that ||z|| Z

p2(xp ... ,xn), a reverse inequality for ||z||.
(2) In the same way, one can show that Jp is of cotype 2 for p

^ 2 and type 2 for p ^ 2 (in particular, Hilbert spaces are not the only spaces
of type 2).

7.8 Example. As far as the author knows, the exact value of n2 x

for complex H1 is not known. We give a bare sketch of the steps required to
prove that 7721(J2) = 1 and n2i(*i) * 3^2/4 in the complex case; the reader
may care to fill in the details.

To show n2 X(X) = 1, it is sufficient to show that given elements
x,y, there exists a with |a| = 1 and ||x + ay||2 * ||x||2 + ||y||2 (1). Let
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x = (xp px2), y = (y r pay2) with Xj,yj real, positive and |p| = |oj = 1. Let
a = e 2 i 9 (with - 77/2 ^ 9 ^ n/2), a = e"i9 . Then (1) holds.

For je*, let x = (1,1,1), y = (6, -1, 3), where 0 = ei71/3 . The
statement follows if we can show Mx(x,y) = 4. To prove this, we use the fact
that |e i 9 -e^l = 2 |sin ^ 9 -<f>)| to prove that if a = ei e , where |9| S 77/3, then
|a - 0| + |a - 0M 2 .

Khinchin's inequality also shows that (apart from the factor V2) JJ2

is finitely represented in &r More precisely.

7.9. Let N = 2n. Then there is a subspace En of ft™ such that
d(En, l J) « *2 .

Proof. Let Y be the space of all functions y on the set Dn,
with norm defined by : ||y|| = I X|y(S)|. Clearly, Y is isometric to I™. For

x in JJn, define Jx € Y by : (Jx)(S) = <x, 6>. Khinchin's inequality gives

k llx||2V2

Applications to 1-summing norms and projection constants

Khinchin's inequality enables us to provide estimates (either exact
or in the form of inequalities) for ^(Ip11^) in the cases left unsolved in
section 6. In each case, the answer is extreme in the sense of being close to
the smallest possible, and we conclude that the projection constants of 4n and
4n are close to being the largest possible (i.e. ^n) for n-dimensional spaces.

7.10 Proposition. H i O ^ ) * ^ f o r a11 n * 2' l!i(Ii2) * ^2-
Equality holds in the real case.

Proof. By 7.3 (also valid in the complex case),

As a functional on 4 n , ||&|| = 1. The statements follow, by 3.2.

To prove equality for the real case with n=2, let x1 - (1,1),

x 2 = (1,-1). Then Hj(xvx2) = 2 in l\ (as in 7.6), while HxJI, + ||x2||2 = 2^2 .
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7.11 Proposition. ^ ( j j ) * ^2n, X(Jn) * ^n/T . The space &2 is
not injective.

Proof. The statement for nx is proved as in 7.10; we now have

w\ « ^.
If dim X = n, then X ^ n ^ X ) * n, by 3.8. Hence X(Jn) £

^n/2, and JQ2 is not injective.

7.12 Proposition. ^ ( j j ) S ^2n , X(J?n) £ n̂~72 . The space Jx

is not injective.

Proof. Again as in 7.10, using the fact that Hx^ $ ^n ||x||2 .
The other statements follow, as in 7.11.

7.13 Example. For the complex case, example 7.8 adapts easily to
show that ^i(^i;lb * 3^2/4 (though this is certainly not the exact value !).
With the notation of 7.8, let ax = (1,3), a2 = (1,-1), a3 = (1,3). In the
same way (or by 2.11), we have ^1(a1,a2,a3) = 4 in &\ , while I ||aj||2 = 3^2.

Exact evaluation of constants for 1^

For interest, we now show how one can determine n1 and X
exactly for (real) JJn. Of course, the reader who is content with the estimate
in 7.12 can leave this out. The evaluation of X(Un) was first achieved by B.
Grlinbaum (1960); the method presented here is essentially that of Y. Gordon
(1969). It depends on a direct comparison of px(x) and llxllj (not ||x||2),
independent of Khinchin's inequality.

It is clear that px is a norm and that p^M) = p^x). Write
Cn = p^e), where e = (1, ... ,1) e !Rn .

From the expression l(n) = 2"n I 6 ® I (6.1), we have

X(*n) = vJLl{*\) < 2"nMi1)(Dn) .

7.14 Lemma. X(in) ^ Cn .

Proof. D n is a norming subset of the unit ball of J&£ (regarded
as the dual of 4n), so

- sup {gID |<6,6>| : 8 e Dn}
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= 2 n sup (Pl(B) : 6 € Dn} .

But px(6) = px(e) = Cn for each 8 € D n . Hence H^fPn) = 2nCn .

7.15 Lemma. px(x) * nCnllxlli f o r x € IRn-

Proo/. We assume x > 0, since p^lxj) = px(x). Let Hx =
(x2,... ,xn,x1), where x = (xp ... ,xn). Clearly, px(Hx) = p^x). Now

x + Hx + ... + Hnmlx = HxlljC .

Since px is sub-additive, it follows that

nPl(x)

Note. This shows that the least value of px(x) when Uxllj = 1
occurs at e/n. Of course, the greatest value is 1, attained at each e:.

7j6 x(i") = cn, Sl(if) = a .
n

Proof. The previous lemma says that

so by 3.2, ^ ( J f ) i 5. . Since X(Jn) n^ft^) * n (by 3.8), equality follows.
n

(Note that 6.18 is not needed).

Remark. D n itself is a finite set of which nx(4n) is attained,
since Mi(Dn) = 2nCn (see 7.14), while E (116̂  : 6 € Dn} = n2n .

We now tackle the essentially combinatorial problem of evaluating

7.17 Proposition. We have

C2n-1 = C2n = 2'.4.I(2n-2)

and Hi(4?n) = 7T1(JI?n+1) = 2-4 - (2n) = (2n+l) f cos2 n + 18 d9 .
1 1 1 1 1.3 ... (2n-l) Jo
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Let Kn = Cn/^n. Then K2n t vljn and K2n_x i V2jn as n -> •.

Proof. Write

q j = 2 n c n - j i < e , c > i - f i s C j i .

^Firstly, we show that C^ = 2qn_1 . Consider an element 6 of D 2 n l with

*E 6j £ 0. This sum is then at least 1, and the choices &2n = 1, -1 give

two extensions of S to elements of D2n, which we denote by S+, 6" . Both have
non-negative sum, and

1 * 1 * 1 2

We now calculate C2 n . Let Dj n be the set of S in D2n with
T. 6j ^ 0, in other words at the most n terms equal to -1. The number of
members of D j n is

r £ o ( 2 n ) - 22n-l + 1 (2n > .

The total number of -Ts occuring in these members is

I r(2") = 2n S f 2 n-n = 2n.22n-2 =r=i r r=i u r-1 J
r=

By considering the difference between this and the number of +l's, we obtain

= n(2
n

n).

The stated expressions for C« , , C« and 7T1( 1̂
n) follow. Also,

r zn-i ' in l v l ' '

C2 .2 = fl + i ] C 2 n , so
2n+2 L n n j 2n

K2n-1 2 n

The stated limit follows from the well-known "Wallis product"
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We record the values for small n.
n X(Jn) ^(ij)

2
3

4

5

1
3/2

3/2

15/8

2
2

8/3

8/3.

Before leaving this topic, let us observe that we have also
evaluated vf^XiJ :

7.18. 4n\ix) = n^if) .

Proo/. We show in fact that n[n\i^) = n^fylj1). The statement
then follows on letting p -» °°. Given ax, ... ,an in 4^, define ax, ... ,ap in
Jn by :~aj(i) = ai(j). Then £ Ha^ = £ Ha^, and by 2.11,

n[V(Sv ... ,ap) = n[^v ... ,an) .

The assertion follows.

This enables us to strengthen 7.7 slightly:

7.19 Corollary. If E is any n-dimensional subspace of &v then
d(E, j£) >, Cn.

Proof. By 7.18, ^ ( E ) S n/Cn, while 71̂  n>(jeS) = n .

It was possible to perform this calculation using finite sums
because of the existence of a finite norming set in the unit ball of (JRn) . This
does not happen for complex 4n , or for 4n (real or complex). In such cases,
one must expect to have to use integrals instead of finite sums. We consider
this, and describe the evaluation of nx and X for 4n, in section 8.

Konig (1985) has given examples of n-dimensional spaces Xn with
X(Xn) very close to ^n . Konig and Lewis (not yet published) have also proved
that no n-dimensional space has projection constant exactly equal to ^n .
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The dual of a C*-algebra

A C*-algebra is a sub-algebra of E of L(H) (for some Hilbert
space H) such that T* is in E whenever T is in E. The next result, which is
due to Tomczak-Jaegermann (1974), says that the dual of any C*-algebra (with
identity) is of cotype 2, with K2(E*) $ 2^e. This can be regarded as a
generalization of 7.6, since the diagonal operators on *n form a C*-algebra that
is isometric to J?£ ; its dual it therefore isometric to JGn .

This result will not actually be deduced from Khinchin's
inequality; rather, the proof is itself a very nice generalization of our second
proof of the inequality. In contrast to our usual practice, we will give the
proof for the complex case in the first instance.

We do not require much from the theory of operators on Hilbert
spaces. We just need to recall that ||T*T|| = ||T||2 for T in L(H). Consequently,
if A,B are self-adjoint and AB = BA, then

||A + iB||2 = ||(A - iB)(A + iB)|| - ||A2 + B2|| (1).

A functional 0 on E is said to be hermitian if «T*) = 0(T) for
all T (so that <KA) is real for self-adjoint A).

7.20 Lemma. (i) If ^ is a hermitian functional on E, then

Ml » sup{|<KA)| : A self-ad joint and ||A|| « 1}.

(ii) Any functional 0 on E is expressible as </> + ix5 where 0,x are
hermitian and ||0||, ||X]| * ||4>|| .

Proof, (i) Take S > 0. There exists T in E such that ||T|| = 1
and 0(T) is real and not less than (1-S)|M|. Let A = £(T+T*). Then A is
self-adjoint, ||A|| « 1 and «A) » «T).

(ii) Define

= \ «T) + \ « T * ) , ix(T) = \ «T) - | 0(T*) .

7.21 Proposition. Let E be a complex C*-algebra containing the
identity. Then K2(E*) ^ 2^e .

Proof. We will show that for hermitian elements 015 ... ,0n

of E*,
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J

Once this is done, the proof is completed as follows. Given arbitrary elements
4>v ... ,0n of E*, let <f>j = 0j + iXj as in 7.20. Then ||0j|| « ||0j|| + ||Xjll , so

ail0jll2)^ * (IW^fP + (EIIXjII2)5* .
J J J

Also, it is clear from the expression in 7.20 that || E Sj0j|| ^ || E Sj</>j|| for each
6 in Dn, so Pi(4>v - >0n) * pi^v - >̂ n) (a n d similarly for Xj).

Choose 6 > 0. For each j , there is a self-adjoint A: in E such

that ||Aj|| = ||0j|| and 0j(Aj) * (1 - 8)||</>j||2. For 8 in Dn, define Sg € E by

Sg - (I + 1 6 ^ ) .... (I + iSnAn) .

By remark (1),

||Sg||2 ^ (1 + HAJI2) ... (1 + ||An||2)

^ exp (E IIAjH2).

Cancellation of the terms involving Sj, 6jSk, etc., shows that

I E X 6:*:(Sg) = i I 4>\(A:) .2n 6eD j J J 6 j J J

The absolute value of the left-hand side is not greater than

i ||Sg|| S ||Sj0j|| $ exp \ E ||0:||

Hence if E Uf - 1, then

1-8 ^ e p1(01, ... ,0 ).

This is true for all 8 > 0, so the statement follows.

This result does apply to the real case too, but only after some
further discussion, as follows. Given a real Hilbert space H, one can define in
an obvious way a complex Hilbert space Hc with elements x + iy for x,y € H,
and ||x + iy||2 = ||x||2 + ||y||2 . An operator T in L(H) extends automatically to
give an operator in L(HC) with the same norm; we continue to denote the
extension by T.

Let E be a C*-algebra in L(H), and let Ec be the set of operators
in L(HC) of the form A + iB, where A,B € E. Then Ec is a complex
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C*-algebra. Clearly A + iB is self-adjoint if and only if A* = A and B* = -B
(that is, B is "skew"). Any functional 0 on E extends to a functional 4> on E c

in the obvious way : 0(A + iB) = 4>(A) + i^(B).
A functional 0 on E is "symmetric" if <KT*) = <KT) for all T.

A A

Clearly, # is then hermitian. Also, both \\ijj\\ and ||0|| can be computed using
self-adjoint operators as in 7.20, and 0(B) = 0 for skew B. It follows that ||$||
= ||0|| (note: this does not apply to functionals on E in general!).

A functional X on E is "anti-symmetric" if X(T*) = -x(T) for all
T. It is easily verified that ix is then hermitian. Further, ||xll =
sup {|x(B)|:B skew, ||B|| « 1}. One deduces that ||x|| = ||x|| .

Finally, any functional 0 on E is expressible as 0 + x, where 0 is
symmetric and x anti-symmetric. The result now follows from the inequality
for hermitian functionals proved in 7.21.
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8. INTEGRAL METHODS ; GAUSSIAN AVERAGING

The basic results

As already mentioned, we can sometimes expect the exact
evaluation of summing norms to require consideration of integrals rather than
finite sums. In this section, we start by describing the (very simple) principles
involved in doing this, and go on to apply them to the evaluation of 77^4 )̂,
using ideas than can be thought of as a continuous version of the "averaging"
of sections 6 and 7.

The reader who is unfamiliar with measure theory should not be
put off by the first two results. Though they are stated in terms of measures,
what we will actually use is a version requiring no more than ordinary
Riemann integration on IRn. For added clarity, we state the results for the
case p=l (which is how they will be applied). There should be no problem in
formulation the corresponding statements for other p.

We have made repeated use of 3.2 : if we know of functional f:
such that ||Tx|| « I |fj(x)| for all x, then 77X(T) S I ||fj||. The following is the
natural generalization of this to a "continuous" instead of "discrete" collection of
functionals. What is needed is a measure on the collection, allowing
integration.

8.1. Let T be an operator on X. Suppose that there is a subset
V of X* and a positive measure (i on V such that

||Tx|| « I |f(x)| df (with respect to \L)
JV

for all x € X. Then

df .77, (T ) « f
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Proof. Let H1(x1, ... ,xk) - 1, so that £ |f(XJ)| « ||f|| for each f

Then

I IITxjII « I f |f(xi)| df
i i Jv

< [ llfll df .

Typically, V will be either X*, Ux* or Sx*.
Our second result, giving an inequality in the opposite sense, is a

"continuous" analogue of the definition of n1 itself. Given elements xv ... ,xk

such that ||f|| * £ |f(X|)| for all f € X* (that is, ^ ( x ^ ... ,xk) « 1), the

definition says that 7Z1(T) > £ l|Txj||. The analogous statement is :

8.2. Let T be an operator on a finite-dimensional space X.
Suppose that there is a subset U of X and a positive measure n on U such that

|f(x)| dx (with respect to M)

for all f in X* (or a norming subset of Ux*). Then

7Z, (T) > l|Tx|| dx .

h
Proof. Take 6 > 0. By 5.3, there exist elements f: of X* such

that ||Tx|| $ I |fj(x)| for all x, and I ||fj|| ^ (1+ ^ ( T ) . We have

I llfjll > I f If s(x)| dx
J J J J u J

> [ IITxH dx .

As remarked after 5.3, the functional fj can be chosen from a norming subset
of Ux* .

Remarks. (1) The promised version using only Riemann

integration is as follows. Let X be !Rn with some norm, and U a subset of X.

Expressions like h(x) dx are, of course, "multiple integrals" : x stands for

(xx , ... ,xn). The statement of 8.2 becomes : if there is a positive function
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w on U such that ||f|| > f |f(x)| w(x) dx for all f, then n^T) >

I ||Tx|| w(x)dx . The statement of 8.1 translates similarly.
U

(2) The converse to 8.1 is essentially Pietsch's theorem, in
combination with the Riesz representation theorem. The space X embeds into
C(UX*), and there is a positive functional 4> on C(UX*) such that ||Tx|| *
<K|x|) for all x and ||<W| = nx(T). There is a measure \L on U x * such that
<K|x|) equates to | |f(x)| df. Using this in place of 5.3, one can show that 8.2

holds without the requirement that X should be finite dimensional.

(3) One can prove 8.2 directly, approximating to the integrals by
finite sums. We sketch the argument for the case when U is bounded. Let
U be the union of disjoint sets U r ... .U^ with diameters less than 6.
Choose ux € Uv and let vj = MCU^UJ. Then Z ^(vj)! approximates to

J |f(x)| dx (hence M^v^ ... ,vk) $ 1 + 6 ) and E l|Tv:|| approximates to
U

f l|Tx|| dx.

Application to &*

Before attempting something more general, we illustrate the above
ideas by applying them to (real) l\ . The elements with unit norm can of
course be written as YQ - (cos 8, sin 0) for 0 * 0 < In. The norm is
reproduced exactly by integration, as follows:

• ,277
8.3. For x in l\ , ||x|| • J Lll

I <x,ye>| d0.
0

Proof. Let x = (r cos oc, r sin a), so that ||x|| = r. Then
<x, yQ> = r cos (0 - a), which is positive for 0 between a - 77/2 and a + 77/2.
Now

j.a+77/2
cos (0-a) d0 « 2.

J a-77/2

It follows easily that

f in /»a+7Z

|<x,ye>| d0 o r |cos(0-a)| d0 = 4r .
0 Ja-77
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8A We have n^*2) = w/2 .

Proof. By 8.1,
tin

n/2 .f
j llyell4 Jo

Since 42 coincides with its own dual, we can apply 8.2 with y e

substituted for "x" to obtain the opposite inequality.

Exercise. Show by the steps indicated that if X is complex J2,
then n^X) - n/2. Write y e = ( l , e i e ) , and

g(x) = |<x,ye>| d9 .
J-7T

Show that (i) g(l,l) = 8, (ii) g(|x|) = g(x), (iii) g(x2,Xl) = g(xrx2),
(iv) \\x\\x $ \ g(x). To apply 8.2, note that the functionals yg form a
norming set and that g(yg) = 8, by (i) and (ii).

Gaussian averaging

Recall that

| x 2 dx

both integrations being on the whole real line.

Write Gx(x) = (\/V2n) c"^2 for x € JR, and define the function

Gn on JRn by:

Gn(x) - G^xJ ... G^x^

Here x = (x l s ... ,xn) and || || means || ||2. Clearly

In the following, we will be considering ordinary (Riemann) integrals on IRn

with "weight" function Gn. Unless otherwise stated, the integration is over the
whole of !Rn.

Cambridge Books Online © Cambridge University Press, 2009Downloaded from Cambridge Books Online by IP 171.67.128.228 on Fri Jul 13 22:17:09 BST 2012.
http://dx.doi.org/10.1017/CBO9780511569166.010

Cambridge Books Online © Cambridge University Press, 2012



92

8.5. Let a,b be elements of fP. Then

,x> <b,x> Gn(x) dx - <a,b> .

|<a,x>2 Gn(x)dx = ||22 .

Proof. A bilinear form $ is defined on JRn by putting

<Ka,b) = j<a,x> <b,x> Gn(x) dx .

If i * j , then

(fte^ej) » I XiXj Gn(x) dx .

This equals 0, since xjG1(x^) dx^ = 0. Further,
J JR

i2 Gn(x) dx - 1 .

since Xj2G1(xj) dxj = 1. The first statement follows by bilinearity, and the
JJR

second statement is obtained by taking b = a.

This is the continuous analogue of the finite averaging statements
in 6.1. The 2 n elements of 6 of D n have been replaced by the elements x of
the whole of JR11 (with the weighting factor Gn(x)).

Khinchin's inequality dealt with the average of |<a,S>|, showing
that it lies between (l/^2)||a||2 and ||a||2. We now show that the "Gaussian"
average of |<a,x>| does even better : it is a constant multiple of ||a||2 for all a.
For the proof of this, we assume one major fact about integration on lRn : it is
"invariant under isometries." In other words, if f is integrable on IRn and T is
an isometry of 4n, then

f f(Tx) dx = ff(x) dx.

Since (clearly) Gn(Tx) = Gn(x), it follows that

| f(x) Gn(x) dx = jf(Tx) Gn(x) dx.

8.6 Proposition. For any a in IRn,

f |<a,x>| Gn(x) dx « v2/n ||a||2 .
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Proof. We prove the statement first for the case a = ex :

f r r r
|<ei,x>|Gn(x) dx *= IxJG^x^dx! G2(x2)dx2 ... Gn(xn)dxnJ JIR JIR J1R

x c'm dx
'0

Now let any a be given. There is an isometry T of J2n such that
Ta = ||a||er Then <a,x> = <Ta,Tx> = HalKe^Tx), so

Jl<a,x>i Gn(x) dx = ||a|| J|<clfTx>| Gn(x) dx.

By the preceding remark, this equals ||a|| |<e1,x>| Gn(x) dx. We have just

shown that the value of this is 2̂/7? .

It now follows at once from 8.1 and 8.2 that (in the real case)

nx(in
2) = 'n/2 j||x|| Gn(x) dx .

(For 8.1, we regard a as being in 4n itself and the elements x as being in the
dual, which of course also identifies with 4n. For 8.2, we reverse this.)
Before attempting an exact expression for this integral, we can show very easily
that it already gives an improvement to the estimate in 7.11:

8/7, In the real case, n^l*) $ vnn/2 and X(J2
n) £ V2n/n .

Proof. By 8.5, Jxx
2 Gn(x) dx = 1, and hence J||x||2 Gn(x) dx = n.

For any function f, we have (JfGn)2 « Jf2Gn : this follows from J(f-c)2Gn > 0,

with c equal to JfGn. Hence J||x|| Gn(x)dx $ n̂ , and the statments follow.

For an exact evaluation, we have to transform to n-dimensional
polar co-ordinates r,8r ... ,6n_r These are defined by:

xx = r sin 9X sin 6X ... sin 9n ĵ ,

xk = r cos 0^, sin 8k ... sin 8n , (2 ^ k ^ n).
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Here 0X ranges between 0 and 277, and the other 8j between 0 and 77. The
Jacobian is

where K(82, ... ,8n ^ = sin 82 sin203 ... sin11"2 8 n l (the exact expression for
K does not matter for our purposes).

Write

In = I xne"^x2dx .In = f x*e
J o

Then Io = ^77/2 , Ix = 1 and the value of In is deduced from the recurrence
relation In = (n-1) In_2 for n £ 2.

8.8 Proposition. (Gordon, 1969). Let 7T1(J8̂ ) = Bn (real case).
Then:

Bn - ^ 2 -111 - n r / 2cosn8 d8 ,
*n-l J0

B . 1.3 ...(2n-l) 77 B m 2.4 ... (2n)
2 n 2.4 ...(2n-2) 2 ' 2 n + 1 1.3 ... (2n-l)"

Bn/V'n increases with n, and tends to ^77/2 as n -> °° .

Proof. Write cn = (277)"n/2. We have

1 = [Gn(x)dx = cn f r^c'^dr (JK) ,
J J0

[||x|| Gn(x)dx = cn f r n c * ' dr ( J K ) ,
J ; 0

where J K means J K ( 8 2 , ... ,8n x) d(82, ... ,9n_1) over the full range of these

variables. Hence

|| Gn(x) dx = I n / I n . , -

This gives the first expression for Bn. The other statements follow from the
recurrence relation quoted and the well-known facts about J cosn8 d8 and the
"Wallis" product.

Notes. (1) By 6.18, we have X(Jn) « n/Bn .
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(2) Comparison with 7.17 shows that W *̂*11"1"1) = wi(*?n+1)
(= B2n+j). The value of fl^jj11) is again B 2 n + i , while fl^fi^) *s

smaller.
(3) Recall from 6.9 that n(n)(Jn) = vn .
(4) The first integral in the proof shows that JK = (2n)n/2/In_1 .

Let f be a function defined on the sphere Sn = {x : ||x||2 = 1}. The "integral
of f with respect to rotation-invariant measure" means Jf(^) K(*)) df, where IB
stands for (02, ..., Qn_x). Usually such integrals are normalized by dividing by
JK (so that the integral of 1 becomes 1). By transforming the integrals in 8.5
and 8.6 to polar form and considering the integration with respect to r (as we
did in 8.8), one finds that these integrals translate to :

f<a,x> <b,x> dx = £ <a,b> ,

f|<a,x>| dx - I ||a||s ,J Bn
where these integrals are taken over Sn in the normalized form. (The reader
may care to check the details).

We now show how to modify the above work for the complex case.
Denote (temporarily) real and complex Jn by |J(R), |J(C ). Then Jn(<C ) is
isometric as a real space to 42

n(JR) : the element (xlfx2, ... ,x2n) of *2n(IR)
corresponds to (xx+ix2, ... ,x2n_!+ix2n). We denote both by x, but we must
distinguish between the inner products in C and JR2n : the notation < > will refer
to the inner product of C n. Integrations will be over !R2n.

The following is the complex equivalent of 8.6. Curiously, the
constant is exactly the reciprocal of the one obtained in the real case.

8̂ 9 For a in C*1 ,

Ji<a,x>| G2n(x) dx = 'n/2 ||a||2 .

Proof. The reduction to the case a = ex remains valid, but
|<e1,x>| now means (x \ + x2)^ . Hence

f|<cltx>| G2n(x) dx = f (Xl
2
 + x2

2)^ G1(x1)G2(x2)d(x1,x2)
IR2

p'c72? dp
0

/77/2 .
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8.10 Proposition. In the complex case,

77 (ttn) m 1.3 ... (2n-l) a 2 BlV 2 ; 2.4 ... (2n-2) n 2n '

1/^n n^J^) increases with n, and tends to 2/̂ 77 as n -» •.

Proof. By 8.1 and 8.2,

77,(4?) = vn/2 [ ||x|| G2n(x) dx m 1 B2n.

(The inequality 77^5 )̂ ^ 2^n/n follows more easily, as in 8.7).

We finish this section with two further comments on Gaussian
averaging. Firstly 8.6 (or 8.9) shows that Jn embeds isometrically into the
L1(pt)-space consisting of functions on JRn integrable in the sense that

(x)| Gn(x) dx

is finite. Consequently, 4n embeds "almost isometrically" into I™ for suitable
N (compare 7.9).

Secondly, the type 2 and cotype 2 constants have "Gaussian"
variants (denoted by T ,̂ K^) in which the discrete averages P2(ap ... ,an) are
replaced by

7,(alf ... ,an) = [|ll5xiai||2 Gn(x)

The quantity y2 can be either greater or less than p2, but it can be shown that

V2jn T2(X) ^ i f (X) « T2 (X),

K2
G(X) ^ K 2 (X) ,

(see [FDBS], lecture 19). Instead of relating the Gaussian constants to the
ordinary ones, it is perhaps more profitable simply to regard them as giving an
alternative parallel theory. For example, by applying 8.6 instead of Khinchin's
inequality, we find (as in 7.6) that K ^ ^ ) $ ^71/2 .

Exercise. For elements ap ... ,an of a Hilbert space, prove that
72(ar ... ,an)2 = I Hajll2 .
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9. 2-DOMINATED SPACES

Equivalent formulations of the property

It is a highly significant fact, first recognized by Grothendieck,
that certain infinite-dimensional Banach spaces X have the property that all
2-summing operators on X are 1-summing, and that there is a constant K such
that nx(S) $ K7I2(S) for all such operators S. There is no generally agreed
name for this property; we will adopt a term once used by Rosenthal and say
that the space X is "2-dominated" if the above holds. We also write A2(X) for
the least constant K for which it holds (again, there is no standard notation; in
Pietsch [OI], this quantity appears as M2 ^Ix)).

Any finite-dimensional space is, of course, 2-dominated. For such
spaces, the interest lies in determining the value of A2(X). This can be
regarded as another numerical parameter descriptive of the space (like X(X),
K2(X), etc.).

Trace duality provides an equivalent formulation of the property.
Let a*, 3* be dual norms to a, 3 under finite-dimensional trace duality.
Restricting attention (for the moment) to finite-dimensional spaces, note that if
we have 3(S) « Ka(S) for all S in L(X,Y), then a*(T) S K 3*(T) for all T
in L(Y, X). Since n2* = n2 and v«* = 7^, we have that the following
statements (for a particular finite-dimensional space X) are equivalent :

(i) for all finite-dimensional Y and all S in L(X,Y),
^(S) « K7T2(S) ;

(ii) for all finite-dimensional Y and all T in L(Y,X),
772(T) S KvJJ) .

With a bit of care, we can show that there is no need for the
restriction to finite-dimensional spaces here, and that weaker versions of both (i)
and (ii) are also equivalent:

9.1 Proposition. Let X be any normed linear space. The
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following statements are equivalent:
(i) for any normed linear space Y and any S in P2(X,Y),

^(S) « K772(S) ;
(i)1 as (i), but with Y restricted to the spaces l\ (k € IN ) ;
(ii) for any normed linear space Y and any T in FL(Y,X),

7Z2(T) « Kv«(T) ;
(ii)' for any k and any T in L(j£, X), 7Z2(T) $ K||T||.

Proof. It is enough to prove that (i)1 implies (ii) and that (ii)'
implies (i).

(i)1 implies (ii). Take T as in (ii) and S > 0. By 3.6, there
exist k and A in L(l]f,Y) such that ||A|| = 1 and 772(TA) £ (l-6)n2(T). By
4.3, there exist S in FL(X.ljf) with v2(S) « 1 and trace TAS £ (1 - S)7T2(TA).
By (i)1, n^S) * Kn2(S) « K. By 4.2,

trace TAS = trace (AS)T S ff^AS) vJJ)

« Tl̂ S) vJJ) S KvJT).

So we have (1-6)2 7Z2(T) S Kvtt(T).
(ii)1 implies (i). Take S as in (i) and 6 > 0. There is a

finite-dimensional subspace Xx of X such that ^(Sj) £ (l-SJn^S), where
^i = Îx. • W e m a v a s s u m e t n a t SX(XX) is a subspace of some 4» . Trace

duality applied to (ii)1 (with X replaced by Xx) gives

n^) $ Kn2(Sx) i Kn2(S).

Note. An alternative proof that (ii)1 implies (i) is as follows.

Choose S and 6. By 3.6, there exist k and A in L(*£, X) such that ||A|| = 1

and nx(SA) > ( 1 - 6 ) ^(S) . By ( i i )1 , 7I2(A) S K. By 5.12,

n^SA) $ 772(S) 772(A) ^ Kn2(S).

It is easy to give direct proofs that (i)1 implies (i) and (ii)1

implies (ii) using the Pietsch factorization theorem and 4.11 respectively.

We now describe some elementary consequences of the definition.

9,2. If Xx is a subspace of X, then A2(XX) $ A2(X).

Proof. This is immediate from 9.1 ( i i ) ' . (It is also easy from

formulation (i), using the extension theorem 5.9).
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It is also clear that, for an infinite-dimensional space X, A2(X) is
the supremum of A2(XX) for finite-dimensional subspaces Xx of X. Further, if
Y is finitely represented in X (see section 0 for the meaning of this), then
A2(Y) « A2(X).

It is elementary that A2(Y) S d(X,Y) A2(X). Also, if d(Z, *£) =
C and T is in L(X,Y), then 772(T) « CA2(X) ||T||. We now give a further
equivalent form of (ii), in which 4« is replaced by any E^-space (in particular,
JUS) or C(K)).

9.3. Suppose that A2(X) = K. If Y is an E^-space and T is in
L(Y,X), then 772(T) « K||T||.

Proof. Take 6 > 0. There is a finite-dimensional subspace Yx of
Y such that 772(T|Y\) Z (1-S)7T2(T). There is a subspace Yo, containing
Yv such that d(Y0, j | ) « 1+S for some k. Then 7T2(TO) S (1 + 6)K||T0|| ,
where TQ = T|y • The statement follows.

9.4. For any normed linear space X, we have 7?2 X(X) ^ A2(X).
Hence a 2-dominated space has the Orlicz property.

Proof. Let iix(*v ... ,xk) = 1. Then ||T|| = 1, where T is the
operator in L(*£, X) such that Tê  = x̂  for each i. So n2(T) ^ A2(X).
Clearly, (I ||Xi||2)^ ^ 772(T).

^5. If dim X = n, then A2(X) ^ ^n .

Proof. Let T be an operator from 4« to X. Then T = IXT, so

7T2(T) ^ 7Z2(IX) ||T|| = ^n ||T|| .

Exercise. Prove 9.5 using formulation (i) of 9.1.

9.6 Example. A2(i£) = ^n , since for the identity in *£ we have
||I|| = 1, while 7T2(I) = ^n .

9J_. If dim X = n and A2(X) = K, then n^X) $ K^ii and
X(X) > ^

Proof. These inequalities follow at once from 9.1 (i),(ii) and the
fact that n2(Ix) = vn (recall that X(X) = v«(Ix)).
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This simple result betrays some of the strength of the 2-dominated

property. Suppose that X is an infinite-dimensional space with the property.

To within the constant multiple K (= A2(X)), 9.7 shows that every

finite-dimensional subspace X x of X has n^Xj) as small as possible and X(XX)

as large as possible.

Spaces with dual of type 2 ; Hilbert spaces

We now turn to the problem of establishing that certain spaces are
2-dominated. Khinchin's inequality, once again, is the key to our first result
of this sort.

9.8 Proposition. Suppose that X* is of type 2. Then X is
2-dominated, and A2(X) « V2 T2(X*).

Proof. For any subspace E of X, we have (by 6.12) T2(E*) *
T2(X*). Hence it is sufficient to prove the statement for finite-dimensional X.
Take S in L(X,Y) and 8 > 0. By 5.3, there exist fp ..., fn in X* such that

||Sx||2 « I fi(x)2 .

for all x and

I Hfill2 M l + B)2 T12(S)2 .

For 6 e Dn, write gg = £ Sjf-y By Khinchin's inequality,

IISxH « — £ |g g(x)| for all x.IISxH «

Hence

By the definition of T2, this is not greater than

' 2 T2(X*) ( Sllfill2)* ,

so we have

nx(S) $ V2 T 2 (X*)( l+6) 772(S).
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Hence, in particular, A2(H) $ V2 for any Hilbert space H. (Recall
from 3.22 that for positive operators from *„ to 42, it is elementary that 7Z2(T)
= ||T||). We return to a more precise evaluation of A2(H) in a moment.
Before doing this, we show that in this case, J«> can be replaced by Ĵ  in

9.9 Proposition. For any n,p and any S in L(Jn, *£), we have
772(S) « A2(H)||S||. Similarly for S in L(&v *2).

Proof. Any S in L(JB*\ 1%) is of the form
P

Sx =.Z <ai5x> ej ,

with the 2L{ in l£. By 2.5, ||S|| = M2(ap ... ,ap). Let ||S|| = 1.
Any T in L(J&£, 4™) is of the form

m
Ty = X <y, bj> ej ,

with the bj in j j , and ||T|| = ii2(bv ... ,bm). Let ||T|| = 1. Then 772(T) S
A2(H), and we have

I ||Sb:||2 = I S<ai,b:>2 = SHTajH2 ^ A2(H)2 .
j J ! j J ! 1

The final statement follows in the usual way.

The reasoning in 9.9 is clearly reversible. We mention a nice
application to infinite-dimensional theory:

9.10. Let X be a Banach space that contains an isomorphic copy
of JBX (for example, &„> or C(I)). Then there is a continuous (in fact,
2-summing) operator mapping X onto *2.

Proof. Let Xx be the subspace isomorphic to J2r There is a
continuous operator Tx mapping Xx onto &2. By 9.9, Tx is 2-summing. By
5.9, it has a 2-summing extension defined on X.

Exercise. Let H be a Hilbert space, and let T be an operator in
L(X,H). Use the Pietsch factorization theorem to show that ^(T) ^
A2(H)7T2(T*).
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We now return to the evaluation of A2(H), using the Gaussian
integrals introduced in section 8 (of course, the reader who is content with 9.8
can omit this). The method is basically the integral analogue of 9.8.

9.11 Proposition. A2(4n) tends to y77/2 (real case) or 2/̂ 77
(complex case) as n -* °°.

Proof. Clearly A2(Jn) £ ^(J* 1 ) /^ . By 8.8 and 8.10, this tends
to the stated limits in the two cases.

To prove the reverse inequality, it is sufficient to prove that
^(S) S A7I2(S) for S in L(Jn, Jm), where A is the appropriate constant.
We give the details for the real case. Let Sx = £ <*,b{> ev By 3.9, 7T2(S)2

= I l ib / . By 8.6,

||Sx|| = 7̂7/2 | m l 2jyi <x,bi>| Gm(y) dy .
IK

By 8.1, it follows that

77X(S) « *n/2 III I y-bjll Gm(y) dy.

Recall from 8.5 that Jyj2 Gm(y) dy = 1 and Jyprj Gm(y) dy = 0. Also,

(Jf Gm)2 < J f 2 G m (s e e 8-7)- Hence

| 77,(5)2 ^ J|| IVib-J2 Gm(y) dy

y{
2 llbiH2 Gm(y) dy

= I llbill
I

Exercise. By considering integrals on Sm instead of IRm (see
note (4) following 8.8), show that in fact A2(Jn) = n ^ i j ) / ^ .

Proposition 9.11, with the constants as stated, was obtained by
Grothendieck (1956). The other results above, and the idea of recognizing the
"2-dominated" property in its own right, can be largely traced to Dubinsky et al.
(1972). In the next two sections, we will show that iv and in fact all spaces
of cotype 2, are 2-dominated. These are among the deepest results in this book.
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Internal characterization of &Z(X)

The following purely internal characterization is of interest, though
it is not essential for our later results.

Given a finite sequence (x r ... ,xk) of elements of a normed linear
space, define 62(xp ... ,xk) to be the infimum of (IXj2) for (Xj) such that
IlltjXjH2 $ E t:2Xj2 for all choices of (real) scalars tj. (Again, the notation 52

is not standard; in [01] the notation is m,2 1s). Clearly:

(1) Xj >, HxjH, so 62(xr ... ,xk) > (E ||xj||2)«

(2) If |tj| « 1 for all j , then || EtjXj||2 « EXj2 , so

82(Xj, ... »xk) ^ |£^(Xj, ... ,x k ) .

9.12. Let T be an operator from *£ to X, and let Te: = x-
Then 7I2(T) = 62(Xl, ... ,xk).

Proof, (i) If (X:) satisfies (• ), then for u in fi^,

!|Tu||2 = || Ju(j)Xj||2 « I X2
jU(j)2 .

J J J J

Hence n2(T)2 ^ I xj . It follows that 7?2(T) « 82(xp ... ,xk).
(ii) By Pietsch's theorem, take Xj such that I Xj2 = n2(T)2 and

l|Tu||2 - ||Eu(j)xj||2 ^ I Xj2u(j)2

J J J J

for all u in j£. Then (Xj) satisfies (*), so 82(xp ... ,xk) ^ 772(T) .

9.13 Corollary. The statement A2(X) ^ K is equivalent to
62(xp... ,xk) ^ K n1(xv ... ,xk) for all finite sequences (XJ) in X.

Exercise. Prove the following statements :

(i) 62(xr ... ,xk) = inf {(E X?)̂  : Xj = Xjyj and n2(yv ... ,yk) = 1},

(ii) E HSxjH ^ 772(S) 62(X]L, ... ,xk) .

Note that (ii) gives another alternative proof that (ii)1 implies (i) in 9.1.

Exercise. Let ax, ... ,an be elements of a real Hilbert space with
<aj,aj> £ 0 for all i,j. Write E aj = s. Show that (*) is satisfied with Xj2 =
<aj,s> , and hence that 52(ar ... ,an) = ||s||. Deduce that if T : j£ -> H is such
that CTe^Tej) ^ 0 for all i,j, then 7I2(T) = ||T|| .
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10. GROTHENDIECK*S INEQUALITY

Introduction

The result known as Grothendieck's inequality is coming to be
recognized as one of the really major theorems of Banach space theory. It
first appeared in Grothendieck (1956) under the title "the Fundamental theorem
of the metric theory of tensor products" (as we have seen, a number of the
other results considered in this book can be traced to the same memoir). In
fact, the theorem admits a remarkable number of equivalent formulations,
expressed variously in terms of summing norms, bilinear forms and tensor
products. One version says that J?1 has a property rather stronger than being
2-dominated. Some of these formulations were given by Grothendieck himself,
others by later writers. A particularly elementary version was given by
Lindenstrauss & Pelczynski (1968); this served to make the theorem much better
known and understood by mathematicians generally.

The theorem has many applications, both within Banach space
theory and in other areas, notably harmonic analysis (we cannot attempt to do
justice to these in this book). Also, there is by now a repertoire of
alternative proofs that must have few parallels in Mathematics. Despite this,
the exact determination of the constant appearing in the inequality remains an
unsolved problem. There are actually two separate problems, for the real and
complex cases respectively.

In this section, we start with the Lindenstrauss-Pelczynski
formulation, and give a version of the proof, due to Krivine (1979), that yields
the best current estimate of the constant in the real case. We then derive
several of the equivalent formulations. Finally, we describe a few of the more
immediate applications. A second, completely different, proof is given in
section 11, and some more applications follow in section 12.

Cambridge Books Online © Cambridge University Press, 2009Downloaded from Cambridge Books Online by IP 171.67.128.228 on Fri Jul 13 22:17:12 BST 2012.
http://dx.doi.org/10.1017/CBO9780511569166.012

Cambridge Books Online © Cambridge University Press, 2012



105

The basic statement and Krivine's proof

We take as our "basic" version of Grothendieck's inequality the
following statement, formulated by Lindenstrauss and Pelczynski (1968).

10.1 Theorem. There is a constant KQ (independent of m,n) such
that the following holds. If a y (1 S i ^ m, 1 $ j $ n) are real numbers such
that | £ E a: : S:t:| « 1 whenever |s:| « 1, |t:| « 1 for all i j , then

i j A»J 1 J l J

I II a y <Xi,yi> | « KG

whenever Xj,yj are elements of the unit ball of a real Hilbert space. There is
another constant KG such that a similar statement holds for complex scalars.

The notation KG, KG is taken to mean the least possible constants
in this statement. They are known as "Grothendieck's constants" for the real
and complex case, and as already mentioned, their exact values have not been
determined. If the Hilbert space is restricted to dimension n, the resulting
constants are denoted by KG(n), KG (n).

We will refer to the condition imposed on the aj : in 10.1 as (LP).

It is equivalent, in the statement of 10.1, if we restrict
1. For then if we are given elements
j $ 1), it is clear that b̂  : satisfies (LP),

to elements
with ||x |̂| =
where b y =

where ||xj'|i

Remark.
satisfying

Pi , llyill •
a i j Pi°j.

a i j <xi>y

1 = llyj'll =

it
IIXj

= 6J
and

j > -

-• 1 .

is equiva
II = llyill ••
(where p̂

we have

bi , j <xi'-:

We now present, with some slight simplifications, the modification
by Krivine (1979) of the proof of Lindenstrauss and Pelczynski for the real
case. It yields the estimate KG $ 77/(2 log(l+^2)) (= 1.782...). The starting
point is the following geometrically motivated lemma on Gaussian integrals; the
notation was introduced in section 8. By the "measure" of a set E in lRn, we
mean J Gn(x) dx.

E

10.2 Lemma. Let u,v be elements of Jn with ||u|| = ||v|| = 1.
Then
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[ sign<u,x> sign<v,x> Gn(x) dx = 2. sin"1<u,v> .
J|Rn n

. Let cos"1<u,v> = 6, so that 0 $ 0 * 77 and sin"1<u,v>
- I . e .

Take a, 3 such that 0 < 3 - a < 77, and let

E(o, 3) = {(r cos 9, r sin 9, x3,... ,xn) : r Z 0, a $ 9 « 3}.

The measure of E(oc, 3), as one would expect, is (3-<x)/277, since after integrating
with respect to x3, ... ,xn, we are left with

I f e-H(Xl
J

+x2)» dx dx I fB
d9

2 n JE(ocS) 2n Jcc
f dr.

cc JO

Now consider the integral in question. There is an isometry T of
4n such that Tu » ex and Tv = (cos 9, sin 9, 0, ... ,0).

The integral equals

1 sign <Tu,x> sign <Tv, x> Gn(x) dx.

The set of x for which <Tu,x> > 0 and <Tv,x> > 0 is E(9 - 77/2, 77/2), which
has measure (77-9)/277 (a diagram helps !). The set of x for which <Tu,x> < 0
and <Tv,x> > 0 is E(77/2, 9 + 77/2), which has measure 9/277 . Combining this
with the negatives of these two sets, we see that the value of the integral is

2 BiJ* - 1 - 2 0 - 2 sin"1 <u,v> .
277 77 77

10.3 Corollary. Suppose that aj : satisfies (LP), and that u^,v:
are elements of a Hilbert space with ||UJ|| = ||VJ|| = 1 for all i,j. Then

I S a y sin-1<uivj> | < 5 .

Proof. We may assume that the space is 4n for some n. For
each x in 4n, condition (LP) gives

| £ £ a: : sign <u:,x> sign <v-x> | ^ 1.
I j 1)J x J

Taking the Gaussian integral over JRn and applying 10.2, we obtain the
statement.
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From this point, Lindenstrauss and Pelczynski finish the proof
with a fairly short argument, obtaining Grothendieck's estimate KG $ sinh n/2
(= 2.301..). We follow instead Krivine's method, which - at the cost of
slightly more work - leads to the better estimate implied by sinh(77/2KG) £ 1.

The point of the next lemma is to show that we can replace <x,y>
by <x,y>^ in the basic statement. Recall from 6.1 that for x,y in !Rn,

In £ Z D <x,«><«,y> = <x,y> .
n

10.4 Lemma. For each positive integer k, there is a mapping
w k : J? - J ? ( w h e r e N = 2 n k ) such that for a11 x»y»

<wk(x), wk(y)> = <x,y>k .

Proof. Let H be the set of all real-valued mappings on the set
(Dn)k (which has 2 n k elements), with inner product

<f'8>H=
 2Hk Z Cf(c)g(c) : e € (Dn)k) .

Given x in Jn, let wk x be the element of H given by

(here each 6j is an element of Dn). It follows at once from 6.1 that

<wk,x > wk,y>H = ^ . y * •

Notes. (1) Putting y = x, we see that ||wk(x)|| = ||x||k .
(2) One can use Gaussian integration (in particular, 8.5) instead of

6.1. The space Jt™ is then replaced by the L2 space corresponding to IRkn with
Gaussian measure.

10.5 Lemma. Let c > 0. There are mappings u,v from JQn to ft2

such that for all x,y,

<u(x), v(y)> = sin c<x,y> ,

||u(x)||2 = sinh (c ||x||2) , ||v(y)||2 = sinh (c ||y||2) .

Proof. Let Hk = J8^k), where N(k) = 2 n k , and let

H = (Hx x H2 x ...)2 .
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Of course, H is isometric to J&2. Let I k be the natural injection of H^ into H.
With wj, as in 10.4, we have

sin c<x,y> = I (-I)*"1 ck <w2k_1(x), w ^ y ) )
K—1

where ck = c2k'1/(2k-l) ! . The required mappings are given by

u(x) = j E ' c k I k [ w 2 k . l ( x ) ] ,

v(y) = | ( - I ) " ' c k Ik [ w ^ y ) ] .

Proof of 10.1. As remarked after 10.1, we may assume that
||Xi|| = ||yj|| = 1 for each i j . Write c = sinh^l = log(l + V2). With u,v as
in 10.5, let \i{ = u(x{\ Vj = v(yi) . Then \\wj\ = ||VJ|| = 1, and

(note that |c<xi,y:>| < 1). So by 10.8,

2c

Complex seniors

We now consider the relation between the real and complex cases.
Of course we must distinguish between the real and complex version of
condition (LP).

10.6. The real and complex versions of 10.1 imply each other,
and ±KQ S KJE; « 2KQ.

Proof, (i) Assume 10.1 for the real case, and suppose that the
numbers a; t, = X-u + î t; y. satisfy complex-(LP). Then X; u. and Mi v satisfy

J,K J,K »*J,K j r \ / j^K »*J,K J

real-(LP). Let Xj,yk be elements of the unit ball of a complex Hilbert space
H, and let

S = £ I a: u <x:,yi,> .

By multiplying by a suitable complex a, we may suppose that S is real. A
real inner product is defined as H by : <x,y>R = Re<x,y>. Note that Im<x,y>
= <x,iy>R. It follows that |S| ^ 2 KQ.
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(ii) Assume 10.1 for the complex case, and suppose that
satisfy real-(LP). Let Sj,t^ be complex numbers with |Sj|, |tk| ^ 1, and let

Again, we may assume that S1 is real, and it follows that |S'| S 2. Any real
Hilbert space can be embedded in a complex one (in the way remarked after
7.21). Hence we obtain KG $ 2 K*j .

Note. In (ii) we actually have |S'| ^ KG(2), since for complex s,t,
one has Re (st) = <s,t >, using the usual inner product on IR2. Hence in fact
KG « KG(2) Kg. Krivine (1979) has shown that KG(2) = V2 (though even this
is not trivial).

One can prove directly that KG S KG , but the best known
estimates for KG have been found by giving separate proofs specific to the
complex case. Pisier (1978) showed that K £ $ e1"? (= 1.5262..). Haagerup
(1978) has improved the estimate to K^ $ 1.4049... . His method is roughly the
complex analogue of Krivine's proof, but the technical details are much harder.

Equivalent formulations

We now describe some equivalent formulations of the statement.
As we have already pointed out, there are a remarkable number of these, and
each of them constitutes a significant theorem in its own right. The matrix
(â  :) in 10.1 will be associated in turn with (i) a set of elements of JRn, (ii) a
bilinear form, (iii) an operator.

We start with a restatement in terms of summing norms.
Naturally, this form is particularly relevant from the point of view of this
book.

10.7 Theorem. Let H be a Hilbert space, and let T belong to
L(Jn,H) (for any n). Then fl^T) « KG||T||. Furthermore, this statement is
equivalent to 10.1.

Proof. Let ap ... ,am be elements of 4n. Then

|| I s i a i || = I 11 siai(j) | - J t: J siai(j)
i j i 1 1 j J i 1 1
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for suitable t: with |t:| = 1. Hence condition (LP) for the numbers aj(j) is
equivalent to the statement /^(a^... ,am) $ 1.

Let T be in L(Jn,H), and write Tej = yj. Then ||T|| = max ||yj||.
If xj € H and HxjH $ 1 for each i, then

| I <x-v T a i > | $ Z BTaill ,
1 i i j i

and equality holds for suitable x:. But Ta: = %. a:(j)y:, so
i i j i j

J <xi4Tai> = £ £ ai(j) <xi,y]>.
1 i i l j J

The equivalence of 10.1 and 10.7 (for both the real and complex case) is now
clear.

Remarks. (1) The least constant in the statement of 10.7 is again
KG (or KQ ). Of course, KG(n) applies when dim H = n.

(2) In the usual way, 4n can be replaced by &x or any E^space. In
particular, all continuous operators from J&J to U2 are 1-summing, with n^T) i
K-G||T||. (Of course, it follows that &1 is 2-dominated; we return to this point
later).

(3) By trace duality, the following is also equivalent: for S in
L(Jm,l!n), vx(S) « KGv.(S).

10.8 Theorem. Given a bilinear form 0 on i« x 1% and elements
xk of J? , yk of *£ (1 $ k S N), we have

I £ G(xk,yk)| « KG ||6|| m2(xv ... ,xN) iL2(yv ... ,yN).

Furthermore, this statement is equivalent to 10.1.

Proof. As usual, we set out the proof for the real case; routine
small modifications are required for the complex case.

A general bilinear form 3 is given by

3(x,y) = I I a i : x(i)y(j) ,

and condition (LP) is equivalent to ||0|| $ 1. Given elements xk of U2? and yk

of *£, define elements xj (1 < i < m) of I™ by : 5q(k) = xk(i) (and yi
similarly). By 2.6,

M2(xr ... ,xN)2 = max I *k(i)2= max ||x.||2,

so the condition M2(xp - »XN) ^ * 1S equivalent to ||x|| ^ 1 for each
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The equivalence with 10.1 is now clear from the equality

I G ( x k , y k ) - J J Z a y x k ( i ) y k ( j )
K. 1 J K

Note that the Hilbert space has disappeared from this form of the
statement. Clearly, KG(N) applies when the number of xk, yk is restricted to
N.

Since only finite numbers of elements are involved, Jm and *S can
be replaced by any E^-spaces (in particular, C(S)).

We now prove a "Pietsch" type theorem for bilinear forms as in
10.8. This will provide us with a further equivalent version of Grothendieck's
inequality in terms of bilinear forms. Again, we use notation appropriate to
the real case.

10.9 Proposition. Let S,T be compact spaces, and let 3 be a
bilinear form on C(S) x C(T). Then the following statements are equivalent:

(i) for all finite sequences (xk, yk) in C(S) x C(T),

(ii) there exist positive functional $ on C(S), </> on C(T) such that
and 3(x,y)2 ^ («x2)0(y2) for all x,y.

Proof. First, assume (ii) and choose a sequence (xk, yk). Then

I E 3 (xk,yk) | ^ £ #xk
2)* 0(yk

2)^

$ (Z <Mxk
2))** (E («yk

2))H (by Schwarz's
inequality)

« H2(xv ... ,xN) n2(yv ... ,yN).

Now assume (i). It is enough to find $,il> such that

I B(x,y)| « \ [«x2) + <«y2)]

for all x,y. For then, if </<y2) > 0, there exists X such that X2</<y2) = <Kx2),
and we have |3(x,Xy| ^ «x2), hence 3(x,y)2 ^ «x2) «y2).
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Given x in C(S), let x be the function in C(SxT) defined by x(s,t)
= x(s) (and define y similarly for y in C(T). Obviously, ||x + y|| = ||x|| + ||y||
for positive x in C(S), y in C(T). Since Ii2(*v ... ,xN)2 = || E xj2|| and ab *
5<a2 + b2) for positive a,b, the hypothesis implies that

I E 6 ( x k , y k ) | < J | | Z x k
2 | | + \ || Z y k

2 | | .

We will use Lemma 5.1. For a positive function h in C(SxT), let

q(h) = sup{ | E 3(xk,yk)| : \ E xk
2 + \ E yk

2 S h} .

Then q is clearly superlinear. It is clear from the above that q(h) ^ ||h||.
Hence there is a positive functional F on C(SxT) such that ||F|| $ 1 and
F(h) * q(h) for all h £ 0. For x in C(S), y in C(T), we have

|0(x,y)| « \ FC3T2 + y2) = \ «x2) + \ («y2),

as required.

So we can now state the following, which is one of the most
frequently quoted versions of Grothendieck's inequality.

10.10 Theorem. Let S,T be compact spaces, and let B be a
bilinear form on C(S) x C(T) (real or complex). Then there exist positive
functionals <t> on C(S), 4> on C(T) such that ||0|| = \M = 1 and

|0(x,y)| « KG ||0|| «|x|2)

for all x,y. Furthermore, this statement is equivalent to 10.1.

Our next reformulation is an easy step from 10.8. It uses the
following variant of 2-summing norm. Let Y be IRn with any lattice norm.
As in section 7, we consider elements of the form (Eyk

2) . For T in L(X,Y),
we define

n2(T) - sup { || [E(Txk)2]* || : M2(xr ... ,xN) S 1}.

One can verify that lt2 is a norm (though this is not important for our
purposes). Our interest is in the case when X is JRm (or *«) and Y is JGn

(or Jj). Note that for this case it follows from 7.5 that ft2(T) £ 7T2(T).
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10.11 Lemma. Let yv ... ,yN € *n , and let y = ( I y^2)^.

||y|| = sup { I <Yk»vk> • vk € 5 « a n d *4(vi» • • •» VN) * 1)-

Proof. Let M2(vi» • •• »VN) * *» s o ? vk(J)2 * 1 ^ o r e a c h J- T l i e n

(J) * y(J)» by Schwarz's inequality, so

I <yk^vk> * J y(i) - Hyii •
Now define vk(j) to be Yk(j)/y(j) if y(j) * 0, and 0 otherwise. Then

£ vk(j)2 ^ 1 and ^ yk(j)vk(j) - y(J) for each j . Hence JL <yk»vk> " Hvll •

10.12 Theorem. If T is in L(*m,Jn) (for any m,n), then
f?2(T) $ KG||T|| . Furthermore, this statement is equivalent to 10.1.

Proof. There is an isometry between B(Jm, *£) (the space of
bilinear forms) and L(4m, Jn), defined by : 3(u,v) = <Tu,v>. By the lemma,
it is now clear that the statements in 10.8 and 10.12 are equivalent.

It is easily checked that this applies in the complex case too.
Again, 4m can be replaced by any X^-space, and 4n by any

Ej-space. The constant is KG(N) when the number of elements x̂  is restricted
to N.

This version (10.12) is the form used by our second proof of
Grothendieck's inequality (see section 11). It can be generalized to operators
between any pair of Banach lattices (see [CBS II], If).

Exercise. Give a direct proof of the equivalence of 10.12 and
10.7 (write the operators concerned as I <aj,x>e^ and Z <bj,y>ej).

Our final reformulation, which is one of Grothendieck's original
ones, is seemingly quite different. It dispenses with the aj : entirely, and takes
the form of an assertion about tensor expressions for inner products.

Let S,T be compact spaces. The algebraic tensor product
C(S) <8> C(T) can be identified with a subspace of C(SxT) by taking f <8> g to
be the function h(s,t) = f(s)g(t). For present purposes, this may be regarded
as the definition of C(S) <8> C(T). The "projective" norm J is defined by :

y(u) = inf { I ||fr||.||gr|| : u = I fr e gr } .
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Recall from 1.19 that the dual of C(S) <8̂  C(T) identifies with the space of
bilinear forms on C(S) x C(T) (our new interpretation of C(S) <8> C(T)
makes no difference).

10.13 Theorem. Let Sn = {x € Jn : ||x|| - 1}, and let Pn be the
inner-product function on Sn x Sn, that is : Pn(x,y) = <x,y>. Then
7(Pn) = KG(n) (so tends to KG as n - «).

Proof. Suppose that <x,y> = E fr(x)gr(y). Let (aj j) satisfy (LP)
and let x-, y: be elements of Sn. For each r,

| I I aifj fr(xi) gr(yi) | « l|frl|.||grl|.

Summation over r gives

i f p i j <xryj>i < f nfrii.iterii,

and hence KG(n) ^ 7(Pn) •

To prove the converse, define 8j in C(Sn) by : 8 (̂x) = x(0).

Then Pn = £ 6j <8> 8^ and £ S^x)2 = 1 for all x in Sn, so n2(hv ... ,&n)=l.

By 1.19, there is a bilinear form 13 on C(Sn) x C(Sn) such that ||8|| = 1 and

7(Pn) = £ 0 ( 8 ^ ) . By 10.8, the value of this is not greater than KG(n).

Lower bounds for KQ

10.14. KG > 7T/2 , while Kg > 4/71 .

Proof. Recall from 9.11 that A2(Jn) -• A as n -» « where A is
^71/2 in the real case, 2/^n in the complex case. This means that for any
6 > 0, there exist m,n and an operator T from 4 m to JGn such that ||T|| = 1 and
7T2(T) £ (1-6)A. So there are elements x^ with M2(xi» - »XN) = 1 a n d

Z ||Txk||2 ^ (1-6)2A2. Define 8 on Jm x JIJ? by : 3(x,y) - <Tx,Ty>. Then
||8|| = 1 and I 3(xk,xk) > (1-6)2A2. The statements follow, by 10.8. (In the
complex case, 8 is actually "sesquilinear", not bilinear, but it is easily checked
that 10.8 still applies).

These lower bounds were stated by Grothendieck. Krivine and
A.M. Davie (unpublished) have improved them to : KQ * 1.676... , Kg> 1.338... .
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l x is 2-dominated

Both 10.7 and 10.12 imply that Jt1 is 2-dominated, using the
appropriate alternative formulations of this property from 9.1. Clearly, A^^)
$ KG. Like KQ itself, the exact value of A2(^x) is not known, and one can
expect it to be different in the real and complex cases. Denote it temporarily
by K r In the real case, we have Kx > ^2, since H2(l12) = 1, while "1(I12)
= V2 (6.3, 7.10); in fact, this applies to l\ as well as J?r

Of course, if X is any space that is finitely represented in J&x (e.g.
C(S)*; see 0.24), then A2(X) « K r

Recall that for T in L(l l s l2), we have 772(T) « A||T||, where A is
V7i?2 in the real case, 2/vn in the complex case (9.9, 9.11). Hence KG $ AK r

and any direct proof that 4X is 2-dominated affords an alternative proof of
Grothendieck's inequality (in the form 10.7). It is instructive to see how one
can also obtain the form 10.10, again with AKX in place of KG.

Proof of a version of 10.10. Assume ||3|| = 1. Define B : C(S) -
C(T)* by (Bx)(y) = B(x,y). Then ||B|| = 1, so 772(B) S Kx . By 5.8, there
exist a Hilbert space H and Bx : C(S) -> H, B2 : H - C(T)* such that
B = BJBJ and n^BJ $ Kv ||B2|| = 1. Let B2 be the restriction to C(T) of
B2* : C(T)** •* H. Since A2(H) = A, we have 7Z2(B2) ^ A. Now

0(x,y) = (B2BlX)(y) = ( V X V ) •

By Pietsch's theorem, there are positive functionals 0 on C(S), 0 on C(T) such
that ||«| = ||0|| = 1 and ||BlX||2 ^ K^ftx2), ||B2y||2 ^ A2«y2). Hence |0(x,y)|

Two further applications

To exemplify what can be done with Grothendieck's inequality, we
mention two simple applications to Banach-Mazur distances and projection
constants. We continue to distinguish KQ and K r

10.15 (Gordon, 1968). For any n-dimensional space X,

nx(X) $ KG d(X,Hn)d(X,l!n) .

Proof. There are operators S : 4n

that ||S|| = ||T|| = 1 and US"1!! = d(X,Hn),
KG. Now Ix = T'1(TS)S"1, so ^ ( 1 ^

• X
IIT-1!!

and T
= d(X,

: X •

By
such
10.7,
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Of course, we knew already that d(X, Jn)d(X,Jn) * d(Jn, Jn) = ^n.

10.16 (Garling & Gordon, 1971). For any n-dimensional space X,
we have X(X)X(X*) > ^

Proof. We may assume that X is a subspace of some 4». Let P
be a projection of J« onto X with ||P|| = X(X). Then P*(X*) is a subspace
of J&]f, so by 9.7, X[P*(X*)] * ^n/Kr For f in X*, it is clear that P*f is an
extension of f, so ||P*f|| > ||f||. Hence

d[X*, P*(X*)] S ||P*|| = X(X) ,

so that

^ « X[P*(X*)] $ X(X*) d[X*,P*(X*)] S X(X)X(X*) .
K i

Note that 4n is itself an example of a space X for which
X(X)X(X*) < ^n .

The Grothendieck property

It is natural to ask whether other spaces could replace &1 in
Grothendieck's inequality as formulated in 10.7. A space X is said to have the
"Grothendieck property" with constant K if for all operators T from X to a
Hilbert space, we have n^T) i K||T||. Note that this implies that X is
2-dominated, with A2(X) ^ K (see 9.1). However, &2 itself does not have the
Grothendieck property (consider the identity !), although it is 2-dominated.
Further, while the 2-dominated property is inherited by subspaces, this is not
the case for the Grothendieck property (recall that Un embeds into J^). What
can be said in this direction is the following:

10.17. If X has the Grothendieck property with constant K, and
Xx is a complemented subspace of X (with projection P), then Xx has the
Grothendieck property with constant K||P||.

Proof. Let T be an operator from Xx to a Hilbert space H.
Then TP is in L(X,H), so fl^TP) $ K||TP|| S K||P||.||T||. Since TP is an
extension of T, we have nx(T) $ n^TP).

We will see in Section 12 that a space with a "good" basis and the
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Grothendieck property is isomorphic to Jn (or Jtx). However, there are spaces
with the property that are not ^-spaces. For a good survey of results related
to this, see [FLO], Chapter 6.

Exercise. Prove that X has the Grothehdieck property with
constant K if and only if for all S in L(X*,*n), 772(S) « K'||S|| (where K1 «
K S K'A2(H)).

(Necessity can be proved directly. For sufficiency, restate the
Grothendieck property using trace duality, and apply 4.11.)

Concluding remarks

As observed earlier, there are many further applications of
Grothendieck's inequality. We will outline a few of them in Section 12, in
conjunction with basis constants.

A second proof of the inequality (giving version 10.12) is described
in Section 11. This has the attraction of being free of integration, and it
adapts to show that all cotype-2 spaces are 2-dominated. However, it gives a
less accurate estimate of the constant.

Among the many other methods of proof that have been devised,
we mention one that is at first sight very appealing. Suppose that we can
find a Banach space X and a 1-summing operator Q of X onto &2 (so that Q is
M-open for some M). Let T be in L(iv&2). Then there is an operator T :
Jt1 - X such that T = QTX and p^H « M||T|| (this is elementary). Hence

nx(T) $ (̂QJHTJI « MTT̂ QHTII ,

so version 10.7 of the statement follows. However, no entirely easy way is
known of exhibiting such X and Q, or finite-dimensional equivalents (see
[FLO], Chapter 5).
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11. THE INTERPOLATION METHOD FOR GROTHENDIECK-TYPE
THEOREMS

An interpolation theorem

We now prove a theorem that, for operators on *£, establishes a
relationship between np(T) for different p. For this purpose, we relax our
general principle of concentrating on the cases p = 1,2. In fact, our
applications of the theorem (including the promised alternative proof of
Grothendieck's inequality) will make use of the statement with V equal to 4.
The proof is a direct application of Pietsch's theorem, together with Holder's
inequality in the form : E O j 8 ^ 1 " 9 < (E «j)e(E Gj)1"9.

11.1 Theorem. Let T be any operator from Jj£ to a normed
linear space Y. Let 1 * p < r, and write £ = 8. Then

nr(T) S yT^UTII 1"9 .

In particular, 7Z2p(T)2 S 7ip(T)||T|| .

Proof. Write Te: = a:. By Pietsch's theorem (5.2), there is a
positive linear functional <t> on j£ such that M = np(T)p and ||Tx||p $ <M|x|p)
for all x. For certain OCJ > 0, we have <p(x) - E otjXj, where x = (Xls... ,Xn).
Then Tx = E Xjaj, and the above conditions become

Z «j - 77p(T)P , (1)

||E Xjaj||P * E Oj|Xj|P (2)

Choose x = (\v ... ,Xn). There is an element f of UY* such that f(E Xjaj) =
III Xjaj||. Write |f(aj)| = 3j. Then 0j = 6jf(aj) , where |6j| = 1, so

E 0j = f(E 6jaj) = f [T(61,...,6n)] ^ ||T|| . (3)

Also, for Mj > 0,
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I M*3- = fff S-fi-a-) ,
so

(Z M*3*)p * IP S-jLt-a-||p ^ I ai^iP » (4)

by (2). By Holder's inequality,

||E \ : a j = f(Z X:a:) ^ I \\:\B:J J J J J J

« (EKjSj)8 (EBj)1'9

where jij = l^jl1/ . Remembering that r8 = p, we now have from (3) and (4):

||E Xjaj||r « (E «jMjp) HT||r-P = ||T||r-P E OJIX/ .

By 3.17 (the easy converse of Pietsch's theorem), this implies that

7lr(T)r S ||T||r-P(Z a j)

= ||T||r-P 7Tp(T)P .

This is equivalent to the statement.

In particular, n2(T)2 « ^(T) ||T|| (the above proof becomes rather
simpler for this case). Easy examples show that this does not hold for
operators defined on spaces other than j£ : in fact, when applied to Ix (where
dim X = n), it gives ^(X) £ n. As we know, this fails for jjj1, 4n. An
immediate consequence is:

11.2. For any finite-dimensional X, we have A2(X)2 $ ^(X).

Proof. For any operator from j£ to X, we have ^(T)
and hence 7I2(T)2 S ^(X) ||T||2 .

For T as in 11.1, it can also be shown that

7lr(T) S np(J)\(T)lm* ,

where p < r < q and .̂ = ® + 1 ^ .
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Second proof of Grothendieck's inequality

We prove Grothendieck's inequality in the form 10.12, using 11.1
and Khinchin's inequality. The proof adapts easily for complex scalars. Recall
from 10.12 the meaning of ft2(T) •

11.3 Lemma. Let Y be JRn with any lattice norm, and let T be
an operator from J&S to Y. Then

772(T) « 31/4 21/2 TT/Tj.

Proof. Take elements xv ... ,x^ of JJS. For 6 in D^, write
yg = Z 6-Xj. By Khinchin's inequality, applied pointwise,

[I (TXi)2]^ « ^ ^ |Tyg| . (1)

By 7.2, also applied pointwise,

I k £ y g
4 ^ 3 (Z X i

2 ) 2 . (2)

Recall that ^ C ^ . + C N ) ^ [^ (cx
4 +...+cN

 4) ] 1 / 4 for q > 0 . Using this and

the definition of 774 for operators on J?m, we have :

|| [E(Txi)2]> 4 | | « - ^ ^ HTyjH (by (1))

H4(T) || i k E yg4!!1/4 .

n4(T) 31/4 || E xi2!!1/2 (by (2)).

This proves the statement.

Proof of 10.12. Let T be an operator from i m to 4n . Recall

that ft2(T) « 772(T). By 11.3 and 11.1, we have

n2(T)2 S 2V3~774(T)2

S 2^3 7I2(T)||T||

« 2 '3 n2(T)||T|| ,

so n2(T) « 2^3 ||1*H . This is the required statement (with KG « 2V1 ) .
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Cotype 2 spaces are 2-dominated

A slight adaptation of the above proof gives the result stated. The
following is a modified version of Lemma 11.3, in which the notion of cotype 2
effectively replaces Khinchin's inequality.

11.4 Lemma. Let *2(X) = K, and let T be an operator from
Jj? to X. Then 772(T) S 31/4K 7Z4(T).

Proof. With the notation of 11.3, we have Tyg = I ^(Txj), and
hence, by the definition of cotype 2,

( I HTxiH2)** $ K ^ £

« K( ^

« K 7T4(T) ^

S K7T4(T) 31'4 I l lxi 2!^ (by (2)).

11.5 Theorem. Every space of cotype 2 is 2-dominated. In fact,
A2(X) S ^3 K2(X)2 .

Proof. Let K2(X) = K, and let T be an operator from &™ to X.
By 11.4 and 11.1,

772(T)2 « V3 K2 n4(T)2

^ ^3 K2 7Z2(T)||T|| ,

so 7I2(T) ^ V2 K2 ||T|| .

Clearly, this theorem can be regarded as a generalization of the
essence of Grothendieck's inequality. It was first proved by Maurey (1974a).
Another proof was given by Rosenthal (1976). The method reproduced here -
which is substantially shorter than the known alternatives - is due to Pisier
(1978): the idea of it can be traced to Krivine (1973-74). Pisier in fact
obtained both 11.5 and Grothendieck's inequality in a generalized form : the
spaces J&21 are replaced in the statements by C*-algebras (not necessarily
commutative). His results have been further generalized by Haagerup (1985).
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Using Khinchin's inequality for r > 2, one can modify 11.4 to
obtain 7I2(T) « Br *2(X) 77r(T). This yields the following variant of 11.5:
A2(X) ^ Cp K 2 (X) P for any p > 1. However, the constant Cp tends to infinity
as p tends to 1, and it is not known whether a similar statement holds with p
= 1. Nor is it known whether, conversely, all 2-dominated spaces (or even all
spaces with the Orlicz property) are of cotype 2. A conditional result in this
direction will be described in section 12.

We outline briefly one alternative approach, also due to Pisier
(for the details, see [FLO], chapter 4). For elements x- of X, write

p*(xr ... ,xn) = sup { I fjCxj) : fjcX*. p2(fr ... ,fn) S 1 }.

One shows that for 0 < 6 < 1 and any 2-summing operator T,

p2(Txlf ... ,Txn) S [ 6772(T) + S-^HTII ] p*(xp ... ,xn) (1).

For X| in Jl™, it is easily shown from Khinchin's inequality that pf(xp — ,*n)
$ V2 M2(x!» - x

n ) - If x is of cotype 2 and T is an operator from J&21 to X, it
follows that

7I2(T) « ' 2 K2(X) [ 6772(T) + S-1/2\\T\\] .

Write V2 K2(X) = K, and put 8 = 1/(2K). We obtain 772(T) $ (2K)3/2||T||, so
that A2(X) $ C K 2 (X) 3 / 2 for a certain C. A refinement of the method shows
that in fact A2(X) S C ' K 2 ( X ) log(2ic2(X)).

The above approach is closely connected with the notion of
factorization through a Hilbcrt space (and is presented in [FLO] in such terms).
Given T in L(X,Y), let 72(T) be the infimum of ||T2||.||T1|j taken over all
possible factorizations T = T2T15 where Tx is in L(X,H) for some Hilbert
space H, and T2 is in L(H,Y). Of course, Pietsch's theorem shows that 72(T) $
772(T). A basic result on factorization is the theorem of Kwapicn (1972), which
states that 72(TS) $ K2(T)T2(S) for any operators S,T. (Note that when applied
to the identity in a space X, this shows that if X is both of type 2 and cotype
2, then X is isomorphic to a Hilbcrt space H, and d(X,H) $ K2(X) T2(X) ).
Now statement (1) applies in fact with 772 replaced by 72. In combination with
Kwapien's theorem, this leads to the following result, which Pisier calls the
"abstract version of Grothendieck's theorem": if X* and Y are of cotype 2 and
T is in FL(X,Y) (or is "approximablc"), then 72(T) $ C ||T||, where C =
[2 K2(X*) 3/2
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1Z RESULTS CONNECTED WITH THE BASIS CONSTANT

The basis constant

Let X be an n-dimensional normed linear space. Let (bv...,bn) be
a basis of X, and let (fv ... ,fn) be the dual basis of X*, so that x = £ f̂ (x)b̂

for all x in X. The "constant" (or "unconditional constant") of this basis,
denoted by B(bp... ,bn) is defined to be

sup { || £ Xifi(x)bi|| : ||x|| $ 1 and |Xj| « 1 for each i).

Two equivalent ways of describing this quantity are, firstly,

sup { ||T(X1,...,Xn|| : IXjl S 1 for each i} ,

where T(XX,... ,Xn) is the operator that maps bj to X̂ bj for each i, and
secondly,

sup { / i ^Wbp ... ,fn(x)bn] : ||x|| « 1} .

From the last expression, it is clear that we can restrict to |X̂ | = 1 in the
previous ones.

The (unconditional) basis constant of the space X is defined to be
the infimum of the constants of all bases of X.

First, some immediate remarks on these definitions :
(1) The usual basis of *£ (for each p) has constant 1.
(2) For non-zero a-v we have 3(a1b1, ... ,anbn) = B(bv ... ,bn).
(3) In the real case, there is a lattice ordering associated with a

basis: we define x ( y to mean f̂ (x) S f̂ (y) for all i. Then |x| is the
element I |fj(x)|b^ (this notation makes sense in the complex case as well).
The constant of the basis equates to sup { ||y|| : |y| $ |x|, ||x|| $ 1}.

(4) The definition applies equally to an unconditional basis of an
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infinite-dimensional Banach space. It is a standard consequence of the uniform
boundedness theorem that the constant of such a basis is finite. Two such
bases are said to be "equivalent" if there is an isomorphism mapping one onto
the other.

12.1. A basis and its dual basis have the same constant. Hence
3(X*) = 13(X) for any finite-dimensional space X.

Proof. Let T be the operator such that Tbj = X̂ bj for each i.
It is easily verified that T*fj = Xjfj for each i. The result follows, by the
first equivalent form of the definition given above.

12.2. If X,Y have the same (finite) dimension, then 3(Y) $
d(X,Y)0(X). Hence 3(X) < ^n for any n-dimensional space X.

Proof. Let A be an isomorphism of X onto Y, and let (bp... ,bn)
be a basis of X, with constant 30. Let T be the operator such that
T b i = x ibi f o r e a c h *• T h e n ATA"1 maps Abj to X^Abj). It follows that
B(Abr ... ,Abn) « BollAIUIA-1!!.

The second statement follows, by 5.6.

Exercise. Let (bp... ,bn) be a normalized basis of X, with
constant 30. Show that

d(X, j£) S 0j ( | b i + + t g ,

Note. Among infinite-dimensional spaces, only separable ones are
candidates to have a basis. The following notion (defined on the pattern of
Eoo-spaces) is not restricted in this way. The space X is said to have "local
unconditional structure" with constant K if each finite-dimensional subspace E is
contained in a larger finite-dimensional subspace F with 3(F) ^ K. The
infimum of such K is then called the "local unconditional structure constant" of
X. It is known that all Banach lattices have local unconditional structure.

Connections with n1 and the Gordon-Lewis constant

A number of results relate the basis constant to d(X, ij1). The
simplest one is:
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12.3. If dim X = n, then d(X, Jn) S 0(X) ^ ( X ) .

Proof. Let (bv ... ,bn) be a normalized basis of X, with dual
basis (fv ... ,fn) and constant 30 . Since x = I f i(x)bj , we have ||x|| $ I |fi(x)|
for each x. If we show that for some C, we have I |f j(x)| ^ C ||x|| for all x,
it follows that d(X, fijj1) « C. Now by definition,

/ijf^xjbp ... ,fn(x)bn] « 0o||x|| . (1)

Hence

I |fi(x)| - 2j llfitobiH * B07f/n)(X) ||x|| .

The statement follows.

This is of very limited use, since n^X) is at least ^n. We now
describe a more useful variant. For an operator T between finite-dimensional
spaces, write

7X(T) = vJT*) = inf {^(gj,... ,gn) : T = Z g i ® y i with each ||yi|| = 1} .

Recall from 4.11 that this describes "factorization through J^".

12.4. For any operator T defined on X, 7X(T) S G(X) n^T).

Proof. Let (b p ... ,bn) be a normalized basis of X, with dual
basis (fls ... ,fn) and constant 30. Then

T - I fj <8> (Tbj) = lg{ 9 y{ ,

where g j = IITbjHfi and ||yi|| = 1. From (1),

J HfjCxKTbi)!! = I |g i(x)| ^ 60 w^T) ||x|| .

Hence nx(gv ... ,gn) ^ 30 n^T) , and the statement follows.

This result was formulated by Gordon & Lewis (1974), who used it
to show that certain spaces have "large" basis constants. We give an account
of this below. The quantity

sup {jjfT) : T 6 L(X,Y), ^(T) S 1}

is consequently known as the Gordon-Lewis constant of the space X. Clearly,
is not greater than 3(X).
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The 2-dominated property and cotype 2

We saw in Section 11 that all spaces of cotype 2 are 2-dominated.
With the help of the ibasis constant, we can prove a restricted converse. The
method is essentially an abstract version of the proof that i1 is of cotype 2 (see
Section 7). (The details are given for the real case; the complex case is the
same with some modulus signs inserted).

Given a basis (b1,...,bn), with dual basis (fx,... ,fn), we have already
mentioned how the element |x| can be defined. Similarly, it is natural to
define multiplication "coordinatewise", so that, in particular, x2 = £f-(x)2b:.

J J J

Given elements xp.. . ,xk of X, the element z = (E x^2)^ can be defined in the

same way. The 2-dominated constant A2(X) now enables us to formulate an
abstract analogue of 7.5.

12.5 Let B(br ... ,bn) = 30, and let z = (£ x^ )* in the sense

just indicated. Then

( I | |X i | | 2 )* « S0A2(X) ||z|| .

Proof. We have f:(z)2 = £f:(x:)2 for each j . Define an
J i J J

operator T from Jo? to X by :

Ty = Z.y(j) fj(z)bj .

By the definition of the basis constant, if Hylic $ 1, then ||Ty|| S 30 ||z||.
Hence ||T|| « 30||z||, so 772(T) « 30 A2(X)||z|| .

We obtain elements yj of *£ such that Tyj = xj by choosing
yjO) so that yi(j) fj(z) = fj(Xi) (if fj(z) = 0, put yi(j) = 0) . Then
I y i(j)2 « 1 for all j , so n2(yv ... ,yk) $ 1. Hence

( I l l x / ) * * 772(T) ^ 30A2(X)||z|| .

12.6 Lemma. Let the operation | | be defined relative to a basis

(with constant 30) as above. If |u| $ £ |xj| , then ||u|| $ 30 X llx^.

Proof. For each j , we have |fj(u)| $ J|fj(xj)| . Hence we can

choose a-- with |a- | ^ 1 and

f j(u) = !
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for each j. Define elements ŷ  by setting

Then u = ly[ and ||yi|| S 3011x̂ 1 for each i.

12.7 Proposition. For any finite-dimensional space X, we have

K2(X) S ^2 3(X)2 A2(X) .

Proof. Let (bv ... ,bn) be a basis with constant 30, and let | |
and multiplication be defined relative to this basis. Choose elements x p ... ,x^
of X, and let z = (Z xj2)^ . By Khinchin's inequality,

Hence, by 12.6,

3 0 J || JSiXiH = *2 3 0 P l ( X l , ... ,xk) .

The inequality in 12.5 now gives the result.

Clearly, the same applies to infinite-dimensional spaces with the
local unconditional structure constant replacing 3(X).

Connections with Grothendieck's inequality

The next group of results originates with Lindenstrauss &
Pelczynski (1968). We start with the promised "converse" of Grothendieck's
inequality.

12.8 Proposition, (i) Let X be an n-dimensional space. Suppose
that X has the Grothendieck property with constant K, and that n2 X(X) = A
(note that A « K). Then d(X, Jn) S AK3(X)2.

(ii) Let X be an infinite-dimensional space with unconditional
basis, and let A,K be as in (i). Then d(X, lx) $ AK3(X)2.

Proof. For (i), let (bp ... ,bn) be a normalized basis with
constant 30, and let (fp ... ,fn) be the dual basis. For all x in X, we have

p ... ,fn(x)bn] S 30||x|| (1),

and therefore
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J fi(x)2 S A230
2 ||x||2 (2).

Let T be the operator from X to Jn defined by Tbj = ej, so that ||Tx||2 =
f^x)2 . By (2), ||T|| $ A0O, so we have n^T) S AK0o. From (1), it now

follows that

||x|| S £ If i(x)| = 5 ||T(f jCx^i) || « AK0o
2 ||x|| .

The statement follows, and the proof of (ii) is exactly similar.

12.9 Corollary. Let X be a complemented subspace of an 3^-space
(with projection ^P). Suppose that X has an unconditional basis. Then X is
isomorphic to Hx (or Hn), with

d(X, tj « VJ KGB(X)2 ||P|| .

Proof. The space X has the Grothendieck property with constant
KG||P|| (see 10.17), and n21(X) i V2 .

12.10 Corollary. Every unconditional basis of 4X is equivalent to
the usual basis.

Proof. The isomorphism constructed in 12.8 maps bj to c-y

We observed in Section 4 that it is not known whether there is a
constant C such that d(X, *S) ^ CX(X) for all n-dimensional spaces X. By
applying 12.9 to the dual space, we can obtain a partial result in this direction.

12.11 Proposition. For any n-dimensional space X,

d(X,lS) « V2 KG3(X)2X(X)2 .

Proof. We may assume that X is a subspace of some JG£. Let P
be a projection of J&£ onto X with ||P|| close to \(X). Then P* maps X* into
*5*, and if R is the "restriction" operator from 4* to X*, then RP* = Ix* ,
since for f € X* and x € X, we have (P*f)(x) - f(Px) = f(x). Hence
||P*f|| * ||f|| for f € X*, so d[X*, P*(X*)] « ||P||.

It also follows that P*R is a projection of 1™ onto P*(X*).
Since 0(X*) = 0(X) and ||P*R|| ^ ||P||, we have from 12.9 :

d[P*(X*), Jj] ^ V2 K
G
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Hence

d(X,l2) - d(X*,J?J) S ^2 KG B(X)2 ||P||2 .

There is also a dual version of 12.10:

12.12. Every unconditional basis of c0 is equivalent to the usual
basis.

Proof. (For this, we assume familiarity with some elementary
facts on unconditional bases). Let (bn) be such a basis (normalized). The
dual basic sequence (fn) is unconditional and bounded. Applying 12.9 to each
(fr ... ,fn), we see that (fn) is equivalent to the usual basis of Ur It follows
by standard arguments that (bn) is equivalent to the usual basis of cQ.

Spaces with large basis constants

The problem of finding finite-dimensional spaces with arbitrarily
large basis constants was resolved very satisfactorily by Gordon & Lewis (1974),
who showed that the "natural" space of operators L(Jn) has basis constant not
less than |^n . We present here a simplified version of their proof due to
Schiitt (1978). As already mentioned, the method depends on 12.4, and
consequently can be regarded as another application of the theory of summing
and nuclear norms. It is an ingenious and elegant piece of work.

Let Ln be the space L(lRn), identified with nxn matrices in the

usual way : Ae: = X &[\ ej. Regarding Ln as simply IRn , we write

<A,B> = JJaijbij

and ||A||2 = <A,AX* . Given any norm a on Ln, let a* be the dual norm on
Ln, identified with its own dual in this way (there is no need to think in terms
of trace duality !).

Recall than Dn denotes the set of elements 8 = (8 r ... ,8n) with
each 8j in {-1,1}. Given 8 € Dn, let Ug be the corresponding diagonal
operator on IRn. Then UgAUg is the operator with matrix (8j aj: Sj). We
shall say that a norm a on Ln is invariant if a(UgAUg) = a(A) for all A,8,8.
Since <UgAU5,B> = <A,UgBU5>, it follows that a* is then invariant. For any
p,q, the ordinary operator norm of L(Jp,jJj) is invariant, since U6,Ug are
isometries.

We start with a bivariate version of Khinchin's inequality:
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12.13 With the above notation,

1
--* 2 — 8?Dn sfDn ' S ^ W i 1 "

Proo/. Define elements aj of Jn by : aj(j) = ajj . Then

||A||29 = £ ||a:||? . By 7.4 (Khinchin's inequality for Hilbert spaces).

By the ordinary form of Khinchin's inequality,

/2_ < e & a >

, 8>a» 2 2 n £€Dn ' i 8 i a '

1 «?D.' 5 ? W J ' •

Given elements A,B of Ln, write A.B for the "pointwise" product
(ajjbjj), and let MB be the "multiplication" operator on Ln defined by : MB(A)
= A.B.

12.14. Let S = (Sjj) and A = (6jj) be elements of Ln, with
6jj € {-1,1} for each i,j. Let a be an invariant norm on Ln, and regard MA s

as an operator from (Ln,a) to (Ln, || ||2). Then ^(M^g) ^ 2a*(S).

Proof. By 12.13, we have

As a functional on (Ln,a), the norm of UgSUg is a*(S). There are 22n such
functional. The statement follows, by 3.2.

12.15 Example. Let Jn, Kn be the formal identity operators
from [L(n£, Jn), || ||] and [L(Hn), || ||] (respectively) into (Ln, || ||2). In
12.14, take S;: = 8 n = 1 for all i,j. Then <A,S> = I I a n = <Ae,e> , whereIJ I J i j IJ

e = (1, ... ,1). From this, we see that a*(S) is equal to 1 and n in the two
cases. Hence we have n1(Jn) * 2 and ^(KJJ) $ 2n .
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Exercise. Show that n2(Jn) - 1 and H2(Kn) = n.

12.16. Let T = (tj:) and A = (6^) be elements of Ln, with
8y € {-1,1} for each i,j. Let a be an invariant norm on Ln, and regard MT

as an operator from (Ln, || ||2) to (Ln,a). Then v^M,,) > \ a(A.T).

Proof. We use trace duality. Let Ejj be the matrix having 1
in place (ij) and 0 elsewhere. Such matrices form the "natural" basis of Ln.
Clearly, MA(Ejp = ajjEjj, and hence we have trace (MAMB) = <A,B> for
any A,B in Ln.

There is an element S of Ln such that a*(S) = 1 and <S, A.T) =
o(A.T). But

<S, A.T> - <A.S, T>

= trace

where M A s is regarded as an operator from (Ln,<x) to (Ln, || ||2). By 12.14,
2, so the statement follows.

12.17. Let a be an invariant norm on Ln. Suppose that for a
certain S, A in Ln we have 8jj 6 {-1,1} for all i,j and a(A.S) = Ka(S).
Then 3(Ln,a) > \ K.

Proof. We show in fact that £(Ln,o*) £ \K ; the result then
follows, by 12.1. Regard Mg as an operator from (Ln,a*) to (Ln, || ||2). By
12.14, W^Mg) « 2a(S).

From the fact that Ms(Ey) = SJJEJ:, it is easily seen that the
dual operator Ms* identifies with Ms, regarded now as an operator from
(Ln, || ||2) to (Ln,oc) (note that Mg is just a diagonal operator with respect to
this basis). By 12.16, v^Mg*) * \ a(A.S) * \ Ka(S). But v«(Mg*) = y^Mg),
so the statement now follows from 12.4.

Note that the hypothesis of 12.17 amounts to saying that the
natural basis (Ln,a) has constant at least K. We now use the "Littlewood
matrices" to show that for certain choices of a, this is indeed the case (with
K = ^n). These matrices are defined inductively as follows:

w > - [ ! .1)• W H I k-i Wk-i

k-i -Wfc.!
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Wk is a symmetric nxn matrix (where n = 2k) with orthogonal rows, so that
Wk

2 = nl, and

||Wkx||2 = ' n ||x||2 (1)

for all x in JRn. The entries are all 1 or -1.

12.18 Theorem. For n = 2 , each of the following spaces (with
operator norm) has basis constant not less than \ ^ n :

L(Jn), L(l2, Jn) , L(J i Jn) .

Proof. Let E be the matrix with all entries equal to 1. This
corresponds to the operator e ® e . In each case, we compare ||E|| with ||Wk||,
and apply 12.17.

(1) L(lJ): here ||£|| = ||e||2 = n, while ||Wk|| = ' n , by (1).
(ii) L(i£, Jn) : now ||E|| = Hd^2 = n2 , and by (1),

HWfcXll! * ' n ||Wkx||2 = n||x||2 « n ' n ||x|U ,

so ||Wk|| S n^n.
(iii) L(l£, I?) : now ||E|| = \\c\\Jie\\2 = n^n , while ||Wk|| « n.

Notes. (1) The tensor product notation for these three spaces is
(respectively) : J n ® H*1, i n ® Jn, J ? ® *2 • o f c o u r s e » t h e t h i r ^ space
equates with L(J?2

1, i n ) by conjugacy.
(2) For T in L(Jn), we have ||T|| ^ ||T||2 ^ ^n ||T|| (note that

||T||2 = 7T2(T)). Hence the basis constant is not greater than ^n.

Exercise. Show that in L(4n) the natural basis has constant 1.
Consider the remaining cases of L(4p, 4**) (where p,q are 1,2 or • ).

Exercise. Use the Littlewood matrices to show that for n = 2k ,
d(*n, 12) ^ ^n .

Of course, the dimension of Ln is n2. It has in fact been shown
(by a specially constructed example, not a "natural" one) that there exist C and
n-dimensional spaces X n for each n such that 3(Xn) > C^n. See Pisier
[FLO], 8e.
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13. ESTIMATION OF SUMMING NORMS USING A RESTRICTED NUMBER
OF ELEMENTS

Elementary facts

Recall that n^n\j) is defined like 77p(T), but considering only
finite sequences of length not more than n. We have already mentioned a
number of sporadic elementary results about nkn'. For instance, for T in
L(J2m, Jn) , we have 4 m ) ( T ) = n2^ <3-9)> a n d f o r a11 operators into *S, we
have n(p

n\T) - 7Zp(T) (5.5). (See also 3.14, 6.9, 7.18).
In this section, we will prove two results relating 7i(n)(T) to

7T2(T) for arbitrary finite-rank operators T. In both cases we make use of the
following simple lemma.

13.1 Lemma. Let Y be a normed linear space, n a positive
integer. Suppose that for some m,K, we have n2(A) $ K7z(m)(A) for all A in
L(Un,Y). Then for all operators mapping into Y (from any normed linear
space) with rank n, we have n2(T) « K7i(m)(T).

Proof. Take 6>0. By 3.6, there is an operator A in L(4n,Y)
with ||A|| = 1 and 7?2(TA) £ (1-6)7T2(T). By hypothesis,

H2(TA) « K7l(

The statement follows.

As a first consequence of this, we have at once:

13.2. For all operators mapping into 4n, we have n2(T)

Proof. As mentioned above, n2(A) = n(n)(A) for all elements A
of L(l!n).
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For operators on a finite-dimensional space X, we remark that
7zLm)(T) is actually attained at a certain finite sequence (ax, ... ,am), since the
set of all finite sequences with Mp(xp ... ,xm) S 1 is clearly a compact set in
the space X m .

Estimation of n2 using n elements

The following theorem of Tomczak-Jaegermann (1979) gives a very

satisfactory solution to the problem for n2.

13.3 Theorem. For any operator T of rank n, we have
4 n ) (T ) > \ 772(T).

Proof. By 13.1, it is sufficient to prove the statement for
operators in T in L(H,Y), where H = 4n. Assume that n2(T) = 1. By
Pietsch's theorem, T = WV, where V is in LfH^j), W is in L(HX,Y), 7I2(V) =
n2(T)» Hvll ~ 1 a n d H i 1S another Hilbert space. We will show that there
is an orthonormal basis ( a r ... ,an) of H such that I l|Taj||2 £ \ • . it then
follows that n[n\T) * | .

Define the aj as follows. Since ||W|| = 1, we can choose ax such
that HaJI = 1 and

IITa^l = HWVaJI = HVaJI .

Having chosen a r ... ,aj_j , let Ej = {ax, ... ^i^} and let Wj be the restriction
of W to V(Ej). Choose aj in Ej such that ||aj|| = 1 and

||Taj|| = ||WVaj|| =

Note that
n

772(V)2 = .JE ||Vaj||2 = 1

Clearly, ||Wj|| ^ IIWj+1|| for each j . Let m be the largest integer such that
||Wm|| £ 1/^2. and write

m
. 1 ||Va:||2 = oc
j i J

Then ||Taj||2 ^ \ ||Vaj||2 for j ^ m, so

f
The proof will be complete if we can show that a £ \ . The strategy is to
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express T as T1 + T2 and use the fact that n^TJ + 7I2(T2) £ 1.

Let P be the orthogonal projection onto E m + 1 , so that Paj = 0

for j $ m and Paj = aj for j > m. Then

n
7T2(VP)2 = I ||Va:||2 = 1-a .1 m+i J

Choose 6 > 0 and let T2 = 8WVP, T « Tx + T2. Now WVP = W m + 1 VP and

||Wm+1|| < 1^2 , so 772(T2)2 S \ 52(l-a). Also, Tx = W(V - 8VP). For j > m,

( V - 6VP)aj = ( l - 8 ) V a j , so

n^Tj)2 « 772(V- 8VP)2 = <x + ( l - 8 ) 2 ( l - a )

- 1 - (28 - 82)(1 - a).

Write 7T2(Tj) = rj for j = 1,2. Then rx + r2 £ 1 and r2 $ 8 ^T^a /V2 , so

1 <(!•! + r2)2 = 2r,2 + 2r2
2 - (r, - r2)2

S 2 - 2 ( 2 8 - 8 2 ) ( l - a ) + 8 2 ( l -a ) - [l - hv2(\-a)\ .

On simplifying and dividing by 8, this inequality becomes

4(1-a) S 2 ^ 2 ( l - a ) + 8(1-a).

This holds for all 8 > 0, and hence also with 8 = 0 to give ^l-cc $ \/v2 , so

that 1 - a S \ , as required.

For the identity in an n-dimensional space, the factor | can be

improved at least to 1/^3 (see [FDBS], lecture 17).

The next example shows that 7j(n) does not simply coincide with
772, even when n = 2 .

13.4 Example. Let H2 be the subspace of *!> consisting of

elements with Ix(i) = 0. Let ax,a2 be elements of H2 with M2(apa2) = 1, and

let H a / + ||a2||2 = 2 - 6 (where 6 i \ ). We show that 6 > \2 .

Note that 1-S ^ ||ai|| ^ 1 for each i, and that ax(j)2 + a2(j)2 ^ 1

for each j . We may assume that UaJI = la^l)! and ||a2|| = |a2(2)| . Then

|a2(l)|, l a ^ ) ! ^ 8, where (1-6)2 + 82 = 1. By the defining property of H2, it

now follows that |aj(3)| > 1-6-8 for i = 1,2, and hence that 1-6-8 S 1/^2.

Write c = 1-1/^2. Then 8 > c-6, so 82 = 2 6 - 6 2 ^ (c-6)2 , hence

26 ^ c2 - 2c6, giving 6 > j 2 , as stated.
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The number of elements required for exact determination of n2

The next result first appeared in [FDBS], where it is attributed to
T. Figiel. First, we require two simple algebraic lemmas.

13.5 Lemma. Let X be an n-dimensional real linear space, and
let x p ... ,xk be elements of X, where k > n. Then there exist non-negative
scalars X̂  such that E xj = E X̂ xj and \-x > 0 for at most n values of i.

Proof. There are scalars Mj, not all zero, such that Z M|X| = 0. By
taking a suitable scalar multiple, we can ensure that max Mj = 1. Then I xj =
I(l-Mj)xj. This is an expression with non-negative coefficients 1-JZJ, at least one
of which is 0. Proceeding in this way, we can eliminate k-n of the xj.

13.6 Lemma. Let X be an n-dimensional real linear space, and
let N = \ n(n+l). Let xv ... ,x^ be elements of X, where k > N. Then there
exist scalars Xj, non-zero for at most N values of i, such that for all f in X*,

I f ( X i ) 2 = I \-2 f ( X i ) 2 .

Proof. Let BS(X*) be the space of symmetric bilinear forms on
X*. This corresponds to the space of symmetric nxn matrices, so has
dimension N. For each i, define ^ in BS(X*) by : 0j(f,g) = fCx^gCxj). By
13.5, we can express I 4>[ as Z M^i w^tn a t most N of the X- non-zero.

13.7 Proposition. Let T be an operator of rank n between real
normed linear spaces. Then 7I2(T) = 7I2^(T), where N = ^ n(n+l).

Proof. By 13.1, it is sufficient to prove the statement for an
operator T defined on Jn. We show that 772<k)(T) = w ^ - ^ T ) for all k > N.

Choose xv ... ,xk in Jn with M2(xp - >*k) = 1- Let the
numbers Xj be as in 13.6, and let XQ = max Xj, Mo = 1/XQ (clearly XQ £ 1).
Define

vi • "oxixr zi - 0 " «o2xi2)* xi-

Then \\Tx^\\2 = HTy^2 + UTzjII2. At most N of the yj are non-zero, and at most
k-1 of the Z| (since XQ = X- for some i). For any f in X*, we have from 13.6:

J f(y i )2 = H0
2 I X^^xj)2 = /z0

2 5jf(xi)2 < H0
2 ,
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J f(Zi)2 - S d - M o ^ i 2 ) ^ ) 2 = (1-MO
2) p ( x i ) 2 * 1-Mo2 •

If n ^ - ^ T ) = M, it follows that

I IITYill2 « M0
2M2, I ||TZi||2 « (1-MO

2)M2,

so that £ IITxjH2 « M2. Hence 772(k)(T) - M, as stated.

The same method applies in the complex case, but in 13.6 we must
use hermitian forms on X*. It is easily checked that the set of such forms is
a real linear space of dimension n2, so the conclusion holds with N equal to n2.

Estimation of np for other p.

We have seen (5.5) that for operators mapping into J?£ , we have
77p(T) = n^N)(T). It is possible to deduce a statement for general T with the
help of the following variant of the basic embedding theorem 0.13, in which the
dimension of the containing space *2 is limited.

13.8 Lemma. Let Y be an n-dimensional real normed linear
space. Then there exist N $ 4n and an operator A of Y into J?£ such that
l
3
1 '• »» $ ||Ay|| S ||y|| for all y in Y.

Proof. Let fp ... ,fN be a maximal set in Uy* such that ||fj-f ;|| >
| for i * j . Given y € Y, there exists f in UY* such that f(y) = ||y||. For some
i, we have ||f-fj|| ^ § (otherwise f could be added to the set), and hence |fj(y)| £
5 ||y||. The operator A is defined by : (Ay)(i) = fj(y). It remains to estimate
N.

Identifying Y* with JRn, let V be the "volume" of Uy* (i.e.
ordinary Lebesgue measure). The balls B(f-v \ ) are disjoint and have volume
V/3 n . They are all contained in \ Uy*, which has volume 4 n V/3 n . It
follows that N « 4n.

13.9 Proposition. Let T be an operator of rank n between real
normed linear spaces, and let N - 4n. Then n|,N)(T) * \ 7Zp(T) for all p.
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Proof. Let T be in L(X,Y). By 13.8, there is an operator A of
T(X) into i£ such that ||A|| = 1 and HA"1!! $ 3. By the result quoted above,
77p(AT) = nj/^AT). Hence

np(T) « HÂ IlTipCAT) * Snj^AT) « 3n<p
N>(T).

The same applies in the complex case, with N = 42n.
An example is given in [FDBS], lecture 21 of operators Tn of rank

n (for each n) for which n1(T) = ^n, while for a certain C (independent of
n) 7l(k)(T) $ C^log k for each k.

Cambridge Books Online © Cambridge University Press, 2009Downloaded from Cambridge Books Online by IP 171.67.128.228 on Fri Jul 13 22:19:31 BST 2012.
http://dx.doi.org/10.1017/CBO9780511569166.015

Cambridge Books Online © Cambridge University Press, 2012



Cambridge Books Online
http://ebooks.cambridge.org/

Summing and Nuclear Norms in Banach Space Theory

G. J. O. Jameson

Book DOI: http://dx.doi.org/10.1017/CBO9780511569166

Online ISBN: 9780511569166

Hardback ISBN: 9780521341349

Paperback ISBN: 9780521349376

Chapter

14 - Piseer's theorem for 2, 1 pp. 139-144

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511569166.016

Cambridge University Press



14. PISEER'S THEOREM FOR Jl21

In this section we present a restricted "Pietsch"-type theorem for
the mixed summing norm n21 (or 7lq p with q > p), due to Pisier (1986). The
restriction is that it applies to operators defined on the whole of an L^-space
X, not on a subspace.

First, let us describe the easy implication. Suppose that there is
a positive functional 0 on X such that for some C, we have ||Tx||2 S
C20(|x|) ||x|| for all x. If we take elements xj such that || I \x-x\ || < 1, then
certainly ||xj|| $ 1 for each i, so

I IITxiH2 « C ^ J I X i l ) * C2 .
I I

Hence n21(T) i C.
Pisier's theorem states the converse, exept that (curiously enough)

we do not obtain C exactly equal to n2 ^T). The proof is ingenious, and
quite different from the proof of Pietsch's theorem. It uses both the
multiplication in L^ and (in infinite dimensions) the weak-star compactness of
the dual unit ball.

14.1 Theorem. Let X be any of l£, I j s ) , LJ/i), C(K), and let T
be an operator defined on X with 7T2 X(T) finite. Then there is a positive
functional 0 on X such that ||tf>|| = 1 and for all xeX,

||Tx||2 S 2 772>1(T)2 #|x|) ||x|| .

Proof. We may assume that n
2 i(T) = !• Write e for the

constant function 1 (in X). Fix n. There exist elements x p ... ,*wn\ such
that Z|xj| ^ e and ZHTxjH2 = Cn

2, where Cn > 1 - ^ . Take scalars ccj
such that l a j 2 = 1 and lajHTxjH = Cn. There are functional fj in Y* such
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that ||fj|| = a- and fj(Tx|) = <X|||TXJ||, hence E f^(Txj) = Cn .
Define a functional 0n on X by

0n(x) = I f itTCxxj)] .

Clearly, 0n(e) = Cn. We show that ||$n|| « 1. Let ||x|| S 1. Then
I Ixxjl $ e, so I ||T(XXJ)||2 $ 1. By Schwarz's inequality, it follows that

|0n(x)| « I 04 IITCxx̂ ll S 1 .

If Cn = 1 for some n, let 4* = 4>n . Otherwise, let 0 be a
weak-star cluster point of the sequence (0n) defined in this way (in finite
dimensions, this just means the limit of a norm-convergent subsequence). Then
0(e) = 1 and \\<p\\ = 1 : this implies that 0 is positive. It remains to prove
the stated inequality.

Choose yeX with ||y|| « 1. Write k(n) = k, and let

Yi = xj(e - |y|) for 1 « i ^ k,

Then nfX |yj| < e - |y| + |y| = e, so ^ IITyjII2 « 1. Hence

0n(e- |y|) = If i (Ty i ) ^ ( E

M l -

Proceeding to the limit, we have

from which it follows that

l|Ty||2 « 2«|y|) - <KlYl)2 < 20(|y|) .

Now choose any non-zero element x, and put y = x/||x|| . We obtain

||Tx||2 « 2«|x|) ||x|| .

The original statement follows at once.

For q > p, the same proof gives

HTxIl" « q Bq.ptTjfl «|x|P)
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Pisier (1986) derives a theorem on factorization of such operators through a
suitable "Lorentz function space", and also generalizes the theorem to operators
on C*-algebras.

We mention one attractive application of Pisier's theorem:

14.2. For any space E,

nx(E) S 2 n2l(E)2 X(E)2 .

If X(E) and n2 X(E) are both finite, then E is finite-dimensional.

Proof. Embed E in a space J«>(S), and take a projection P with
||P|| close to X(E). By 14.1, there is a function 0 on JJ^S) such that ||0|| = 1
and

||Px||2 « 2 7ZM(P)2 <K|x|)||x||

for all x. For xcE, we have Px «= x, and hence

||x|| « 2 7i21(P)2(«|x|) ,

from which it follows (by 3.17) that n^E) $ 2n21(P)2. Finally, we have n21(P)
$ 7T21(E) ||P|| .

By 11.2, it follows further that A2(E) « V2 7l21(E) X(E).
Using the same idea, we can easily show that Pisier's theorem does

not apply to operators defined on subspaces of L» :

14.3 Example. Let E n be an isometric copy of JBn in *2 • We
know that H21(En) = V2 . If 0 is a functional on *£ such that ||0|| = 1 and
||x||2 « K20(|x|) ||x|| for all x € En, then n^E^ i K2, so K2 ^ Vn .

Exercise. Let T be an operator defined on a subspace E of an
Loo-space X. Show (roughly as in the proof of Pietsch's theorem) that the
following statements are equivalent:

(i) There is a positive functional 0 on X such that \\<t>\\ = 1 and
||Tx||2 « C2<ft|x|) ||x|| for all x € E.

(ii) For elements xj of E,

I ||TXi||2 S C2 || E ||Xi|| |Xi| || .
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Exercise. Adapt the premultiplication lemma 3.6 to n2V and
deduce the following statement : if n21(T) $ K ||T|| for all operators T from
j£ to X (for any n), then n21(X) * K.

14.4 Proposition. (Maurey, 1974b). Let T be an operator on J&S-
Then n21(T) can be computed using only disjointly supported elements of *£.

Proof. (We give only a sketch). Let x p ... ,xk be elements of
*£ with || I |xj| || = 1. We show that there exist elements xfi\ mutually
disjoint for each fixed j , such that

x: = £x:(J) for each i,
1 J 1

I ||u(J)|| = 1, where u^ = I \x:^\ .
J i 1

The statement then follows easily.
Introduce a further element (if necessary) to ensure that

E |x:(r)| = 1 for all r.
I *

For each r, let 6(r) = max |x:(r)| (> - ). Let 6t = min 6(r). Choose r. For
I k L

some p, we have |xp(r)| > 8 r Define xp(r) to be 6X sgn xp(r), and let
xj(r) = 0 for i * p. In this way, we obtain disjoint elements x^1) with

I Ix^l = (6lf ... , 6 l ) .

Now apply the same process to the elements xj - x^1 ,̂ and repeat.

14.5 Example. This example (an unpublished one due to S.J.
Montgomery-Smith) shows that the extra 2 appearing in Pisier's theorem cannot
be simply removed.

Let Y be 1R3 with norm

||y||Y = max [|y(2)| + |y(3)|, |y(3)| + |y(l)|, |y(l)| + |y(2)| ]

Let T be the identity mapping from 2% to Y. We have ||e||| = 1 and
llej+ejlly = I|e1+e2+e3||y = 2. Using 14.4, one deduces easily that n21(T)2 = 5.

Suppose that Xp X2, X3 ^ 0 are such that

||Tx||2 ^ I Xj |x(i)| ||x||

for all x. Then xi+^j > 4 for distinct i j , hence Xx+X2+X3 > 6.
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It is tempting to conjecture that there is a constant C, independent
of n, such that n2(T) * ^ n2 i(T) ^or a11 operators on *£ . This would
imply that all spaces with the Orlicz property are 2-dominated, and
Grothendieck's inequality would follow easily. We finish this short section
with an example that disproves this conjecture. It also provides a nice
illustration of the use of Pisier's criterion to estimate n2 ^T).

14.6 Example. Consider the "cyclic" operator T on J&£ defined in
3.29. It was shown there that H2(T) = ^n ||a||2.

Suppose now that a is a decreasing, non-negative function, with
a(j) = aj. Let 0 be the functional given by 0(x) = Z x(i), so that M = n.
Let x be an element of *£, and write 0(|x|) = c||x||. We have ||Tx|| = | Za^yj |,
where (yj) is some permutation of the terms of x. Write Yj = yx + ... + y-
and let r be the integer such that r « c < r+1. Then

|Yj| S j||x|| for j « r,

|Yj| S 0(|x|) = c||x|| for j > r.

By "Abel summation", we have
n

11 a i y i | = |(a1-a2)Y1 + (a2-a3)Y2 + ... + anYn|
l

(ara2)||x|| + 2(a2-a3)||x|| + ... + r(ar-ar+1)||x|| + car+1||x||

[ax + ... + ar + (c-r)ar+1] ||x||

C a(t)dt.

Now let a(t) = t'^. Then

772(T) = 'n(l + i + ... + i ) > (n log n)^ .

By the above,

||Tx|| « 2||x||cH = 2 («|x|)^ M * .

Since ||*|| = n, it follows that n2 t(T) i 2va.
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The author (1987) has shown that there is a constant C
(independent of k,n) such that for all operators of rank n on U« (for any k),
772(T) « C(log n)^ 7T21(T). In this sense, the ratio of H2(T) to n21(T) grows
"very slowly" with n. The above example shows that the factor (log n)" is
needed. Of course, it follows that for any n-dimensional space X, we have
A2(X) « C(log n)^ H2|1(X) .

Exercise. Show that for any operator T on *£, we have nx(T) S
^n 7721(T) and 7T2(T) ^ n 1 / 4 ^ ^ ) (use 3.14 and 11.1).
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15. TENSOR PRODUCTS OF OPERATORS

This section does not require any prior knowledge of tensor
products. Considerations will be restricted to finite-dimensional spaces.

Recall that for finite-dimensional spaces X,Y, the algebraic tensor
products X ® Y equates to the space L(X*,Y). The "injective" tensor product
norm 6 corresponds to ordinary operator norm on L(X*,Y), so that

6( lx{ <8> Yi) = sup { | I f (X i ) y i | : f € Ux*}

= sup { | I f(Xi) g(yi) | : f € U x , , g € UY* } .

We write X ®g Y for X ® Y with this norm; this is the only tensor product
norm we will be considering. Given f € X* and g € Y*, the element f O g
identifies with a linear functional on X ^ Y by : (f ® g)(x ® y) = f(x)g(y). It
is elementary that the norm of this functional is ||f||.||g||. Further, the above
expression shows that {f ® g : f € Ux,», g e UY*} is a norming set of
functionals. (By 1.11, we know in fact that the dual of X ®g Y identifies
with X* &y Y* in this way). The following easy consequence will be needed:

15.1. Given elements xj of X, yj of Y, we have

Mp {Xi <8> yj : 1 « i S k, 1 S j ^ 1) = Mp(xx, ... ,xk) np(yv ... ,yj)

in the space X ®g Y.

Proof. This follows as once from the preceding remark and the
equality:

I I l(f(xi)g(yj)|p = E |f(xi)|P i;|g(yj)|P .
i j 1 J i j J
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Now suppose that we have elements S of L(XpX2) and T of
L(YpY2). Then an operator S 9 T from Xx <8> Yt to X2 <8> Y2 is defined by:

(S <8> T) (x <8> y) - Sx «> Ty .

One can verify as in 1.3 that this definition is consistent. Clearly, Ix ® IY

equals I X $ Y • Our Soal is to show that if the spaces Xj ® Yj are given
the norm 6, then oc(S ® T) = a(S)oc(T) for our "usual" operator ideal norms <x
These results appeared first in Holub (1970) and [FDBS]. We start with some
algebraic preliminaries.

15.2 (i) If S = £ f: <8> x: and T = £g: <Z> y: , then
I * * j J J

S <8> T - I I (f j ® gj) 0 (xj 9 y j ) .

(ii) If S € L(X) and T 6 L(Y), then trace (S ® T) =
(trace S) (trace T).

Proof. (i) Applied to an element of the form x ® y, we have

(Sx) 9 (Ty) = ( I fjWxj) 9 ( ? gj(y)yj)

• JJ fi(x)gj(y)(xi ® yj) .

(ii) With S,T as in (i), we have

trace (S <8> T) = J J (f. <S> gj)(xj ® y j )

- S 5 fi(xi)gj(yj)

= (trace S) (trace T) .

15.3. Let a be an operator ideal norm, and a* its dual under
finite-dimensional trace duality. Suppose that for all operators between
finite-dimensional spaces, we have c^Sj ® S2) $ c^Sj) <x(S2). Then <x*(J1 <8> T2)
* ofiJJ a*(T2) for all such operators.

Proof. Choose operators TX,T2. There exist operators Sj such
that ofSi) = 1 and trace ( T ^ ) = a^Tj) for i = 1,2. Clearly, (Tx 9 T2) (Sx ® S2)
= (T.S,) 9 (T2S2), so
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trace [(T1 <8> T ^ « S2)] = trace ( T ^ ) trace (T2S2)

Since a(S1 ® S2) ^ 1, the statement follows.

Note: The argument is not reversible, since operators from
Yj <8> Y2 to Xx ® X2 are not all of the form Sx <8> S2.

We are now ready to start considering particular norms. In each
case, the spaces are finite-dimensional, S is in L(X1,X2j, T is in L(YpY2)
and S ® T is regarded as an operator from Xx ®g Yx to X2 ®g Y2.

15.4. ||S <8> T|| = ||S||.||T|| .

Proof. There exist elements xo,yo with ||xj| = ||y|| = 1 and
BSxJI = ||S||, ||Tyj| = ||T|| . Then 6(x0 ® y0) = 1, while S(Sx0 <8> Ty0) =
||S||.||T||. Hence ||S €> T|| > ||S||.||T||.

Now let u = J x; ® y: , with 6(u) = 1. Then (S <8> T)(u) =
I 1 1

I (Sxj) ® (jyi). If f € X2* and g € Y2* have ||f|| = ||g|| = 1, then

| X f(Sxj) g(Ty i) | = | X (S*f)(xi)(T*g)(yi) |

« HS*f||.||T*g|| ^ ||S||.||T|| .

This shows that 6[(S «8> T)(u)] ^ ||S||.||T||, and hence ||S ® T|| ^ ||S||.||T|| .

15.5. vx(S ® T) = v1(S)v1(T).

Proof. It follows at once from the expression for S ® T in 15.2
that vx(S <8> T) « v^SJv^T) .

Since vx* = || || , the opposite inequality follows from 15.3 and
15.4.

In the same way, we now obtain similar results for nx and Vo,.
These cases are especially interesting, since they already say something
non-trivial for identity operators.

15.6 Proposition. We have nx(S «> T) = n^SJn^T) and vJS <8> T) *
vw(S) vJJ).

In particular, nx(X ®g Y) = 771(X)7r1(Y) and X(X <8>g Y)
= X(X)X(Y).
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Proof. We shall show that v«>(S <8> T) « v^SJvJT) and n^S <8> T)
$ n1(S)7i1(T). Since v«* = nv the statements then follow by 15.3.

To prove the inequality for v^ choose representations S =
Z fj <8> x-v T = I gj <8> y j with HfjH = ||gj|| - 1 and ^(x^ ... ,xk), n1(yv ... > y j )
close to v«>(S), V ^ T ) respectively. The required inequality follows from the
expression in 15.2, together with 15.1.

We now consider nv Take 5 > 0. By 5.3, there are functional
f•, gj such that

IISxH « I |fi(x)| for x € Xv I ||fj|| « (1 + s)nx(S) ,

IITyll « E|gj(y)| for y 6 Y19 I ||gj|| ^ (1 + B)nx(J) .

We show that 6[(S 9 T)(u)] < J J |( f5 « g:)(u)| for all u in X, • Y, ; the
i J J i i

required inequality then follows. Write u = Exr ® yr and v = (S ® T)(u) =
r r r

E (Sxr) «> (Tyr). There is an element h of X2* with ||h|| = 1 and

6(v) = || Z h(Sxr)(Tyr)|| = ||T( Z h(Sxr)yr)||
By the choice of the g:, this is not greater than

I | I h(Sxr) g.(y ) | = I |h(Zj)| « I ||Zj|| ,
j r r J r j J j J

where Zj = I gj(yr)(Sxr) . By the choice of the fj ,

IIZjH < S I I fi(xr) gj(yr) I = 5 |(fi • gj)(u)| .

The stated inequality now follows.

It is also easy to prove directly that n^S ® T) Z n^S) n^T),
without using Vc.

So we are now in a position to state exact values of nx and X for
spaces of the form L(4m,4jj). For example, the projection constant of L(Jn)
is X(Jn)2 (see 8.8, 8.10 for the value of X(Jn)).

15.7. n2(S €> T) = 772(S) 7Z2(T).

Proof. Recall that v2 coincides with 7i2 and v2* = nr From 15.1
and 15.2 one has v2(S <8> T) ^ v2(S)v2(T). Equality follows, by 15.3.
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15.8 Example. It is elementary to verify (using 15.1 and the
definition) that n2 X(S ® T) > n2 ft) n2 ^T). However, equality does not hold
in this case. For instance, Z = J2n ®g 4n contains an isometric copy of *2
(the diagonal operators), so 7i2 X(Z) > vn. Of course, 7T21(J2n) = 1.

We finish this section by remarking briefly on what happens when
X <8>g Y is replaced by X ®y Y (that is, L(X*,Y) with norm Vj). It is a
very straightforward exercise to show that we still have ||S ® T|| = ||S||.||T|| and
vx(S ® T) = v^SJv^T). However, equality no longer applies in the other cases.
For nx and v<», this can be seen from the values given for Jn in section 7. It
follows from 1.14 that Jm &y 4n is isometric to 4 m n , and in general
X(Jmn) is different from \(Jm)\(Jn) .
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16. TRACE DUALITY REVISITED : INTEGRAL NORMS

Second duals under trace duality

Under trace duality, the summing norms are the duals of the
nuclear norms, but we have not yet given any description of the duals of the
summing norms. A related problem is as follows. We know (6.2) that
v^I^L) = 1 for all n. Is there a corresponding statement for the infinite-rank
operator I1C0 ? In both cases, what is needed is an extension of the concept
of the nuclear norms that is not confined to finite-rank (or "nuclear") operators.
We now describe a very simple construction that achieves this.

Let a be any operator ideal norm, defined at least for finite-rank
operators, such that a(T) > \\T\\ for all T (in particular, any vp). Let X,Y be
any normed linear spaces. Define

5(T) = sup{a(T|x ) : Xo a finite-dimensional subspace of X}

for all T in L(X,Y) for which this is finite. Denote the set of such T by
Lg(X,Y). One checks easily that 5 is a norm (in fact, an operator ideal norm)
on L5(X,Y), with 5(T) Z ||T||. If T is of finite rank, then 5(T) $ a(T), and
if X is finite-dimensional, then 5(T) = <x(T).

Note that T|x can be written as TJ, where J is the inclusion

operator Xo -• X. If Xx is any finite-dimensional space, and A is an operator

from Xx to X with ||A|| « 1, then TA « (T|Y)A, where XQ = A(XX). Hence

oc(TA) $ 5(T). This shows that 5(T) can also be described as the supremum of
a(TA) over all such Xx and A.

Recall our definition of the dual norm a* :

a*(S) - sup {|trace (ST)| : T € FL(X,Y), cc(T) S 1}

for operators S from Y to X. It is trivial to verify that cc*(AS) $ ||A||a*(S)
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for an operator A on X (note that trace(AS.T) = trace(S.TA)). We say that a*
is injective if (like the summing norms) it does not depend on the range space :
in other words, if S(Y) C Xo C Xx and So is the same operator regarded as an
element of L(Y,X0), then o*(S0) - <x*(S).

16.1 Proposition. If a is an operator ideal norm such that a* is
injective, then a** coincides with a.

Proof. Suppose that T is an element of L(X,Y) with 5(T) finite.
Let S be an element of FL(Y,X) with o*(S) - 1. Write Xo = S(Y). Let
So be S, regarded as an element of L(Y,X0), and let J be the inclusion
operator XQ - X, so that S = JS0. By hypothesis, oc*(S0) = a*(S) = 1, so

Itrace (TS)| - |trace (TJ.S0)| « a(TJ) « 5(T) .

Hence a**(T) S a(T).
Now suppose that oc**(T) is finite. Let Xx be finite-dimensional,

and let A be an element of L(XpX) with ||A|| = 1. By 1.8, the Banach space
dual of [L(XpY),a] identifies with [L(Y,X1),a*], so there is an element S of
L(Y,XX) with cx*(S) = 1 and trace (TA.S) » oc(TA). Then a*(AS) « 1, so
trace (T.AS) S a**(T). Hence 5(T) « a**(T).

The integral norms

We now define the p-integral norm ip to be v p . We say that an
operator T is "p-integral" if ip(T) is finite. So ip = npi*, where ^ + »̂ = 1;

also, i1 = || ||* and i«, = 7̂ *.
Clearly, ip(T) $ vp(T) f°r finite-rank operators, with equality

when the domain is finite-dimensional. One might expect equality to hold
generally, but this question is not as simple as it sounds. We will show in
Section 17 that equality holds when the range space Y is finite-dimensional. It
is elementary that |trace T| $ ix(T) for all T in FL(X).

Since np(T) « v
p(T) for finite-rank operators, we have np(T) *

ip(T) whenever T is p-integral.
With the integral norms at our disposal, we can very easily

formulate new versions of some of our earlier results involving the nuclear
norms, free of the restriction to finite-rank operators. The case p = 2 is
particularly simple:
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16.2 The classes of 2-summing and 2-integral operators coincide,
and i2 coincides with 772.

Proof. Let T be an operator on X. For every finite-dimensional
subspace Xo of X, we have (by 5.11) v2(T|x ) = H2(T|Y ) • T h e statement follows

at once.

Similarly, 4.2 translates into the following:

16.3 Suppose that S is a p-integral operator from X to Y, and T
is a p'-summing operator from Y to Z, where 1/p + l /p'= 1. Then ix(TS) ^
7!p,(T)ip(S). (If p - « then p' = 1).

Proof. By 4.2, for any finite-dimensional subspace Xo of X, we
have v^TSI^) « np• (T)VP(S|XQ) « np,(T)ip(S).

Exercise. Use 4.5 to show that L(TS) « in(T)nn.(S) .

Corresponding to 4.6, 5.4, 5.5, we obtain:

16.4. Let X be an Ec-space. For all operators from or into X,
we have ip(T) = wp(T) (and iJJ) = ||T||).

Proof. First, consider an operator defined on X. Let Xo be a
finite-dimensional subspace of Xx and choose S > 0. There is a subspace Xx

containing Xo such that d(Xp *2) * 1 + 5 for some N. By 5.4

vp{T\x) M l + g)"p(T|Xl) M l + «)np(T)

(and similarly for v̂ ,, from 4.6). The statement follows.
Now consider an operator from Y into X. Let Yo be a

finite-dimensional subspace of Y, and choose S > 0. Then T(Y0) is contained
in a subspace XQ of X satisfying d(X0,l£) « 1 + S for some N. Write T|Y =

To , and let To be the same mapping regarded as an element of L(Y0,X0). By
5.5,

^ M l + 5)77p(f0) S (1 + fi)Hp(T),

(and similarly for v^, from 4.7).
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In particular, since n1(I1«>) = 1 (see 6.2), we have i^^co) = 1,
which answers the question posed at the beginning of this section.
Furthermore, we can now substitute ip for 7!p in results applying to operators
on £«rspaces (for example, 3.17, 3.18, 3.20).

Finally, note that if X is a 2-dominated space, then n2(T) ^ A2(X)
i«o(T) for operators into X.

An alternative trace duality theory

What we have outlined above is the simplest way of defining the
integral norms, and it is perfectly suited for the immediate conversion of the
earlier results involving vp. However, in the context of the general theory of
"operator ideals", the notions 5 and a* are not fully satisfactory, since their
definition is unsymmetrical and 16.1 requires the extra condition that a* is
injective. To overcome this, one constructs a rather more elaborate theory, as
follows. Define amax(T) to be the supremum of a(BTA) for all operators A,B
from and into finite-dimensional spaces (respectively) with ||A|| = ||B|| = 1. The
basic idea is to ensure that one is always working with operators between
finite-dimensional spaces. In the same spirit, one defines the "adjoint" norm
ccadj as follows. For S in L(Y,X), aadj(S) is the supremum of |trace (BTA.S)|
taken over the following situations : X^Yj are finite-dimensional, A e L(X,XX),
T € UXvYt), B 6 L(Y1,Y) and ||A|| = ||B|| = a(S) = 1.

It is elementary to verify that, with no extra conditions, o"1^
coincides with (<xadJ)adJ ; the reader may care to attempt this as an exercise. A
very thorough account of these and related ideas is given in [OI] (Pietsch uses
the notation a* for what we have just called <xadj).

When this approach is followed, it is natural to define ip to be
vp

max. It is not too hard to show that this agrees with our definition in the
case p = 1. We continue to use the notation ip as originally defined, that is
vp. Of course, vp

max(T) « ip(T).

16.5. Vj"1^ coincides with ix .

Proof. Let T be in L(X,Y), and take 6 > 0. By 16.1, there is an
element S of FL(Y,X) with ||S|| - 1 and trace (ST) > (l-S)ix(T). Let ker S =
K, and write Yx = Y/K. Then Yx is finite-dimensional. Let Q be the
quotient mapping of Y onto Y r In the standard way, S factorizes as SXQ,
with IISjH = 1. Regard Sx as an operator onto S(Y), and let J be the inclusion
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operator S(Y) -» X. Then S = JSX Q, so

trace (TS) = trace (T.JS^) = trace (QTJ.S^ S v^QTJ).

This shows that v1
max(T) > (1 - 6)ix(T).

The equivalence of the definitions for other p is not trivial; it can
be proved from the factorization theorem quoted below. However, a mild
extra condition makes it quite easy. The space Y is said to have the metric
approximation property if, given S > 0 and a finite-dimensional subspace Yo,
there is an operator V in FL(Y) such that Vy = y for all y e Yo and ||V|| S
1 + 6. All the "usual" spaces have this property, and in fact it took
mathematicians many years to establish the existence of a space without the
property. Suppose now that Y has this property, and let T be an operator
from a finite-dimensional space into Y. There is an operator V as above, with
Yo = T(X). Then T = VT. Write V - JV0, where Vo is regarded as an
operator into V(Y), and J is the inclusion mapping V(Y) -» Y. Then T =
JV0T, so vp(T) « vp(V0T). It is now easy to deduce that vp

max(T) = ip(T) for
all operators into Y.

Exercise. Show that np
max = 7Tp and vp

adj = n . (Embed
the range of TA in l£).

Further developments

Let M be a probability measure on a set S, and let Kp be the
natural "identity" mapping from L«(M) to Lp(/z). Then np(Kp) = 1 (this is
essentially 3.18), so by 16.4, ip(Kp) = 1. The factorization theorem of Persson
& Pietsch (1969) says, roughly speaking, that all p-integral oplerators are of the
form BKpA. The exact statement is :

Theorem. Let T be a p-integral operator from X to Y± and let
JY be the embedding of Y into Y**. Then there is a probability space (S,M)
such that JYT factorizes as BKpA, where Kp is as above, A is in L(X,L0O(M))
and B is in L(Lp(M),Y**). Further, ip(T) is the infimum of ||B||.||A|| taken over
all such factorizations.

The corresponding "discrete" factorization result for vp (through 4»
and Jp) was described in 4.11 and the ensuing exercise. The above theorem
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can be deduced from this, using the notion of "ultraproducts" (see [OI], chapter
19). Note that the case p = 2 is essentially Pietsch's theorem.

Some writers prefer to regard the description given by this
theorem as the definition of p-integral operators (and norms).

It is a relatively short step from the factorization theorem to the
representation of T in the form

Tx = J f (x) dM(f)

where M is a vector-valued measure on the unit ball of X*. This in fact, was
taken as the initial definition by Persson and Pietsch (following Grothendieck),
and it explains (at last!) the term "p-integral." However, vector measures are not
particularly helpful for most applications, and this approach is no longer
followed by many writers.
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17. APPLICATIONS OF LOCAL REFLEXIVITY

The local reflexirity theorem

The following theorem is known as the "principle of local
reflexivity." It has many applications; here we 'describe those relating to the
concepts studied in this book.

Theorem. Let X be a normed linear space. Regard X as a
subspace of X**. Let E be a finite-dimensional subspace of X**. Let
S > 0, and let elements g p ... ,g^ of X* be given. Then there is an operator
R : E -> X such that:

(i) ||R|| « 1 + C, HR-1!! « 1 + 6 ,
(ii) Rz = z for z in E n X ,
(iii) gi(R0) - flgj) for all i and all <t> e E.

Statements (i) and (ii) were obtained by Lindenstrauss and
Rosenthal in 1969. Statement (iii) was added by Johnson et al. (1971). For a
proof, we refer to this paper and [CBS I].

Applications to dual spaces and operators

Statement (i) of the theorem says that X** is finitely represented

in X. As a first application, this gives at once:

17.1. The type 2, cotype 2 and 2-dominated constants have the
same value for X** and for X.

Next, we show that the nuclear norms are unchanged if the range
is regarded as Y** instead of Y.
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17.2. Let T be an element of FL(X,Y), and let JY be the
embedding of Y into Y**. Then vp(JyT) = vp(T) for all p.

Proof. Take 8 > 0. Express JYT as I fj <8> <t>-v where fj € X*,
*i € Y*\ E ||fil|p - 1 and npt(4>v ... ,<*>k) « (l+6)vp(JYT). Let E be the
subspace of Y** spanned by the $-v and let R be the operator in L(E,X) given
by local reflexivity. Since JyT maps into EnX, we have T = I fj <8> (R^). The
statement follows, since

Mp.(R^, ... ,R*k) « (l + 6)Mp.(4>r ... ,0k) .

17.3 Proposition. Let T be any finite-rank operator. Then
vp(T**) - vp(T) for all p, and vx(T*) = vx(T).

Proof. We know from the expression in 1.2 that vp(T**) $ vp(T).
With the notation of 17.2, JyT is the restriction of T** to X.

Hence, by 17.2,

V T ) = V J Y T ) ^ vp(T**> •
The statement for p = 1 follows, since v^T*) $ v^T).

Using statement (iii) in the local reflexivity theorem, we can prove
a similar result for the summing norms.

17.4 Proposition. For any p-summing operator T, we have
7Zp(T**) = 77p(T).

Proof. Since T** is an "extension" of T (when X is regarded as a
<*• ), we have 7Tp(T**) * np(T).
Choose elements 0 r ... ,4>k of X** such that Mp(0ls ... ,0k) = 1

subspace of X**), we have np(T**) * np(T).

and

( E IIT^iUP)1^ > (1-6) 77p(T**)

For each i, choose gj in UY* such that

(1-6) HT**^!

By local reflexivity, there is an operator R from lin(0ls ... ,0k) to X such that
||R|| « 1 + 6 and (T^gjXR^) = ^(^gj ) for each i. Write x{ = R^. Then
Mp(xr ... ,xk) « 1 + 6 and
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It follows that 7lp(T) * np(T**) .

The same reasoning applies to the mixed summing norms (in
particular n2 x). Hence if X has the Orlicz property, so does X**.

Applications to trace duality

The starting point for this is a slight generalization of our original
result (1.8) identifying functionals with operators by trace duality. For any A
in FL(X,X**), one can still define trace A : if A is E fj 3 <t>-v with ^ € X*
and 0j € X**, then its trace is E <f>j(f j).

If we now have an element T of L(Y,X**), then a linear
functional <j>T on FL(X,Y) is defined by <f>T(S) = trace (TS) (not trace (ST) !).
Conversely, if a is an operator ideal norm as FL(X,Y) and 0 is a continuous
functional on [FL(X,Y),oc], then the proof of 1.8 shows that 0 is 0T for some
such T : in fact, Ty is the functional on X** defined by

(Ty)(f) « « f * y).

Finally, the proofs of 1.11 and 4.3 still apply (with trivial changes) to show that
if a is vp, then the norm of the functional 0T is npi(T). So we can state :

17.5. The Banach space dual of [FL(X,Y),vp] equates with
[L(Y,X**), 7ipi], where 1/p + 1/p' = 1 (and np, = || || when p = 1).

We now apply the local reflexivity theorem to the X** that has
emerged here. We use the notation for integral norms introduced in section
16 : for S in L(X,Y),

ip(S) = sup (vp(S|E) : E finite-dimensional}

= sup { |trace(TS)| : T € FL(Y,X), np.(T) S 1} .

17.6 Proposition. Suppose that Y is finite-dimensional and S is an
element of L(X,Y). Then vp(S) - ip(S) for each p.

Proof. Choose some representation E fj ® yj for S. By 17.5,
there is an element T of L(Y,X**) such that npJ(T) = 1 and
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vp(S) = trace (TS) = E (Tyi)(f j) .

Take S > 0. By local reflexivity, there is an operator R : T(Y) -* X such
that ||R|| « 1 + S and

fi(RTyi) = (Tyi)(fi)

for each i. Let Tx = RT. Then Tx is in L(Y,X) and npi(Jx) $ ||R|| npi(T)
^ 1 + 6. Further,

trace (I^S) = I f ^ T ^ ) = I (T^Xfj) = trace (TS) .

This completes the proof.

This enables us to extend 5.11 to the fully general case:

17.7 Proposition. For any finite-rank operator S, v2(S) = 7T2(S).

Proof. Let S be in FL(X,Y). Let Yx - S(X), and let Sx be the
same mapping regarded as an element of FL(X,Y1). Then v2(S) $ v^Sj).
By 17.6 and 16.2, v^S^ = i^S^ - ^(S^. But n^SJ = 772(S) , so the
statement follows.

Of course, it follows that v2 is independent of the stated range
space (i.e. it is "injective").

We stress that 17.6 does not extend in the same easy way to all
finite-rank operators.

Exercise. If T is p-integral and B has finite rank, show that
vp(BT) S ||B|| ip(T) .

Exercise. If S is in Ppi(X,Y) and T is in FL(Y,Z), prove that
vp(T) np,(S), where 1/p + 1/p' - 1 (compare 4.5).
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18. CONE-SUMMING NORMS

Elementary theory

Ideas connected with positivity have permeated a good deal of the
work in this book. For operators defined on a normed lattice, it is natural to
consider a "summing" norm that is defined in a way that pays attention to the
order structure. The simplest way to do this is to restrict to positive elements
in the definition of nx . The resulting "cone-summing" norm gives rise to a
theory that parallels closely (and in places more simply) the most successful
parts of the theory of 1-summing and 2-summing norms. It also provides a
proper setting for our sporadic earlier remarks on positive operators. The
concept and the basic results are due to Schlotterbeck (1971).

To set the scene, we need a few very elementary concepts and
results relating to normed lattices. The definition was given in Section 0.
The set {x : x ) 0) in a linear lattice X is called the positive cone, and will be
denoted by X+ . The supremum of the two elements x,y is denoted by x v y,
the inf imum by x A y. It is clear that

(x+z)v(y+z) = (x v y) + z (1)

We shall use this repeatedly. We write x+ = x v 0, x" = (-x) v 0, |x| =
xv (-x). Clearly, |Xx| = |X|.|x| and |x + y| « |x| + |y|. Further:

18.1. For any x, we have x = x+ - x" and |x| = x+ + x" .

Proof. We have by (1)

x + 0 v (-x) = x v 0,

that is, x + x" = x+. Further,
|x| = x v (-x) = (2x v 0) - x

= 2x+ - (x+ - x") = x+ - x".
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This decomposition is the key to most of what follows. Notice
that it implies that ||x+|| S ||x|| .

18.2. Let T be an operator on a normed lattice. Write

q(T) = sup { ||Tx|| : x € U x n X+ } .

Then q(T) > \ ||T|| . If T is a positive operator (into another normed lattice),
then q(T) = ||T|| .

Proof. If ||x|| $ 1, then ||x+|| S 1 and ||x"|| S 1. Since Tx =
Tx+ - Tx" , it follows that ||T|| S 2q(T) .

If T is positive, then for any x, we have |Tx| ^ T(|x|), hence
||Tx|| S ||T(|x|)|| . It follows easily that q(T) = ||T|| .

The factor \ is needed. For example, for the functional on J«
defined by f(x) = x(l) - x(2), we have ||f|| - 2, while q(f) = 1.

The dual question is resolved by the following lattice version of
the Hahn-Banach theorem.

18.3. (i) Let E be a linear sublattice of a normed lattice X, and
let f0 be a continuous, positive functional defined on E. Then there is a
continuous, positive functional f on X that extends f0 and has the same norm.

(ii) If a is an element of a normed lattice, then

sup { |f(a)| : f € X* , ||f|| S 1} = max (||a+||, Hal).

Proof. A sublinear function p is defined on X by putting
p(x) = ||x+|| . Then p(x) « ||x|| for x > 0, while p(x) = 0 for x S 0. So
if f is a linear functional, then the statement that f(x) $ p(x) for all x € X
is equivalent to f being positive and ||f|| $ 1. Both statements follow at once
from the Hahn-Banach theorem (in the case of (ii), applied to a and -a).

Clearly, max (||a+||, ||a"||) £ \ ||a|| . The element (1,-1) of n\ shows
that the factor \ is needed. Of course, for a positive element a, (ii) says that
there is a positive functional f such that ||f|| = 1 and f(a) = ||a|| .

The dual of a normed lattice is itself a normed lattice. For
f € X*, the elements f+ and |f| are defined (for x € X+) by:

f+(x) = sup (f(y) : 0 « y « x} ,

|f| (x) = sup (f(z) : |z| « x}.
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Two important special types of lattices are as follows. A
normed lattice is said to be an L-space if ||x+y|| = ||x|| + ||y|| for all positive
elements x,y, and an M-space if ||x v y|| = max (||x||, ||y||) for such elements.
(Completeness is often included in the definition, but we will specify this
condition when it is needed). Examples of L-spaces are i n , lv LX(M) , and
examples of M-spaces are *£, *«» C(K). (Actually, Kakutani's representation
theorem identifies every complete L-space with a space LX(M), and every M-space
with a sublattice of some C(K)). It is quite easy to prove that the dual of an
L-space is an M-space and conversely.

If X is an L-space, then ||x|| - ||x+ + x"|| = ||x+|| + ||x"|| for all x,
and hence, with the notation of 18.3, q(T) = ||T|| for all operators T on X.

We saw in 2.10 that for positive elements of a normed lattice,
Ii1(xv ... ,xk) = ||Ix|| |. More generally, we have:

18.4. For any elements xj of a normed lattice, iix(xv ... ,xk) $
|| I |X|| || . Equality holds in an M-space.

Proof. The stated inequality follows from the fact that if
Icql « 1 for each i, then | l a ^ l * Z Ixjl .

Of course, we know from 2.6 that equality holds in the "concrete"
M-spaces *«» C(K). The reader may be content with this, but we now show
how to prove the same for a general M-space (without relying on Kakutani's
theorem). The statement follows from the identity

sup { | E gjxj | : 6 € D k } = Z | X i | ,

which we now prove by induction. First, we prove it for k = 2. Choose
elements x,y. From (1), we have |x| + |y| = (|x| + y) v (|x| - y). By (1) again,
|x| + y = (x+y) v (-x+y) and |x| -y = (x-y) v (-x-y). Hence

|x| + |y| = (x+y) v (-x-y) v (x-y) v (-x+y) = |x+y| v |x-y| ,

as required. Now assume the identity for a certain k, and taken xv ..., x k + r

For 6 in Dk, write ag = Z SJXJ. By the case k = 2,

lag + xk+1| v |ae - xk+1| = |ag|

The identity for k+1 follows easily.
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Now let T be an operator from X to Y, where X is a normed
lattice and Y any normed linear space. The cone-summing norm 7i+(T) is
defined as follows:

77+(T) = sup {IIITxiU : x{ € X+ and l l x j l l U ) ,

in which all finite sequences (x-) are considered. The operator T is said to be
"cone-summing" if 7I+(T) is finite.

This definition is what is obtained if attention is restricted to
positive elements when defining nr It makes sense when X is any partially
ordered normed linear space, but we will restrict attention to normed lattices.
The notation should really be n* , but we will not attempt to discuss n't for
other p. Some immediate properties are gathered together in the next result.

18.5 (i) 7Z+ is a norm on the space of cone-summing operators
from X to Y, and ||T|| < 77+(T) $ n^T).

(ii) If || I |X i | || « 1, then I IITxiH S 77+(T).
(iii) For any B in L(Y,Z), we have n+(BT) $ ||B|| 7Z+(T).
(iv) If V is a normed lattice, and A is a positive operator from V

to X, then 77+(TA) S 77+(T) ||A|| .
(v) If X and Y are normed lattices and -T $ S $ T, then

77+(S) S TZ+(T).

(vi) If there is a (positive) functional f on X such that ||Tx|| ^
f(x) for all x in X+ , then n+(T) $ ||f|| .

(vii) If X is an L-space, then n+(T) = ||T|| . The same is true
if Y is an L-space and T is positive.

(viii) If X is an M-space, then 77+(T) = n^T).

Proof. (i),(ii) It is elementary that 77+ is a seminorm. Now
I |Xi| = I x{

+ + I xf , so if || I |Xi| || * 1, then I UTXJ+H + I HTx^ ^ 7Z+(T).
Statement (ii) follows, since \\Tx-j\\ i HTx^H + \\Txf\\ . This shows also that
7Z+(T) £ ||T||, and it follows from 2.10 that 7Z+(T) ^ 7ix(T) .

(iii), (iv) Obvious.
(v) For X| in X+, we have ISxjl < Txv hence HSx^ ^ HTx̂ l .
(vi) If xj € X+ and || I x l̂ ^ 1, then

Z IITxiU ^ I f(Xi) ^ ||f|| .

(vii) is easy, and (viii) follows from 18.4.
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Note that 77+(Ix) = 1 if and only if X is an L-space. Also, it is
now clear that 3.20 arises from the fact that, for a positive operator from an
M-space to an L-space, (vii) and (viii) apply simultaneously.

18.6 Example. If T is any operator on *£, then n+(T) =
(E ||Tej||P')1/ /p l (= K, say); in particular, 7i+(T) = 7I2(T) for operators on J2n.
For if x > 0, then Tx = I x(j)(Tcj), so ||Tx|| « E ||TCJ|| x(j), which is of the
form f(x), with ||f|| = K. Also, there exist Xj £ 0 such that E XjP = 1 and
E Xj||Tcj|| = K. Then || E Xjej || = 1, while E ||T(XjCj)|| = K.

18.7 Example. Define T on IR2 by : T(x,y) = (x+y, x-y). Then
IIToo 1̂ = 2, while 77+(Too x) = HTeJIj + \\Te2\\1 = 4. This shows the need for T
to be positive in the second statement in (vii). Further, by (vii), n+(T1«) =
\\T1 coll = 1, while

77+(T100T« x) = 27Z+(I«OO) = 4 .

This shows the need for A to be positive in (iv).

Exercise. Show that an operator T is cone-summing if and only
if E ||Txn|| is convergent for every Cauchy series E xn of positive elements.

Trace duality

By amending the definition of v^ in the obvious way, we can
easily identify the predual of n+ under trace duality. As before, let X be a
normed lattice and Y any normed linear space. Let S be an element of
FL(Y,X). Define

v+(S) = inf{ 111x^1 : S = Z gi ® Xi with ||gi|| = 1, xj » 0},

in which, as always, all possible finite representations are considered. Such
representations exist, since if S = I gj <S> û  , where the uj are not necessarily
positive, then

S = I gi ® Uj+ + I (-gj) ® u"j .

Since uf + u- = |uj|, this gives the alternative formulation

v+(S) = inf { || I |Ui| || : S = I § i <2> u{ with ||gi|| = 1} .
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It is now clear that v«>(S) « v+(S) $ vx(S), with v+(S) = v^S) when X is an
M-space and v+(S) = vx(S) when X is an L-space.

18.8. Under trace duality, n+ is the dual of v+. Further, if
X,Y are both normed lattices and T is a positive cone-summing operator from X
to Y, then

7i+(T) = sup {trace (TS) : S € FL(Y,X), S Z 0 and v+(S) S 1} .

Proof. Let X be a normed lattice and T a cone-summing operator
from X to Y. Suppose that S € FL(Y,X) is represented by E gj <8> xv with
Hgill = 1 and x{ Z 0. Then

trace (TS) = I g i(TXi) « I IITxjII

« TT+(T) ii z: X i ii .

Hence trace (TS) S n+(T)v+(S) .
Given 6 > 0, there exist elements Xj of X+ such that || I xj || = 1

and E P ^ I ^ (l-6)77+(T). There are elements g{ of Y* (positive if Y is a
lattice and Txx > 0) such that ||g£|| = 1 and g^Txj) = IITxjII. The statement
follows on putting S = E gj ® xj .

Exercise. If S is a positive operator on J?£, show that v+(S) = ||S||.

The "Pietsch" theorem

We now establish an analogue of Pietsch's theorem for cone-
summing operators. It has two attractive special features. Firstly, it
applies to X itself, without any embedding. Secondly, the proof (which is
basically similar) delivers a linear function directly, instead of a superlinear
one. Hence it is "constructive" instead of depending on the Hahn-Banach
theorem. We need two algebraic lemmas, both very familiar in linear lattice
theory.

18.9 Lemma. Let x,y and zv ... ,z^ be positive elements of a
linear lattice such that x + y = zx+ ... +zk. Then there exist positive elements
Xj,yj such that zj = xx + yj for each i and Z xj = x, I yx = y.
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Proof. We show first that if 0 ^ u S x+y, then u can be
expressed as x0 + y0, where 0 $ xQ S x and 0 $ y0 « y. Let x0 = x A U.
Then 0 $ xQ S x. The element u-y is less than both x and u, so u-y S xQ.
Hence if y0 = u-x0, then 0 $ y0 ^ y, as required.

We now prove the given statement by induction on k. It is
trivial for k = 1. Assume it for a certain k, and suppose that x+y =
zx+ ... +zjc+1. By the above, z k + 1 can be expressed as x^+1 + y^+v where
0 ^ xk+i * x anc* 0 * vk+i * v< Write x1 = x - Xjc+1, y1 = y - y^+1 . Then
x1 + y1 = zx+ ... +zk, and the induction hypothesis gives the result.

18.10 Lemma. Let X be a linear lattice, and f a real-valued
function on X + such that f(x+y) = f(x) + f(y) and f(Xx) = Xf(x) for all x,y
in X+ and X £ 0. Then f can be extended to a linear functional on X.

Proof. Define f(x) = f(x+) - f(x") for x € X. This is consistent
with the definition on X+. We show that f is additive on X. Choose x,y € X.
We have

(x+y) = (x+y)+ - (x+y)" = (x+-x") + (y+-y") ,
so

+ + x"+y" = (x+y)" + x++y+ .

By applying f to both sides and collecting terms, we obtain f(x+y) =
f(x) + f(y).

18.11 Proposition. Let T be a cone-summing operator on a
normed lattice X. Then there is a positive functional f on X such that ||f|| =
n+(T) and ||Tx|| $ f(|x|) for all x € X.

Proof. For x £ 0, define

f(x) = sup {21 HTxjII : x = Z XJ with each xj £ 0},

in which all finite positive decompositions of x are considered. From the
definition, we have at once that 0 $ f(x) $ 7l+(T)||x|| . Also, f(x) > ||Tx|| .
Clearly f(x+y) £ f(x) + f(y) for x,y in X+. We show that in fact equality
holds. Suppose that x+y = E Zj , with ẑ  * 0. There are positive elements
x-v y| as in 18.9. Then

I IITziH ^ I IITxill + I IITyjH ^ f(x) + f(y) ,
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and hence f(x+y) « f(x) + f(y), as required.
Extend f to X, as in 18.10. Then ||f|| * n+(T), by 18.2, and

for any x in X,

||Tx|| « ||Tx+|| + ||Txl « f(x+) + f(x") = f(|x|) .

Note that for an operator on an L-space, the required functional f
is simply given by f(x) = ||T||.||x|| for x > 0, and for a positive operator into
an L-space, by f(x) = ||Tx|| for x Z 0.

We now derive factorization and extension theorems analogous to
those for 2-summing operators, with the Hilbert space replaced by an L-space.
Given a positive functional f, let K = {x : f(|x|) = 0}. If x 6 K and |y| S |x|,
then y € K (that is, K is a "lattice ideal"). It follows that X/K is a linear
lattice (we omit the details); it becomes a normed lattice with the norm
IIQx||f = f(|x|), where Q is the quotient mapping. For positive x,y, we have

||Qx + Qy||f = f(x+y) = ||Qx||f + ||Qy||f ,

so (X/K, || ||f) is an L-space. By 18.5(vii), n+(Q) $ ||f|| . This construction,
together with 18.11, gives:

18.12 Proposition. Let T be a cone-summing operator from a
normed lattice X to a normed linear space Y. Then there exist an L-space L,
a positive operator Tx : X -» L and an operator T2 : L -> Y (positive if T is
positive) such that T - T2TX and n+CTj) = HTJI = n+(T), n+(T2) = ||T2|| = 1.

Proof. With f as in 18.11, let L be the space X/K just
constructed, and let Tx = Q. If Qx = 0, then f(|x|) = 0, so Tx = 0.
Hence it is consistent to define T2(Qx) = Tx, and we have ||T2(Qx)|| S f(|x|) =
||Qx||f , so ||T2|| S 1. Since T2 is defined on an L-space, ||T2|| = n+(T2).

If X or Y is complete (i.e. a Banach space), then we can take L to
be complete.

The following extension theorem, due to Lotz (1975), is one of the
reasons for the special position of L-spaces in the theory of Banach lattices.
For a proof, we refer to Schaefer [BLPO] or Donner (1982).

Lotz's theorem. Let X be a linear sublattice of a normed lattice
X , and let L be a complete L-space. Let T be a positive operator from X to
L. Then T has a positive extension f : X - L with ||f|| = ||T||.
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Assuming this, we obtain at once the promised extension theorem
for cone-summing operators:

18.13 Proposition. Let X be a linear sublattice of a normed
lattice X , and let Y be a Banach space. Let T be a cone-summing operator
from X to Y. Then T has an extension f : X - Y with n+(T) = n+(T). If
Y is also a normed lattice and T is positive, then the extension may be assumed
to be positive.

Proof. Express T as T2TX as in 18.12, and apply Lotz's theorem

to T r

In particular, a closed sublattice of an L-space admits a positive
projection of norm 1. The existence of non-complemented subspaces of lx (or
badly complemented subspaces of 4n) is enough to show that we really need the
condition that X is a sublattice of X (not just a subspace).

Note that for operators on an M-space, this amounts to a theorem
on extension with preservation of nv

Exercise. Prove Lotz's theorem for operators into JJn by equating
such operators with functional on X n and using the sublinear function on X n

defined by q(xlf ... ,xn) = ||xx
+v ... v xn

+| | .

Finally, we describe a dual characterization of n+ . Let X be a
normed lattice and S an operator from Y to X. The majorizing norm of S is

o(S) = sup { || ISyJ v ... v |Syn| || : y i € UY, n € K}.

18.14. Let T be an operator from a normed lattice X to a
normed linear space Y. Then 77+(T) = a(T*).

Proof. Choose positive elements xj with || I x̂  || ^ 1. For
each i, let gj € Y* be such that ||gj|| = 1 and g^Txj) = HTx^. Let h =
(T*gl) v ... v (T*gn). Then ||h|| « o(T*), and

I IITXJII = I (T*gi)(Xi) « I h(xj) ^ ||h|| .
l I I

Hence n+(T) < o(T*).
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To prove the reverse inequality, let f be the functional given by
18.11. Given any g € UY* and x € X+, we have ± g(Tx) $ ||Tx|| $ f(x), so
that |T*g| S f. It now follows at once that o(T*) S ||f|| = 7I+(T) .

Exercise. For operators S from Y to X, show that n+(S*) = a(S).

For further results on cone-summing norms (and for a systematic
account of the theory of normed lattices), we refer to [BLPO].
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