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Relating Whole-Genome Expression Data
with Protein-Protein Interactions
Ronald Jansen,1,4 Dov Greenbaum,2,4 and Mark Gerstein1,3,5

1Departments of Molecular Biophysics and Biochemistry, 2Genetics, and 3Computer Science, Yale University,
New Haven, Connecticut 06520, USA

We investigate the relationship of protein-protein interactions with mRNA expression levels, by integrating a
variety of data sources for yeast. We focus on known protein complexes that have clearly defined interactions
between their subunits. We find that subunits of the same protein complex show significant coexpression, both
in terms of similarities of absolute mRNA levels and expression profiles, e.g., we can often see subunits of a
complex having correlated patterns of expression over a time course. We classify the yeast protein complexes as
either permanent or transient, with permanent ones being maintained through most cellular conditions. We find
that, generally, permanent complexes, such as the ribosome and proteasome, have a particularly strong
relationship with expression, while transient ones do not. However, we note that several transient complexes,
such as the RNA polymerase II holoenzyme and the replication complex, can be subdivided into smaller
permanent ones, which do have a strong relationship to gene expression. We also investigated the interactions in
aggregated, genome-wide data sets, such as the comprehensive yeast two-hybrid experiments, and found them to
have only a weak relationship with gene expression, similar to that of transient complexes. (Further details on
genecensus.org/expression/interactions and bioinfo.mbb.yale.edu/expression/interactions.)

Analysis of gene expression data is currently one of the most
exciting areas in genomics. Computationally, it involves clus-
tering and grouping individual expression measurements and
interrelating them to other sources of information, such as
phenotypes, functional classifications, or cellular responses
(Golub et al. 1999; Brown et al. 2000; Califano et al. 2000;
Gaasterland and Bekiranov 2000; Raychaudhuri et al. 2001;
Subrahmanyam et al. 2001). In particular, functional assign-
ment of uncharacterized genes can take place through trans-
ferring the annotation from a characterized gene (gathered
from databases such as the catalog of the Munich Information
Center for Protein Sequences (MIPS) or Gene Ontology (Ash-
burner et al. 2000; Mewes et al. 2000)) to an uncharacterized
gene when their expression profiles are strongly related by a
similarity criterion (such as the correlation coefficient). While
this procedure is usually not sufficient to unambiguously de-
termine the function of an uncharacterized gene, it can be the
starting point (e.g., in target selection) for further genetic ex-
periments, functional characterization, or high-throughput
proteomic analysis (Luscombe et al. 1998; Westhead et al.
1999; Christendat et al. 2000a,b; Eisenberg et al. 2000; Emili
and Cagney 2000; Gerstein and Jansen 2000).

An important component of functional annotation is
characterizing protein interactions, as these often circum-
scribe (or effectively define) protein function. Moreover, pro-
tein interactions can be described more precisely than protein
functions. Thus, rather than directly dealing with the general
relationship between protein function and expression, we
look here at a subproblem: the relationship between mRNA
expression and protein-protein interactions, especially those
in protein complexes. A priori it seems reasonable that there

should be a well-defined relationship between the expression
levels of the subunits in a complex: because the functionality
of many complexes hinges on the presence of all the subunits,
a haphazard and independent expression of any one subunit
would be energetically costly. For instance, the components
of the ribosome are regulated in a complex way but there is
usually agreement that they should be present in equimolar
amounts, although this has not yet been measured directly
(Woolford et al. 1991; Planta et al. 1997; Li et al. 1999; No-
mura 1999).

We investigate this relationship for many of the known
protein complexes in a comprehensive, global fashion by in-
terrelating many of the yeast data sets for protein interactions
and expression. The diversity and number of yeast experi-
ments provide high-quality data under varied conditions. Ad-
ditionally, we investigate the relationship between other
types of protein-protein interactions (e.g., aggregated physical
and genetic interactions) and mRNA expression. Our work
follows up on many recent analyses of protein-protein inter-
actions (Fellenberg et al. 2000; Hishigaki et al. 2001; Teich-
mann et al. 2001; Walhout and Vidal 2001).

In general, our goal was to integrate and cross-correlate
already existing data from different sources and find general
trends in it. This is an exploratory study prior to any type of
prediction. In a sense, this study can be understood as an
exploration of the knowledge already implicit in the current
data but not yet obvious because, previously, it has not yet
been integrated and put together in this way.

RESULTS
In our survey of existing data, we used two different ap-
proaches to analyze the two different types of expression data
available: the computation of normalized differences for ab-
solute expression levels and a more standard analysis of the
correlation of profiles of relative expression levels (expression
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ratios). We explain these two ap-
proaches in more detail in the fol-
lowing two sections.

Calculation of Normalized
Differences between Absolute
Expression Levels
To compare absolute mRNA expres-
sion levels between subunits of a
protein complex, we define the nor-
malized difference Dij as follows:

Dij =
|Ei − Ej|
Ei + Ej

where Ei and Ej are the mRNA ex-
pression levels of subunits i and j.
This quantity defines the difference
as a fraction of the sum of the ex-
pression levels, thus allowing for a
comparison of gene pairs of both
high and low expression. Values for
the normalized difference range
from 0 to 1.

For a group of N proteins in a
complex, we generally compute the
normalized difference not only for
the pairs that are in direct physical
contact, but for all (N2 ! N)/2 theo-
retically possible pairs, thus arriv-
ing at a distribution of normalized
differences of these pairs for each
complex. We can then investigate
this distribution of normalized dif-
ferences and compare it with those
among randomly chosen proteins.
In our following discussion, we of-
ten refer to the median of the (N2 !
N)/2 protein pairs as a key summa-
rizing statistic.

In general, we assume stoi-
chiometric ratios of 1:1 between
subunits, although the above equa-
tion could be adjusted to account
for other ratios. But even then, as
shown in the Methods section be-
low, we would not expect this
quantity to always be close to
zero because of the relationship
between mRNA and protein abun-
dance and also the noise in the expression data.

It should also be noted that there are obviously many
limitations in treating GeneChip and SAGE data, our input
(see Methods), as absolute measurements of mRNA expression
(Schadt et al. 2000).

To judge the statistical significance of normalized differ-
ences for particular groups of proteins, we compare them to
the control distribution of randomly chosen protein pairs
(Fig. 1). An interesting theoretical aspect in this context is that
if Ei and Ej are random variables with an exponential distri-
bution (which is a close approximation to the actual distribu-
tion of expression of levels in the reference expression set),
then Dij is distributed uniformly between 0 and 1 (Pitman
1993). This explains why we can observe a nearly uniform

distribution of normalized differences for randomly selected
pairs of proteins (Fig. 1).

Correlation of Expression Profiles for Relative
Expression Levels
Analysis of expression profiles may be more useful than that
of absolute levels for characterizing interacting proteins that
exist in unequal but stoichiometrically related amounts (e.g.,
3:1) as it refers to the relative shape of expression profiles. It
can be carried out on data from cDNA microarrays (such as
the Rosetta data) because only relative rather than absolute
expression levels are necessary. Specifically, we look at the
distribution of Pearson correlation coefficients for pairs of

Figure 1 Distributions of normalized differences for various groups of proteins in boxplot represen-
tation. The normalized difference Dij is a measure of the relative similarity of two absolute gene
expression levels Ei and Ej. The middle panel shows the distribution for two protein complexes (the large
ribosomal subunit and the 20S proteasome). Note that we considered all theoretically possible protein
pairs within the protein complex (as indicated in the schematic drawing above the panel). The right
panel shows the distribution for the aggregated data sets of protein-protein interactions (Y2H is yeast
two-hybrid) (Bader and Hogue 2000; Cagney et al. 2000; Fellenberg et al. 2000; Ito et al. 2000;
Schwikowski et al. 2000; Uetz et al. 2000; Uetz and Hughes 2000; Xenarios 2000; Ito et al. 2001).
Unlike in the complexes, where we consider interactions among a whole group of proteins, the
interactions in the aggregated data sets are specific to individual protein pairs (see schematic drawing).
The left panel shows two control distributions of the normalized difference, on the left for pairs of
nuclear and cytoplasmic proteins, which presumably, because of spatial separation, do not interact,
and on the right for any random protein pair (“all transcripts”) in yeast. The distribution of nuclear
versus cytoplasmic proteins is strongly skewed toward one (the maximum value of the normalized
difference), which is partially explained by the fact that cytoplasmic proteins tend to have higher
expression levels than cytoplasmic ones (Drawid 2000; Drawid and Gerstein 2000). The distribution of
all transcripts is nearly uniform (with a median of 0.5) (see Methods). The complexes distributions are
clearly skewed toward zero with medians between 0.2 and 0.3. The medians of the distributions of the
aggregated data sets are still somewhat smaller than the control median, most notably for the physical
interactions data set; on the other hand, there is virtually no difference between the control and the
distribution of the yeast two-hybrid data set.

The aggregated data, obviously, includes some interactions implied by the complexes, with the
degree of intersection ranging from 35% for the physical interactions to ∼6% for Y2H.
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genes as the measure of similarity. Other measures of similar-
ity are possible as well (D’haeseleer 1997; Wen et al. 1998;
Heyer et al. 1999; Qian et al. 2001).

As the input for our procedure, we use the expression
vectors or profiles of all the subunits of a complex and then
compute their pair-wise correlations. Like for the normalized
difference, we compute the correlation coefficients for all pro-
tein pairs in a complex, thus gaining a distribution of corre-
lation coefficients. If the complex consists of N subunits, this
yields (N2 ! N)/2 different combinations of protein pairs and
thus correlation coefficients. To summarize these distribu-
tions, we calculate the “average correlation” (meaning the
average of all pair-wise correlations within a complex). As a
suitable control to assess statistical significance, we use the
distributions of correlation coefficients for random groups of
proteins and their averages (see Methods). We would expect
correlations of close to one for subunits in a tight complex.
However, as we show in the Methods section, this will not be

exactly the case because of the relationship between mRNA
and protein abundances.

Specific Complexes
We first outline some results obtained for specific protein
complexes, then we proceed to a more general overview of
complexes.

Ribosome
It has long been known that the mRNA expression levels of
the ribosomal proteins are strongly correlated with one an-
other (Johannes et al. 1999). Figure 1 shows the observed
distribution of normalized differences for protein pairs in the
large subunit of the cytoplasmic ribosome. The median of this
distribution is 0.23, much lower than the median of 0.5 for
randomly selected protein pairs. While there is a wide range
of normalized differences (which may partially result from
the fact that many proteins in the ribosome are known not to
be expressed in a 1:1 ratio [Kruiswijk et al. 1978]), the ribo-
somal distribution is clearly skewed toward zero. Considering
pairs of duplicated ORFs in the ribosome as one subunit by
summing their expression levels leads to an even lower me-
dian normalized difference of 0.20 (data not shown). Distri-
butions of the correlation coefficients for protein pairs within
the large ribosomal subunit are shown in Figure 2. For both
the cell cycle and the Rosetta data, the correlations tend to be
much higher than the random control.

Similar observations can be made for the proteins in the
small cytoplasmic ribosome. Key statistics are summarized in
Figure 3 in comparison to those for other protein complexes.
Furthermore, the two separate ribosome particles are strongly
coregulated. In fact, the large and the small ribosomal par-
ticles cannot be differentiated by our measures of expression
similarity.

Figure 2 Distributions of correlation coefficients between expres-
sion profiles. In A, we show distributions of the average correlation !̄N
of N genes for the cell cycle experiments. The gray curve in the
background represents the case N = 2 (i.e., simply the distribution of
pair-wise correlations). In the case of N >2, !̄N is defined as the aver-
age of all possible (N2!N)/2 pairwise correlations among the N
genes. We show here, as examples, the distributions for N = 3 and N
= 5. The distributions obviously become narrower, reflecting the fact

that it becomes more unlikely to find large groups of strongly corre-
lated genes at random as N increases.

These distributions provide a suitable control for the observed cor-
relations between pairs of genes (N = 2) or for the average correla-
tions among the subunits of a complex (N>2).

We have developed a method to efficiently sample the distribution
curves f(!N) (see Methods). Based on the distribution function of f(!N)
we can calculate a one-sided P-value:

P!!N" = #
!̄N

1
f!!N"d!N

This P-value then represents the chance that a group of N randomly
selected genes could exhibit an average correlation greater than or
equal to that of a complex with N proteins (see Fig. 3). (B and C) The
distribution of pair-wise correlations for both the cell cycle (Cho et al.
1998) and the Rosetta experiments (Hughes et al. 2000) in two pro-
tein complexes (the ribosome and the proteasome) as well as for the
aggregated data sets (genetic, physical and yeast two-hybrid). The
gray curves in the background are the control distributions for N = 2
as explained above. The distributions for the ribosome and the pro-
teasome are strongly shifted to the right of the control; this effect is
much weaker for the data sets of aggregated interactions.
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Proteasome
A second example of a complex whose individual subunits are
strongly coregulated is the proteasome, which is involved in
protein degradation and responsible for the rapid breakdown
of ubiquitinated proteins. Like the ribosome, the 26S protea-
some can be divided into two subparticles: the 20S and the
19S (or 19S/22S regulatory particle). The 20S particle is pre-
sent as a dimer in the center of the complex structure and
contains the catalytic core, whereas two 19S particles are at-
tached to both ends of the 20S particle dimer (Coux et al.
1996; Wilkinson et al. 1999).

The distribution of the normalized differences for all pos-
sible protein pairs in the 20S proteasome is shown in Figure 1.
Like the ribosome, it is clearly skewed toward zero, compared
to the control, with a median of 0.29. Figure 2 shows the
distribution of correlation coefficients, which is strongly
shifted to the right of the control, though to a lesser extent
than that for the ribosome. An investigation of the crystal
structure of 20S particle (Whitby et al. 2000) did not reveal
any relationship with the gene expression differences (e.g.,
proteins with slightly more random correlations tending to be
more on the surface of the particle).

Similar results can be observed for the 19S particle of the
proteasome (Fig. 3A). Also, in terms of both measures of co-
expression (normalized differences and correlation of expres-
sion profiles), the 19S and the 20S particles of the proteasome
form a single unit that is difficult to separate. Part of the
reason for this may be that the common classification into
19S and 20S particles is based on the purification procedure
for the proteasome (M. Hochstrasser, pers. comm.) and thus
does not necessarily reflect functional or biochemical proper-
ties in a direct way.

One subunit, Doa4p, exhibits a very low average corre-
lation (!0.02). Biochemical studies have previously shown
that not all proteasomes have Doa4p bound and that the
Doa4p-proteasome interaction is more likely to be transitory
(Papa and Hochstrasser 1993; Papa et al. 1999).

RNA Polymerase II Holoenzyme
We have seen above that the ribosome and proteasome can be
regarded as strongly associated and coregulated multiparticle
complexes. However, in some cases a complex contains more
loosely associated components. An example is the RNA poly-
merase II holoenzyme, which contains the core RNA polymer-
ase II together with the more loosely associated SRB complex
(Kornberg’s mediator) and other smaller components (such as
the SWIF/SNF complex and the TAFIIs).

It is known that, unlike the RNA polymerase II core en-
zyme, the SRB complex and the other holoenzyme compo-
nents are only needed for the transcription of a fraction of
genes (Holstege et al. 1998). In other words, the holoenzyme
is an example of a complex of transitory nature with a per-
manent core. This permanent-and-transitory structure is
clearly evident in the gene expression analysis. For the core
enzyme, the average correlation in both the cell cycle and
Rosetta data sets are significantly higher than for the random
control (Fig. 3). However, for the SRB complex and a variety of
other, smaller components (e.g., the TAFIIs) the average cor-
relations are virtually indistinguishable from the random
control.

Replication Complex
Another example of a transient complex is the replication

complex, which binds to DNA and is needed for the initiation
of replication. The replication complex can be subdivided
into a number of subcomponents: the MCM proteins, the

Figure 3 (See facing page for legend.)
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origin recognition complex, and the DNA polymerases " and
# (Aparicio et al. 1997).

As a whole, the replication complex exhibits a low aver-
age correlation not significantly different from that of the
random control (Fig. 3, 4). However, Figure 4 shows how the
entire complex breaks into subcomponents in terms of corre-
lations in the cell-cycle experiment. The individual correla-
tions for each of the subcomponents are much higher than
that of the complex as a whole. This indicates that the repli-
cation complex is composed of independent units in terms of
expression regulation. Using the permanent-transient termi-
nology, each subcomponent behaves similarly to an indepen-
dent permanent complex, whereas the replication complex as
a whole can be characterized as transient. The permanent sub-

components can be seen to come together to form a transient
functional entity. (Note, this effect is more evident in the cell
cycle experiment than the Rosetta data, as it should only be
observable in a synchronized population of cells, not those
averaged across the cell cycle.)

Complexes in General: Permanent versus Transient
In discussing the specific examples above, we have found the
permanent or transient nature of the association to be an
important feature. This distinction is, in fact, valuable in a
more general context. As shown in Figure 3, we have a priori
formalized a division between “permanent” complexes,
which are maintained throughout the cell cycle and most

Figure 3 (A) Consolidates various key statistics shown in Figures 1 and 2 for the ribosome and proteasome as well as for a large number of protein
complexes. We list all protein complexes from the MIPS catalog having at least 10 open reading frames (ORFs). The complexes are divided into
three classes: permanent, transient, or other (see below). Some complexes can be divided into smaller subcomplexes (e.g., the ribosomes) as
indicated. The table lists (from left to right) the average expression level of the complex, the median normalized difference (see Fig. 1A), the
average correlation for the cell cycle and Rosetta experiments (see Fig. 2), the negative logarithm of the P-value of the average correlations in both
experiments (see Fig. 2), and the size of the complex in terms of the number of ORFs.

In general, the P-values for the average correlations are very low for most of the permanent protein complexes [accordingly, !log10(P) is very
high], indicating that these averages are significantly greater than for random groups of proteins of the same size. The same cannot be observed
for the transient protein complexes, for which the correlation averages are usually much smaller.

The section “other” at the bottom of A contains complexes that are either difficult to classify as permanent/transient or for which, as a result of
very small turnover rates, down-regulations of mRNA levels take a very long time to affect protein abundance. The H+-transporting ATPase can be
thought of as containing a mixture of permanent and transient components at the same time (P. Kane, pers. comm.). The nuclear pore complex
(NPC) and the TRAPP complex are known to have low turnover rates (Bucci and Wente 1997; Winey et al. 1997; Sacher et al. 1998; Barrowman
et al. 2000). The NPC has relatively small average correlations, but this still yields P-values of 10–3 (cell cycle) and <10!4 (Rosetta) because the
nuclear pore complex is a relatively large aggregation of proteins, and even these weak average correlations are very unlikely to occur for random
groups of proteins of this size. The TRAPP protein complex, while existing throughout the cell cycle, has a low turnover rate and as such its mRNA
expression data would not be sufficient for our analysis.

The RNA polymerase holoenzyme is composed of both permanent and transient components. Note that the MIPS complexes catalog does not
include the SWI/SNF chromatin-remodeling complex and a subset of basal transcription factors (Wilson et al. 1996) as part of the holoenzyme,
thus we list them separately here.

The list does not include those categories from the MIPS complexes catalog that do not really represent protein complexes per se, but rather
aggregations of disparate proteins that are involved in similar types of complex interactions, such as the “actin-associated” and “tubulin-
associated” protein groups.

(B) Shows a graphical representation of part of the protein complex statistics from A. The abscissa and ordinate represent the average correlations
in the cell cycle and the Rosetta data, while the bubble sizes are a function of the normalized differences (larger bubbles represent larger normalized
differences). In general, the permanent complexes tend to be located in the upper right region of the plot, whereas transient complexes are closer
to the random control in the lower left.
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cellular conditions, and “transient” ones, which we define
here as a group of proteins that do not consistently maintain
their interactions. That is, the existence of a transient com-
plex is temporal and specific to a part of the cell cycle or a
subset of cellular states. We are aware that the division into
the two absolute categories “permanent” and “transient” is
perhaps somewhat oversimplifying as there can be varying
degrees and combinations of these attributes (see Discussion).

In Figure 3, we show a general classification of the large
MIPS complexes into permanent and transient classes, to-
gether with key statistics (details of the classification method
are given in the legend). We list all complexes with more than
10 subunits (which together account for ∼80% of all the theo-

retically possible protein-protein interactions in the MIPS
complexes), with smaller complexes listed on our website.
Figure 3B shows a graphical representation of the complex
list, synthesizing the correlations for both the Rosetta and
cell-cycle experiments with the normalized differences. It
clearly shows that there is a greater tendency for permanent
complexes to have higher average correlations than for tran-
sient ones.

Comparing the average correlations in Figure 3A against
random controls allows us to derive P-values for the statistical
significance of the correlation. As shown in the figure, these
are <10–4 for most of the permanent complexes. On the other
hand, they are considerably higher, and thus less significant,

Figure 4 (A) A representation of the replication com-
plex and its components on the same coordinates as the
protein complexes in Figure 3B. The transient replication
complex can be decomposed into smaller complexes:
the origin recognition complex, the MCM proteins, and
the DNA polymerases " and #. Whereas the whole repli-
cation complex exhibits an average correlation close to
zero (in both the cell cycle and the Rosetta data), the four
smaller complexes show greater correlations in the cell
cycle experiment. The four subcomplexes behave more
like permanent complexes than the replication complex
as a whole.

(B) The correlation coefficient matrix for the subunits
of the replication complex derived from the cell cycle
data. The upper triangle of the correlation matrix shows
the individual correlation coefficients for particular gene
pairs (with darker colors indicating higher correlations).
The lower triangle shows the average correlations for
subgroups of proteins (representing the MCM proteins,
the two DNA polymerases, and the origin of the replica-
tion complex) within the complex as a whole. The table
on the right side shows which genes belong to which
subgroups in different colors. The genes were ordered
with unsupervised clustering (average linkage) without
regard to their classification according to the three sub-
groups. It can be seen that this order reflects the sepa-
ration according to the subgroups very well (only the
proteins in the two DNA polymerase cannot be separated
into two groups). An exception is the CDC45 protein
that belongs to the MCM proteins but tends to cluster
with the DNA polymerases.
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for transient complexes. The separation between permanent
and transient complexes is also evident in terms of the nor-
malized difference statistics, although not as strongly.

Aggregated Protein-Protein Interaction Sets
From our analysis above, it seems reasonable to conclude that
there is indeed a strong relationship between mRNA expres-
sion and the protein-protein interactions in “permanent”
complexes. This raises the question whether or not similar
observations can be made for other types of protein-protein
interactions. We briefly summarize here the degree to which
the interactions in the aggregated interaction data sets, such
as the yeast two-hybrid data, are related to expression.

Figure 1 shows the distribution of normalized differ-
ences, and Figure 2 shows the distributions of correlation co-
efficients between interacting proteins in the aggregated data
sets. The distributions of normalized differences are relatively
similar to those of the transient protein complexes. The
physical interactions show the smallest median normalized
difference while the yeast two-hybrid interactions have a me-
dian normalized difference closest to the random control
(∼0.5). Figure 2 shows that the correlation distributions for
the aggregated data sets are fairly similar among themselves
and only slightly shifted toward the right of the distribution
curve for random protein pairs. This, again, is very similar to
the behavior of transient protein complexes.

Thus, overall, it seems fair to conclude that the aggre-
gated protein-protein interactions are related to mRNA ex-
pression in a similar fashion as the transient protein com-
plexes.

DISCUSSION AND CONCLUSION
We have investigated the relationship of protein-protein in-
teractions and mRNA expression levels, integrating and sur-
veying a variety of data sources for yeast. We have focused our
investigation on the protein interactions within specific com-
plexes. While we have demonstrated a strong relationship
between expression data and most permanent protein com-
plexes, this relationship is much weaker for transient protein
complexes as well as for the aggregated sets of protein-protein
interactions (i.e., physical, genetic, and yeast two-hybrid in-
teractions).

Issues with Permanent-Transient Classification
Our complex classification scheme—separating most com-
plexes into either permanent or transient—while useful, can-
not account for all complexes in the MIPS database. Some
complexes may not clearly fit into the permanent-transient
classification. We list a few of these as “other” in Figure 3.
Moreover, the complexes list is a compilation of current bio-
chemical knowledge and therefore reflects its inherent limi-
tations (sometimes not all subunits are known or some pro-
teins are mistakenly assigned to a complex).

Of course, even for the complexes that we do classify, the
terms “transient” and “permanent” are somewhat of an over-
simplification. In particular, our detailed discussions of the
RNA polymerase II holoenzyme and the replication complex
above are precisely two examples where our simplified termi-
nology fails to completely explain the situation since these
complexes are somewhere between fully “transient” and “per-
manent”.

One can think about the distinction between permanent
and transient in terms of the mathematical model introduced

in the Methods section. Whenever a complex is formed, its
subunits tend to be expressed at equimolar protein concen-
trations: Pi≈Pj and dPi/dt≈dPj/dt (where Pi and Pj are the protein
concentrations of two subunits i and j). If the complex is
“permanent”, then these conditions should be approximately
or vaguely met. If the complex is “transient”, then these con-
ditions can be relaxed in those situations where the complex
is not formed. There are some complexes that are always
formed (“permanent”) whereas the “transient” complexes are
only formed under particular conditions. There can be differ-
ent degrees of being transient: for instance, complexes that
are formed under 80% of conditions or those that are formed
under 20% of conditions. The transient complex formed un-
der 80% of conditions behaves almost like “permanent” (i.e.,
100% of conditions), whereas the transient complex formed
only 20% of the time would be expected to show less signifi-
cant normalized differences and correlations.

If one goes as far as to accept the premise that the sub-
units in a complex should be present at equimolar amounts,
then it is perhaps circular reasoning to say that they should
also be coexpressed.

Complexes versus the Aggregated Interactions: The
Need for Structures
We found it difficult to discern expression-based relationships
in the aggregated data sets. This may be because of the gen-
eralized and heterogeneous nature of the aggregated data sets,
(e.g., inconsistent physiological conditions, false positives,
and false negatives). Moreover, both the aggregated sets and
the transient complexes suffer partially from the limited
amount of mRNA expression data as their interactions may
occur under particular physiological conditions that may not
be sampled by mRNA expression data. Our results, thus, illus-
trate the difficulty in drawing general conclusions for the
pair-wise interaction sets and highlight the important role
clearly resolved crystal structures of complexes, detailing pro-
tein interactions between subunits, have in studying protein-
protein interactions.

Noise in the Expression and Interaction Data
In general, the interactions in the aggregated data sets exhib-
ited surprisingly little deviation from randomness in terms of
the coexpression of interaction pairs. This was most strongly
observed for the yeast two-hybrid data. It is true that, overall,
this deviation from randomness is statistically significant. All
the same, the gene expression data and the aggregated protein
interaction data do not reinforce each other strongly and it
seems that the prediction of these type of interactions from
expression data would be of little benefit.

Perhaps the most optimistic view of this situation is that
the strong degree of independence of the two types of data
makes both of them suitable for use in machine-learning ap-
proaches to characterize genes of unknown function: if they
were strongly correlated, then one type of data could perhaps
well replace the other since it represents very similar informa-
tion. A negative view would be that the reason for the sur-
prisingly weak relationship between the aggregated interac-
tions and mRNA expression are to be found in the problems
with the either the expression or the interaction data.

We feel confident that our results are robust to the noise
in the expression data for the following reasons. With respect
to the correlation analysis of expression profiles, roughly the
same results (in terms of statistical significances) can be ob-
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tained for two independent data sets (the cell-cycle time
course and the Rosetta knockout series). The normalized dif-
ference analysis is perhaps more sensitive to problems with
the data, in particular, considering that the measurement of
absolute expression levels with gene chips is problematic to
start with. However, we have looked at an integrated data set
from various chip experiments and the SAGE data, thus aver-
aging out errors to some degree (see Methods). In addition, for
both the correlation and the normalized difference analysis,
we have concentrated on the statistical significance of distri-
butions rather than relying on the error-prone data for indi-
vidual protein pairs, thus observing more robust, aggregate
trends for whole complexes and groups of proteins.

Part of the aggregated data, in particular the yeast two-
hybrid data, represent a relatively new approach to studying
protein-protein interactions and it is interesting to note that
it, obviously, includes some interactions implied by the com-
plexes. However, the degree of intersection with possible
complexes interactions ranges from 35% for the physical in-
teractions to only ∼6% for the yeast two-hybrid data (as a
fraction of the number of interactions in the aggregated
datasets). This is surprisingly low, given that the yeast two-
hybrid data is from experiments that covered the complete
genome (Uetz et al. 2000; Ito et al. 2001). Independently, Ito
et al. (2001) reported that only a small fraction of the previous
yeast two-hybrid data (Uetz et al. 2000) overlapped with their
own yeast two-hybrid results. (Although Ito and colleagues
assumed that their core data was similar in quality as the Uetz
data, the fraction of interactions present in both data sets was
only 16.8% for the Ito core and 20.4% for the Uetz data).

mRNA versus Protein Expression
The coregulation of subunits in a protein complex should be
primarily observable in terms of protein abundance and only
indirectly in terms of mRNA expression. Several recent studies
have attempted to investigate the relationship between
mRNA and protein expression levels in yeast cells and found
them to be correlated to various degrees (Anderson and Seil-
hamer 1997; Futcher et al. 1999; Gygi et al. 1999; Greenbaum
et al. 2001; Lian et al. 2001). Generally, post-transcriptional
regulation is more difficult to investigate given the sparse data
resources currently available for protein abundance levels. It
is possible that in some situations coregulation occurs mostly
on the protein level, almost independent of cellular mRNA
levels. Particularly, those permanent complexes that do not
have high levels of correlation in our analysis may be indica-
tive of translational or post-translational control and could be
a starting point for further experimental investigation. See
Methods section for further discussion.

METHODS

Interactions Data Sources
The primary focus of this paper is the interactions occurring
within specific complexes. These were obtained from the
MIPS complexes catalog (Fellenberg et al. 2000), which repre-
sents a carefully annotated, comprehensive data set of protein
complexes culled from the scientific literature. In addition,
we looked at other types of protein-protein interactions from
large “aggregated” data sets collecting many heterogeneous
pair-wise interactions. We collected these from the MIPS cata-
logs of physical and genetic interactions (Fellenberg et al.
2000), databases of interacting proteins (DIP and BIND)
(Bader and Hogue 2000; Xenarios 2000), and a comprehen-
sive collection of yeast two-hybrid experiments (Cagney et al.

2000; Ito et al. 2000; Schwikowski et al. 2000; Uetz et al. 2000;
Uetz and Hughes 2000; Ito et al. 2001). These interactions are
subdivided into groups based on their method of discovery.
They include physical interactions (e.g., collected through co-
immunoprecipitation and copurification), genetic interac-
tions (e.g., determined through genetic means such as syn-
thetic lethality or suppression experiments), and yeast two-
hybrid pairs.

Expression Data Sources
We included two different types of expression measurements
in our analysis: absolute expression levels in vegetative yeast
cells as determined by SAGE or gene chip experiments, and
profiles of ratio-type expression data from microarray experi-
ments. For the first type, we use a comprehensive reference
set, which we merged and scaled together from a variety of
Affymetrix GeneChip and SAGE data sets (Velculescu 1997;
Holstege 1998; Roth et al. 1998; Jelinsky and Samson 1999)
into a single representative data source (scaling details on our
website; Greenbaum et al. 2001). For the expression profiles,
we focused on two different data sets: a cell cycle experiment
(Cho et al. 1998) and the Rosetta yeast compendium (Hughes
et al. 2000). The two data sets provide a fairly good sampling
of the possible cellular states of yeast and represent different
experimental methodologies. The cell-cycle data contains ex-
pression profiles obtained from synchronized cells over the
course of two cell cycles, whereas the Rosetta data contains
genome-wide expression ratios for 300 stationary cell states,
which are derived from 280 gene deletions and the 20 drug
interaction experiments.

Efficient Calculation of the Average Correlations
For two expression ratio profiles Xi and Xj (transformed to
average 0 and standard deviation 1), the Pearson correlation
coefficient !ij is given by the dot product:

!ij =
1

M − 1
Xi ! Xj,

where M is the number of elements in the profiles Xi and Xj.
The profile X can be computed as a ‘Z-score’ from the mea-
sured expression ratio profile x, through the relation
Xk = (xk ! x)/$x, where x denotes the average and $x the stan-
dard deviation of values in x, and Xk and xk are the kth com-
ponents of their respective profiles.

Given a group of N genes, we can compute the correla-
tion coefficient matrix R, where each element !ij of the matrix
denotes the Pearson correlation coefficient between genes i
and j. We can then compute the average correlation coeffi-
cient !̄ by averaging the matrix elements (excluding the main
diagonal). This statistic gives an idea of the overall similarity
of the expression profiles in a group of genes. Although there
are O(N2) elements in R, the computation time for !̄ can be
kept proportional to O(N) by using the linearity of the corre-
lation to calculate !̄ as follows:

! =
1

N2 − N
!$

i,j

N

Rij − N" =
1

N2 − N
! 1
M − 1

XT ! XT − N",

where

XT = $
n=1

N

Xn

is the sum of all expression profiles in the group of N genes.

Kinetic Model of the Relationship between Protein
and mRNA Concentration
For a protein complex that is perfectly coregulated we can
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assume that its components are present at equimolar amounts
and change similarly over time. So for the protein concentra-
tions Pi and Pj of two different subunits i and j we would get:
P1≈Pj and dPi/dt≈dPj/dt. Using a simple model for the relation-
ship between mRNA and protein concentrations, we can see
how even under these ideal conditions similarity measures
based on the mRNA concentrations would deviate from per-
fect results. For instance, a linear kinetic model for the protein
concentration Pi and the mRNA concentration Ri of a subunit
i in a complex is given by:

dPi

dt
= kRiRi − kPiPi

where kRi is an mRNA translation rate constant and kPi is a
protein degradation constant.

Why Expression Profile Correlations Have to Be Less
Than One
For two subunits in a complex with Pi = Pj ≡ P and dPi/dt = dPj/
dt, we can deduce:

kRiRi!t" = kRjRj!t" + !kPi − kPj"P!t"

It is clear that only under the strong assumption that the two
protein degradation constants are equal (kPi = kPj)

Ri!t"
Rj!t"

=
kRj

kRi
= const

from which would follow corr(Ri, Rj) = 1. Otherwise, corr(Ri,Rj)
<1.

Why Normalized Differences Are Greater Than Zero
Furthermore, assuming steady-state (that is, dPi/dt = dPj/
dt = 0), we can deduce the following relationship for the re-
lationship between the mRNA levels of two complex subunits:

Ri =
kRj

kPj

kPi

kRi
Rj

Thus, the two mRNA expression levels are only expected to be
equal if the ratios of the rate constants for translation and
degradation are the same for both proteins. This is not nec-
essarily the case for the subunits of a complex and therefore
normalized differences should not be expected to be zero.

It is clear that the arguments above are based on a variety
of simplifying assumptions. In reality, there are additional
factors (such as the noise in the expression data, the stochas-
tic nature of gene expression) that add even more difficulty to
the analysis of mRNA levels.

Supplementary Information
Additional information can be found at genecensus.org/
expression/interactions and bioinfo.mbb.yale.edu/
expression/interactions.
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