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Abstract

Based on the 639 non-homologous proteins with 2910 cysteine-containing segments of well-resolved three-dimensional structures,

a novel approach has been proposed to predict the disulfide-bonding state of cysteines in proteins by constructing a two-stage

classifier combining a first global linear discriminator based on their amino acid composition and a second local support vector

machine classifier. The overall prediction accuracy of this hybrid classifier for the disulfide-bonding state of cysteines in proteins has

scored 84.1% and 80.1%, when measured on cysteine and protein basis using the rigorous jack-knife procedure, respectively. It

shows that whether cysteines should form disulfide bonds depends not only on the global structural features of proteins but also on

the local sequence environment of proteins. The result demonstrates the applicability of this novel method and provides comparable

prediction performance compared with existing methods for the prediction of the oxidation states of cysteines in proteins.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Disulfide bonds are primary covalent crosslinks
between cysteine side chains that play very important
roles in the native structures of globular proteins. Such
bonds can stabilize protein spatial conformation and
ensure that protein will perform its biochemical function
(Wittrup, 1995). The correct formation of disulfide
bonds is the crucial step in the folding pathway
(Creighton, 1993, 1995). Many theoretical and experi-
mental studies indicated that disulfide bridges can
increase the conformational stability of proteins mainly
by reducing the conformational entropy of the unfolded
state and constraining the unfolded conformation (Betz,
1993; Skolnick et al., 1997; Abkevich and Shakhnovich,
e front matter r 2004 Elsevier Ltd. All rights reserved.
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2000; Clarke et al., 2000; Wedemeyer et al., 2000;
Welker et al., 2001). Several analyses of the character-
istics of disulfide bonds and detailed conformational
analysis of cysteines as well as amino acid neighbors in
proteins have been performed (Harrison and Sternberg,
1994; Petersen et al., 1999). But information of such
important bonds cannot be derived directly from amino
acid sequences. Numerous researches on disulfide
bridges were reported, most of which were mainly
time-consuming experimental works (Morris and Pucci,
1985; Matsumura and Matthews, 1989, 1991; Eder and
Wilmanns, 1992; Zhou et al., 1993; Kremser and
Rasched, 1994; Xue et al., 1994).

Disulfide-bonding pattern information can help un-
derstand structural properties of proteins and identify
which family a protein belongs to, giving important
insights into its biological functions. More recently,
Chuang et al. found that there exists a very close
relationship between the disulfide-bonding patterns and
protein structures, based on which it is feasible to
discriminate structure similarities and identify protein
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homologs (Chuang et al., 2004). van Vlijmen and his
co-workers constructed a comprehensive database of
disulfide-bonding patterns and developed search method
to find related protein homologs with similar disulfide
patterns (Van Vlijmen et al., 2004). In protein folding
prediction, the localization of disulfide bridges can
strongly reduce the search in the conformational space
(Huang et al., 1999; Fariselli and Casadio, 2001). Thus
the accurate predictions of disulfide connectivity in
proteins would have potentially important applications,
such as in introducing engineered disulfide bonds to
increase the conformational stability of proteins and
helping locate disulfide bridges to aid three-dimensional
structure predictions.

Methodologies related to the prediction of disulfide
bridges can be decomposed into two steps. First, the
disulfide-bonding state of each cysteine is predicted from
protein amino acid sequence, a typical binary classifica-
tion problem. Subsequently, the second step is to locate
the actual disulfide connectivity from candidate oxidized
cysteines, which has received relatively scarce attention
in the published literature. Fariselli and Casadio
presented a method based on the weighted graph
representation of disulfide bridges and achieved 17
times accuracy higher than that of a random predictor
in the case of proteins with four disulfide bonds
(Fariselli and Casadio, 2001). Afterwards another
approach based on neural network was utilized to solve
the pairing problem and received satisfactory results for
the simplest cases (two or three disulfide bonds in one
protein) (see example Fariselli et al., 2002). More
recently, Vullo and Passerini proposed a novel machine
learning method based on extended recursive neural
networks (RNN) to predict the disulfide-connectivity
patterns in cysteine-rich proteins (Vullo and Frasconi,
2004). They further improved the prediction perfor-
mance by incorporating evolutionary information in the
form of multiple alignment profiles.

This paper focused on the first task of the prediction
of the disulfide-bonding state of cysteines in proteins, i.e.
to predict which cysteines in protein sequence are
oxidized. Concerning this topic, theoretical investiga-
tions emerged recent years. Muskal and his co-workers
predicted the disulfide-bonding states of cysteines by
means of neural networks (Muskal et al., 1990). They
used local sequences, i.e., the flanking amino acid
sequences of cysteines as input and achieved an overall
accuracy of 80%. By adding evolutionary information,
higher success rate can be obtained (Fariselli et al.,
1999). Fiser et al. also used local sequence information
but they employed statistical method. Their method
performed at 71% prediction accuracy (Fiser et al.,
1992). Since disulfide bridges are crucial to maintain
proper structures of proteins, oxidized cysteines that
take part in disulfide bonds should be more conserved
than free cysteines. Based on this idea, multiple sequence
alignment was used to predict the oxidation state of
cysteines, the success rate of which was about 80%
(Fiser and Simon, 2000). Mucchielli-Giorgi and his co-
workers used logistic functions learned with subsets of
proteins with similar amino acid compositions to predict
the disulfide-bonding state and reached success rates
close to 84% (Mucchielli-Giorgi et al., 2002).

Support vector machine-based predictor that oper-
ated at two stages (a multi-class classifier at the protein
level and a binary classifier at cysteine level) was
suggested (Ceroni et al., 2003). They achieved 85%
accuracy measured by five-fold cross-validation. Mar-
telli et al. implemented a hybrid system (hidden neural
network) that combined a hidden Markov model
(HMM) and neural networks (NN). After 20-fold
cross-validation procedure, the predictor accuracy
scored as high as 88% and 84%, measured on cysteine
and protein basis, respectively (Martelli et al., 2002a, b).
Up to now, this is the best-of-all prediction accuracy
which has been achieved for the prediction of disulfide-
bonding states of cysteines.

If one for the moment does not consider the more
difficult problem of disulfide-connectivity prediction, the
results of predicting the oxidation state of cysteines are
relatively satisfied. But in its own nature, disulfide
bonding is not merely a local interaction. It must be
affected by some global factors of proteins as well as
its local sequence environment. The present study has
successfully constructed a new hybrid prediction system
with two-stage architecture by combining a global linear
classifier based on the overall amino acid composition
and a local binary SVM classifier using the flanking
subsequence surrounding the centered cysteine resides as
input, to reveal the hidden information conductive to
disulfide formation and provide an efficient prediction
performance for the disulfide-bonding state of cysteines
in proteins.
2. Database

Six hundred and thirty nine cysteine-containing
protein chain structures were used in this work, which
were taken from the PISCES Culled PDB (Wang and
Dunbrack, 2003), a protein sequence culling server,
which is a representative dataset of accurately resolved
non-homologous Protein Data Bank (PDB) (Berman et
al., 2000) structures. All structures used have resolution
better than 2.5 Å. Sequence identity between each pair
of the sequences is less than 25%. Structures with
sequence length shorter than 50 amino acids were
excluded. Information about disulfide bonds was
extracted directly from the SSBOND records of the
PDB entries.

According to whether containing intra-chain disulfide
bonds, the 639 cysteine-containing protein chains were



ARTICLE IN PRESS

Table 1

The PDB codes of 218 proteins containing disulfide bonds in the dataset

153L 1A6WL 1A6WH 1AAZA 1ABRB 1AC5 1AGQA 1AHO 1AIR 1AISA

1ALKA 1ALU 1AMP 1AOCA 1AOZA 1APA 1APYA 1APYB 1AQB 1AQZA

1ARB 1ARU 1ATLA 1AU1B 1AUK 1AV4 1BEBA 1BEO 1BGC 1BGP

1BHP 1BNDA 1BNDB 1BOVA 1BPI 1BTL 1CELA 1CEX 1CFB 1CGT

1CNSA 1CNV 1CPO 1CTN 1CVL 1DANL 1DANH 1DANT 1DANU 1DDT

1DPE 1EAGA 1ECEA 1ECY 1EDMB 1EPTA 1EPTC 1ESC 1EXTA 1EZM

1FLEE 1FLEI 1FUS 1FVKA 1FXD 1G3P 1GAI 1GAL 1GEN 1GOF

1HCGA 1HCGB 1HIAA 1HIAB 1HIAI 1HOE 1HPLA 1HSBA 1HSBB 1HSSA

1HTRB 1HUCA 1HUCB 1HXN 1HYP 1IAE 1IDK 1ILR1 1IMBA 1IVYA

1JER 1JETA 1JFRA 1JMCA 1JPC 1KLO 1KPTA 1KSIA 1KTE 1KUH

1KVEA 1KVEB 1LBEA 1LBU 1LIT 1LKI 1LPBA 1LPBB 1LST 1LT5D

1LTSD 1MHLA 1MHLC 1MPP 1MUP 1MZM 1NEU 1NNC 1NOYA 1NSCA

1NWPA 1OBR 1ONC 1OVA 1PGS 1POA 1POC 1PPN 1PYTB 1PYTC

1PYTD 1RCB 1RFS 1RGEA 1RIE 1RMG 1SFP 1SMD 1SMNA 1SMPI

1SRA 1SVB 1TABE 1TABI 1TCA 1TDE 1TF4A 1TFE 1TGSZ 1TGSI

1TGXA 1THG 1THV 1TIID 1TML 1TN3 1TVDA 1UKZ 1UMAH 1VCAA

1VMOA 1WBA 1WHTA 1XJO 1XSOA 1YAIA 1ZXQ 2AAA 2ACK 2AMG

2AYH 2BBKH 2BBKL 2CBP 2CTC 2DNJA 2ENG 2ERL 2GMFA 2HLCA

2ILK 2LIV 2MCM 2MPRA 2MSBA 2MTAH 2MTAL 2OVO 2PKAA 2PKAB

2PSPA 2RHE 2SAS 2SGA 2SICI 2SIL 2TGI 2TRXA 2VPFA 2WEA

3CD4 3EBX 3FRUA 3FRUB 3GRS 3LADA 3LZT 3PTE 3SEB 3TGL

4AAHA 4AAHB 4HTCH 4HTCI 5PTP 7RSA 8FABA 8FABB
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divided into two classes, which are called OXICYS and
REDCYS for convenience. Proteins in REDCYS class
have no intra-chain disulfide bridges, all cysteines are in
reduced form. Every protein in OXICYS class has at
least one disulfide bond. Among the total 639 protein
chains, there are 218 chains belonging to OXICYS and
421 chains belonging to REDCYS, with totally 1316
cysteine-containing segments in the disulfide-bonded
state forming 584 disulfide bonds and 1594 in the non-
disulfide-bonded state. Two hundred and Eighteen PDB
codes containing SSBOND records are shown in Table 1.
3. Method

In this paper, we construct a prediction system for
disulfide-bonding state of cysteines in proteins operating
at two stages by combining a first-stage global linear
predictor based on the protein basis and a second-stage
local predictor based on the cysteine level. Both the
global classifier and the local one are binary predictors
to classify two states of proteins (OXICYS and
REDCYS protein) or cysteines (oxidized and reduced
cysteines).
3.1. The global classifier-linear discriminant classifier

using amino acid composition based on protein level

The first binary classifier uses the global informa-
tion—20 amino acid composition as input to discrimi-
nate the two protein classes (OXICYS and REDCYS
protein).
The 218 OXICYS proteins have 1316 cysteines, of
which 1168 take part in intra-chain disulfide bonds.
That is to say, almost all (89%) cysteines in OXICYS
proteins are oxidized. While 1594 cysteines in 421
REDCYS proteins are all in free form. This is an
obvious cooperation phenomenon that cannot be
elucidated by only local sequences near cysteines. We
call this phenomenon as ‘‘the cooperativity of oxidation
of cysteines in globular proteins’’. This cooperativity is a
global characteristic that reflects properties concerning
protein structure, and there must be some global
sequence information to account for it.

This key fact that cysteines (REDCYS) and half
cysteines (OXICYS) rarely co-occur was also noticed by
other researchers (Mucchielli-Giorgi et al., 2002; Ceroni
et al., 2003) before. In the present paper, we proposed a
new two-class predictor for predicting the oxidation
state of cysteines in proteins by means of a linear
discriminator, which explores the overall 20 amino acid
composition of protein sequence.

For a protein k in the dataset, we define a
characteristic index Qk,

Qk ¼
þ1; if protein k belongs to OXICYS class;

�1; if protein k belongs to REDCYS class:

�
ð1Þ

We try predicting the characteristic index Qk of protein
k by means of its amino acid composition pðkÞ

a . We use
the simplest linear function of pðkÞ

a to approximate Qk,
namely,

Qk ¼
X

a

vapðkÞ
a ; ð2Þ
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where a stands for an amino acid, and the summation
runs over all the 20 types of amino acids. The
parameters va are constants for all proteins. To choose
the parameters va that best fit the dataset, we minimize

Z ¼
X

k

Qk �
X

a

vapðkÞ
a

 !2

; ð3Þ

by letting @Z=@vb ¼ 0 for all amino acids b, which lead
to

X
a

X
k

pðkÞ
a p

ðkÞ
b

 !
va ¼

X
k

Qkp
ðkÞ
b ; ð4Þ

where the summations on k run over all protein
sequences in the dataset. By solving Eq. (4), the fitted
parameters va could be obtained.

With these parameters one can calculate the quantity
Q for a given protein with amino acid composition pa as
follows:

Q ¼
X

a

vapa; ð5Þ

which is designed to approach the characteristic index of
the protein (+1 for OXICYS and �1 for REDCYS). To
test the fitness, we computed the following cumulate
distributions

FOXICYSðQcÞ

¼
The number of OXICYS proteins with QXQc

The number of all OXICYS proteins
(6)

and

FREDCYSðQcÞ

¼
The number of REDCYS proteins with QoQc

The number of all REDCYS proteins
: (7)

where Qc is a critical value for the classification of the
two protein classes.

3.2. The local classifier-support vector machine classifier

based on cysteine level

The second binary classifier is constructed using
support vector machine (SVM) method based on the
cysteine level, which utilizes the local sequence context
information-sequence segments flanking the centered
cysteine as input to differentiate from the disulfide-
bonded cysteines and non-disulfide-bonded cysteines in
the protein.

SVM is a kind of learning machine based on well-
developed statistical learning theory and a very effective
method for general purpose pattern recognition, which
was initially proposed by Vapnik and his co-works
(Vapnik, 1995, 1998). SVM approach has been success-
fully applied to deal with a wide range of problems
including drug design (Burbidge et al., 2000), text
classification (Joachims, 1999), microarray data analysis
(Brown et al., 2000), membrane protein types prediction
(Cai et al., 2004), peptidyl prolyl cis/trans isomerization
prediction (Wang et al., 2003), protein secondary
structure prediction (Hua and Sun, 2001a; Kim and
Park, 2003), protein structural class prediction (Cai et
al., 2002, 2003), protein subcellular location prediction
(Cai et al., 2000; Hua and Sun, 2001b; Chou and Cai,
2002), etc. In most of these cases, the SVM approach
provides comparable or superior performance to that of
other machine learning approaches.

Here, we will briefly describe the basic idea of
applying SVM method for pattern recognition, espe-
cially for the two-class classification problem in this
paper. For a comprehensive description of SVM,
readers could refer to Vapnik’s books (Vapnik, 1995,
1998).

For the two-class classification problem (disulfide-
bonded cysteines versus non-disulfide-bonded cysteines)
in this study here, suppose that we have a set of samples,
i.e. a series of input vectors xi

!
2 Rd ði ¼ 1; 2; :::;NÞ with

corresponding labels yi 2 fþ1;�1gði ¼ 1; :::;NÞ, where
+1 and �1 indicate the positive and negative samples of
the two classes, respectively. In this research, the input
vector dimension is 20, and each input unit is a sequence
segment flanking on the centered cysteine residue
with a sliding window length l=2k+1(k=y, 7, 8,
9, 10,y) . The input sequence in SVM is coded by
transforming the 20 amino acids into numerical forms
composed of only 0 and 1 (Ala=100000y000,
Cys=010000y000,y, Tyr=000000y001). 1 and �1
denoted the disulfide-bonded and non-disulfide bonded
cysteine, respectively.

As shown in Fig. 1, the basic idea of SVM can be
illustrated as follows: First, map the input vectors into a
possible higher-dimensional feature space, associated
with the selection of proper kernel function. Second,
seek an optimal separating hyperplane (OSH) in this
space which maximizes the distance from the dataset,
separating the two classes (See Fig. 1). The mapping is
typically achieved by the kernel function Kðxi

!; xj
!

Þ that
defines the inner product in the feature space. There are
two typical kernel functions:

Kðxi
!; xj

!
Þ ¼ ðxi

!

 xj
!

þ 1Þd ; ð8Þ

Kðxi
!; xj

!
Þ ¼ expð�rjjxi

!
� xj

!
jj2Þ; ð9Þ

where Eq. (8) is the polynomial kernel function of degree
d which will revert to the linear function when d ¼ 1,
and Eq. (9) is the radial basic function (RBF) kernel with
one parameter r.

For a given dataset, only the kernel function and the
regularization parameter C should be selected to specify
one SVM. In the present study, we finally selected the
polynomial kernel function to train the SVM. The
polynomial kernel function was defined as Kðxi

!; xj
!

Þ ¼
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K(Xi, Xj)

Input Space Rd Feature Space H

margin

OSH

Fig. 1. Basic idea of SVM application for pattern recognition. Two classes denoted by circles and disks, respectively, are linear non-separable in the

input space Rd. SVM constructs the optimal separating hyperplane (OSH) (continuous line) which maximizes the margin between two classes by

mapping the input space into a high-dimensional space (the feature space H) by employing a mapping function Kðxi
!; xj

!
Þ. Support vectors are

identified with an extra circle.
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ðxi
!


 xj
!

þ 1Þd with the parameter C, the default value in
the implementation and d ¼ 7, 8 and 9.

We downloaded the SVMlight at http://download.
joachims.org/svm_light/current/svm_light_windows.zip,
which is an implementation (in C language) of Vapnik’s
SVM for the problem of pattern recognition, for the
problem of regression, and for the problem of learning a
ranking function. The optimization algorithms used in
SVMlight can be found in Joachims (1999, 2002).
3.3. Construction of two-stage classifier prediction

system

In this paper, we have combined the first global
classifier with the second local one described above to
construct a two-stage binary classifier prediction system.
The goal is to present a new method to provide the most
accurate predictions for the disulfide-bonding state of
cysteines in proteins. The architecture of this two-stage
classifier prediction system could be depicted as the
following Fig. 2.

If the tested protein is predicted as the REDCYS
protein (QoQ0), then all the cysteines in this protein
will be predicted as the reduced cysteines, whereas
if the tested protein is predicted as the OXICYS one
(Q4Q0), we will apply the following prediction strategy:
First, count the number of this protein’s cysteines NC,
for the case of NC=even, the tested protein will be
classified as one of the two classes: protein with even free
cysteine numbers and protein with all oxidized cysteines.
For the case of NC=odd, the tested protein could be
also regarded as the protein with odd free cysteine
numbers. Once if the protein is assigned as the OXICYS
protein, we will apply the second SVM classifier to
predict the cysteines’ disulfide-bonding states in this
protein.
3.4. Measurement accuracy

The prediction quality was examined using the jack-
knife test (leave-one-out procedure), an objective and
rigorous testing procedure. In comparison with sub-
sampling test or independent dataset test, the jack-knife
test is thought to be more rigorous and reliable (Mardia
et al., 1979). During the process of jack-knife test, each
protein was singled out in turn as a test protein with the
remaining proteins used as training set to calculate
the test sample’s va parameters and predict the class
(OXICYS class or REDCYS class). The prediction
quality was evaluated by the overall prediction accuracy
and prediction accuracy for each cysteine and each
protein chain.

Denote nxy the number of proteins that are predicted
as x class and in fact they belong to y class, where x,
y=o (OXICYS), or r (REDCYS). Therefore, the overall
prediction accuracy is

Q2 ¼ P=N ¼
noo þ nrr

noo þ nor þ nrr þ nro

; ð10Þ

where P is the total number of correctly predicted
cysteines, and N is the total number of cysteines.

The other measure of prediction accuracy is Mat-
thew’s correlation coefficient (MCC) (Matthews, 1975)
between the observed and predicted cysteines, based on
the cysteine basis or between the observed and predicted
proteins, based on the protein basis, as given by

MCCðsÞ

¼
pðsÞnðsÞ � uðsÞoðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpðsÞ þ uðsÞÞðpðsÞ þ oðsÞÞðnðsÞ þ uðsÞÞðnðsÞ þ oðsÞÞ
p :

(11)

Here, for each class s (OXICYS class or REDCYS
class), p(s) and n(s) are the total number of correct

http://download.joachims.org/svm_light/current/svm_light_windows.zip
http://download.joachims.org/svm_light/current/svm_light_windows.zip


ARTICLE IN PRESS

REDCYS

OXICYS

(Q<Q0)

YES

(Q>Q0)

NO

All

Predicted Protein

All-reduced-cysteine
protein* YES

(NC=odd)

NO

(NC=even)

First global binary classifier

Second local binary classifier

Even-cysteine-number
protein§

Mixed

All

Odd-cysteine-number
protein ||

Protein with odd free
cysteine numbers**

(NRC=odd)

YES

All-oxidized-cysteine
protein#

Second local binary classifier

Protein with even free
cysteine numbers$

Mixed

Fig. 2. The architecture of the two-stage classifier prediction system. It operates at two stages: the global protein stage and the local cysteine stage,

where the former employs the linear discriminant classifier and the latter applies the binary SVM classifier.

*All cysteines in this protein are reduced ones.

$ **Concerning the mixed cysteines with different reduced–oxidized states in one protein, we classify these proteins into two categories: the protein

with even free cysteine (considered as the reduced cysteine in this study) numbers and the protein with odd free cysteine numbers. NRC denotes the

number of reduced cysteines.

y The number of cysteines in this protein is even. It can be further categorized into two classes: the protein with even free cysteine numbers and the all-

oxidized cysteine protein.

|| The number of cysteines in this protein is odd.

$ The number of free cysteines in this protein is even.

# All cysteines in this protein are oxidized ones.

** The number of free cysteines in this protein is odd. For this case, it indicates that there will be certainly at least one free cysteine in this protein.
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predictions and correctly rejected assignments, respec-
tively, and u(s) and o(s) are the number of under- and
over-predictions. The more MCC is, usually the higher
the prediction reliability is.

The accuracy for each discriminated class s is
evaluated as

QðsÞ ¼
pðsÞ

pðsÞ þ uðsÞ
: ð12Þ
For sake of further explanation, when s refers to the
OXICYS class and REDCYS, respectively, Eq. (12)
equivalent to the following Eq. (13):

Qoxi ¼
noo

noo þ nor

;Qred ¼
nrr

nrr þ nro

; ð13Þ

where Qoxi and Qred are the success rates for OXICYS
and REDCYS class, respectively. p(s) and u(s) are the
same as in Eq. (11).
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Also, the probability of correct predictions P(s) is
calculated as

PðsÞ ¼
pðsÞ

pðsÞ þ oðsÞ
; ð14Þ

where n(s) and o(s) are the same as in Eq. (11).
Finally, the prediction accuracy per protein is

Q2prot ¼
Pp

Np

; ð15Þ

where Pp is the number of the proteins whose cysteines
are all correctly predicted and Np is the total number of
proteins.

We should point out that Q2 (prediction accuracy of
reduced and oxidized CYS) and Q2prot (prediction
accuracy of the type of proteins, OXICYS or
REDCYS class proteins) should not give exactly
the same prediction results, for the former and the
latter are based on the cysteine level and protein level,
respectively.
4. Result and discussion

4.1. Cumulative distribution of Q values

The cumulative distribution result of Q values was
depicted in Fig. 3.

Fig. 3 shows clearly that the Q value is a good index
to distinguish the two classes of proteins. Therefore, the
classification of a protein can be predicted based on its
Q value: If Q4Qc then the protein is predicted as
OXICYS, otherwise REDCYS, where Qc is a critical
value. From Fig. 3, we could also observe that Qc ¼ 0 is
usually not the best-fitted critical value, i.e. in most cases
0 and Qc do not match each other. The highest
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Fig. 3. Cumulative distribution of the Q values for OXICYS and

REDCYS proteins. Solid line corresponds to the REDCYS-class

proteins predicted, while dash line corresponds to the OXICYS-class

proteins tested.
prediction accuracy may be achieved at the value of
Qc less than zero.

4.2. Cysteines conservation and sequence environment

conducive to disulfide bond formation

Cysteines tend to be more conserved in proteins when
they pair to form disulfide bridges, which may reflect
their crucial and essential role in maintaining protein
structure stability and biological functions. As shown
in Fig. 4, the amino acid composition of proteins with
OXICYS and REDCYS reveals clear difference. The
analysis highlights that Cysteine (C), Asparagine (N),
Serine (S), Threonine (T) and Tryptophan (W) are
residues highly conducive to disulfide-bond formation.
On the contrary, Glutamate (E), Histidine (H), Leucine
(L), Methionine (M), Valine (V) and Arginine (R) are
more frequently found in the case of reduced cysteines.
These observations agree basically with previously
reported results about the specific sequence environment
of cysteines (Fiser et al., 1992; Fiser and Simon, 2000).

4.3. CATH structural classification for OXICYS and

REDCYS proteins

Protein structures are determined by their amino acid
sequence, which is a basically accepted hypothesis now.
This outstanding work was first finished by Anfinsen,
who successfully carried out an experiment to restore
native structure of the pancreatic bovine ribonuclease in
vitro (Anfinsen, 1973). A huge number of sequences
have the same amino acid composition, so amino acid
contents may contain very little sequence information.
Though it may alter the local structures, in most cases
shuffling sequence does not greatly change the global
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Fig. 4. Amino acid contribution to disulfide bond formation.

Calculated va values can represent the propensity to form disulfide

bond for the 20 amino acid residues. Bars above the midline indicate a

propensity to disulfide-bond formation, and those below the midline

are inclined to non-disulfide bond formation.
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Table 2

Percentages of protein structures belonging to different CATH

structural classifications

CATH classificationa Proteins used in this work All CATH

entries

OXICYS REDCYS Entire

dataset

Mainly a 16.8 30.9 26.0 21.5

Mainly b 53.0 19.5 31.0 30.3

a and b 29.3 48.9 42.2 45.2

Few Secondary

Structures

0.9 0.7 0.8 3.0

aCATH statistics are based on CATH Release 2.4. Several structures

in our dataset have no CATH classifications and are not included in

these statistics.

Table 3

Prediction accuracy (%) of the two-stage classifier prediction system

by the jack-knife test

Method Prediction accuracy (%)

Qc MCC Qoxi Qred Q2 Q2prot

Global linear

classifier+Local

SVM classifier

�0.2 61.6 89.5 74.2 83.2 79.5

�0.1 62.2 87.8 77.8 84.1 80.1

0 59.6 85.7 78.9 83.3 79.4

0.1 58.3 84.2 79.9 82.9 78.5

0.2 55.7 81.7 80.7 81.9 77.9
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structural features of proteins, possibly because the
protein structural classification can be well predicted by
using amino acid contents (Zhang et al., 2001).

By counting the CATH structural classification
(Orengo et al., 1997; Pearl et al., 2000) of the protein
structures used in this work, it can be found that
disulfide bond-containing proteins have some global
structural features (Table 2): OXICYS proteins prefer b-
structures and REDCYS proteins a-helices. Since b-
sheets are less stable than helical structures, disulfide
bonds may be necessary to maintain the native
structures of the whole proteins that lack enough stable
secondary structures.

4.4. Parameter optimization of the second SVM classifier

In the case of the second SVM classifier, we need to
select the appropriate kernel function, regularization
parameter C and the local input symmetrical sliding
window size l=2k+1 (k denotes the number of flanking
residues in positions from amino terminal to carboxyl
terminal of each centered cysteine, and vice versa). The
selection of the optimal kernel function parameters and
the regularization parameter C plays an important role
in improving the prediction accuracy. The optimiza-
tion parameters are determined by the prediction
performance.

We performed a preliminary test to determine the
best-fitted kernel function type, and the optimal window
size l by measuring the prediction accuracy of the
various window sizes l from 13 to 21 (corresponding to k

from 6 to 10). We also tried linear, polynomial, and
radial basis function (RBF) kernel types. All the optimal
parameters and functions used in the ultimate predic-
tions are determined by choosing those leading to the
best prediction performance. Eventually, we selected the
polynomial kernel function of 8 degree (d ¼ 8) to
perform the final SVM training and testing with the
local subsequence window size l ¼ 21.
4.5. Prediction performance of the two-stage classifier

prediction system

The jack-knife testing results are summarized in
Table 3. As shown in Table 3, when we selected the
‘‘natural’’ value Qc ¼ 0, the total prediction accuracy
could be Q2 ¼ 83:3%, Qoxi ¼ 85:7%, Qred ¼ 78:9%,
and MCC ¼ 59:6%. When scored on a protein basis
(we accept only those protein chains for which the
predictions of all the disulfide- or non-disulfide-bonding
states of the cysteines in the protein sequence are
correctly predicted), the success rate Q2prot reaches up to
79.4%. However, fine-tuning of Qc can slightly improve
the prediction. In fact, if Qc ¼ �0:1 is chosen, the over
prediction accuracy could be improved to Q2 ¼ 84:1%,
Q2prot ¼ 80:1%, Qoxi ¼ 87:8%, Qred ¼ 77:8%, and
MCC ¼ 62:2%. Moreover, this prediction score can be
further improved slightly by avoiding using those amino
acids with the absolute va value less than 2 (data not
shown), such as Proline (R) and Tyrosine (Y). In the
case of these two amino acids, their absolute va values
are both less than 1.5, for which the lower absolute va

values may be due to the computationally statistical
fluctuation.

The above prediction results suggest that this method
could achieve relatively high prediction accuracy by
taking into consideration the global characteristic of
protein sequences based on the overall amino acid
composition and the local sequence environment sur-
rounding the target cysteines. It demonstrates that the
overall amino acid contents do carry much informa-
tion about disulfide bonding, as well as the flanking
sequential context of cysteines, and it shows that
determinant of whether the cysteines should form
disulfide bridges owes not only to the global structural
feature of a protein but also correlates with the striking
local sequence context of cysteines in the protein. This
finding is consistent with the observations drawn by
Mucchielli-Giorgi et al. (2002) that predictor based on
global descriptors is more accurate (77.7%) than that
based on local descriptors alone (67.3%).

In conclusion, an efficient two-stage classifier predic-
tion system composed of the first classifier based on the
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overall amino acid composition using the simplest
global descriptors of protein sequences together with
the second SVM classifier using the local sequence
context of cysteines in proteins as the input, is presented
to reveal the hidden information of the disulfide-
bonding states of cysteines. Even though it is difficult
to compare all the existing methods tested on the
different databases, it could be claimed that this new
approach provides comparable prediction performance
compared with the existing algorithms. Our studies
support the phenomena that the oxidation of cysteines
exhibits obvious cooperativity and demonstrate that
amino acid contents carry much information about
disulfide bonding. It is also shown that global structural
feature of a protein as well as the local sequence
environment of cysteines is the important determinant
of whether the cysteines should form disulfide bonds.

4.6. Further improvemetns and other possible

applications

There may be several directions for further improve-
ment of the prediction performance. On the one hand, it
should be pointed out that in the case of the first global
classifier, the linear combination of amino acid contents
may not be the best function for the purpose of
prediction. Although the above results have demon-
strated the capability of the simple linear discriminator
to effectively discriminate the two cysteine classes
(OXICYS and REDCYS), use of more complex
functions (for example, the nonlinear polynomial func-
tions) can possibly lead to better prediction results than
the linear discriminator based classifiers. This aspect is
worthy of a deeper investigation.

Moreover, the classification rule in the first global
classifier to sort proteins into OXICYS and REDCYS
proteins may be too simple. As suggested by Ceroni et
al. (2003) and Frasconi et al. (2002), higher prediction
accuracy is likely to be achieved by training and testing
the homogeneous protein groups associated with their
cellular compartments or domain structural classes. For
example, it would be relevant to see whether amino acid
composition of proteins belonging to different groups
(OXICYS, REDCYS) correlates with their cellular
position by iterating on a subset of the proteins that
share the same cellular localization. There may be
potentially interesting biological insights to be gained
from the analysis of the cellular locations (Intracellular,
extracellular, membrane, nuclear, etc.). However, de-
tailed systematic analysis of these observations requires
much more proteins sequence data derived from
experimental studies.

On the other hand, single prediction methods do
have limitations. A possible alternative strategy is to
combine other complementary methods, such as neural
networks (Fariselli, et al., 1999; Fiser and Simon, 2000),
combinational logistic functions (Mucchielli-Giorgi et
al., 2002), Hidden Markov models (Martelli et al., 2002),
and fuzzy k-nearest-neighbor method (Huang and Li,
2004). Integration of other different methods incorpor-
ating more sequence-order information and evolution-
ary information together with global features and local
sequence-order context may be likely to further improve
prediction performance. Taking into consideration the
conservation of disulfide bonds and the cysteines in
proteins, it is anticipated to combine several methods to
use protein primary sequence and three-dimensional
structure information and construct the multistrategy
approach to perfect the task of disulfide-bonding state
of cysteines.
5. Conclusion

In the present study, a novel and efficient two-stage
classifier prediction system combining a first global
classifier based on the 20 amino acid composition with a
second SVM classifier exploiting the local sequence
context of cysteines in proteins, has been developed to
discriminate the two protein classes (OXICYS and
REDCYS proteins) and the two different redox state
cysteines (disulfide- and non-disulfide-bonded cysteines).
This novel approach provides at least comparable
prediction performance compared with the existing
methods and can be an efficient complimentary method
to other existing methods for disulfide-bonding state
prediction of cysteines in proteins. Our studies support
the phenomena that the oxidation of cysteines exhibits
obvious cooperativity and demonstrate that amino acid
contents carry much information about disulfide bond-
ing as well as the local sequence context of cysteines.
The total prediction accuracy of this prediction system
has achieved as high as 84.1% and 80.1%, when
measured on cysteine and protein basis using the
rigorous jack-knife procedure, respectively. The result
indicates that global structural feature of the protein, as
well as its local sequence environment of cysteines, is the
important determinant of whether the cysteines should
form disulfide bridges. The present studies demonstrate
the applicability of this novel efficient method and
provides at least comparative prediction performance
compared with existing methods for the prediction of
the oxidation states of cysteines in proteins.
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