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ABSTRACT: Robustness is an inherent property of biologi-
cal system. It is still a limited understanding of how it is
accomplished at the cellular or molecular level. To this end,
this article analyzes the impact degree of each reaction to
others, which is defined as the number of cascading failures
of following and/or forward reactions when an initial re-
action is deleted. By analyzing more than 800 organism’s
metabolic networks, it suggests that the reactions with larger
impact degrees are likely essential and the universal reactions
should also be essential. Alternative metabolic pathways
compensate null mutations, which represents that average
impact degrees for all organisms are small. Interestingly,
average impact degrees of archaea organisms are smaller
than other two categories of organisms, eukayote and bac-
teria, indicating that archaea organisms have strong robust-
ness to resist the various perturbations during the evolution
process. The results show that scale-free feature and reaction
reversibility contribute to the robustness in metabolic net-
works. The optimal growth temperature of organism also
relates the robust structure of metabolic network.
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Introduction

In general, robustness is the persistence of a system’s
characteristic behavior under perturbations or conditions of
uncertainty (Stelling et al., 2004). The word robustness,
when used with regard to metabolic network, refers to the
organism that it is against single-gene or even multiple-gene
mutations by using redundant or alternative pathways.
Many knockout mutants of organisms are still able to grow,

some with almost the same growth rate as the wild-type
(Motter et al., 2008; Segre et al., 2002; Shlomi et al., 2005).
Two primary mechanisms that compensate the null
mutations in metabolic networks include: redundancy of
components (genetic buffering) and modules with over-
lapping functions (functional complementation) (Stelling
et al., 2004). The redundant metabolic pathways are not
straightforward in single metabolic network. To understand
robustness in complex metabolic networks, more theoretical
tools are needed.

The flux balance analysis (FBA) method is well presented
for analyzing the robustness of metabolic networks. Details
of FBA have been described elsewhere (Kauffman et al.,
2003; Lee et al., 2006). The FBA method needs objective
function, such as maximizing the lactic acid (Fong et al.,
2005), ethanol (Pharkya and Maranas, 2006), succinic acid
(Lee et al., 2005; Wang et al., 2006), L-valine (Park et al.,
2007) or L-threonine (Lee et al., 2007). A lot of researches
are based on the assumptions that maximize biomass yield
(Feist and Palsson, 2008). Under a given environmental
condition, reaction/gene deletions were simulated by
constraining the flux of the corresponding reaction(s) to
zero and calculating the corresponding knockout flux
distribution. A reaction/gene was classified as having no
essentiality if the biomass production rate of the knockout
strain was not less than a given cutoff compared to the
original strain; if the rate of a simulated reaction/gene
deletion was below the cutoff, the deletion was assumed to
be essential (Famili et al., 2003). This method can find many
essential reactions/genes. It also finds many reactions/genes
are not essential for growth, which are redundant for
organism. Currently, only a few model organisms’ biomass
reactions are given in detail, such as Bacillus subtilis (Oh
et al., 2007), Escherichia coli (E. coli) (Feist et al., 2007),
Helicobacter pylori (Thiele et al., 2005), SaccharomycesCorrespondence to: S. Zhou and Y.-P.P. Chen
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cerevisiae (Herrgard et al., 2006), and Staphylococcus aureus
(Becker and Palsson, 2005). For many other organisms,
these biomass reactions are not given. Therefore, analyzing
the robustness of those organisms does not make use of the
FBA method.

A central concept in metabolic pathway analysis is that of
elementary flux modes (EFMs) (Schuster et al., 2000). An
EFM is a minimal set of enzymes that can operate at steady
state. EFM analysis appears to be well suited to characterize
network redundancy because each EFM is non-redundant.
By examining which of these modes form the same sub-
strates to the same products, one can detect parallel routes.
This is achieved based on the relative number of elementary
modes remaining after the knockout of enzymes. Wilhelm
et al. (2004) demonstrated quantitatively that the meta-
bolism of E. coli is more robust than the one of human
erythrocyte. Extending this study of single knockout, Behre
et al. (2008) studied the structural robustness of metabolic
networks when considering the general case of double and
multiple knockouts. Because the number of pathways in
EFMs grows exponentially with the increasing network size
(Klamt and Stelling, 2002), Behre et al. (2008) only studied
the amino acid synthesis in E. coli (119 metabolites and 164
reactions) and the central metabolism of human erythro-
cytes (36 metabolites and 41 reactions). In recent years,
many other studies used the concept of EFMs to investigate
the robustness of biochemical systems (Çakır et al., 2004;
Gabaldón et al., 2007; Krömer et al., 2006; Schuster and
Kenanov, 2005; Schwender et al., 2004; Stelling et al., 2002).
All of these analyses focus on the middle-scale metabolic
networks. The link between robustness and pathway
function is not established for large-scale metabolic
network. Lots of analyses of network structures elucidate
design principles of metabolic networks, providing valuable
insights into the functional organization of organisms.

The compound graph is that the nodes represent meta-
bolites and the edges between nodes represent enzymatic
reactions (Ravasz et al., 2002). The reaction graph is a
dual form of compound graph that nodes are reactions and
edges are compounds (Wagner and Fell, 2001). Many graph
theories are used to investigate the features of large-scale
metabolic networks (Barabási and Oltvai, 2004), such as,
degree distributions (Arita, 2004; Jeong et al., 2000; Wagner
and Fell, 2001; Zhu and Qin, 2005), average pathway length
(Arita, 2004; Zhu and Qin, 2005), and average clustering
coefficient (Takemoto et al., 2007; Zhu and Qin, 2005).
These global properties reflect the complex interaction
machineries. However, using the graph theories to
investigate the metabolic networks misses the important
compound character that any compound in metabolic
network cannot be substituted directly by other single
compound.

Here we try to investigate the local property and how it
impacts other reactions by deleting an initial reaction in the
metabolic network. The impact degree is defined as the
number of cascading failures of following and/or forward
reactions when an initial reaction is deleted. We have

determined this to be the global property when calculating
the average value of impact degrees among all reactions in
the metabolic network. This method establishes the link
between robustness and pathway function for large-scale
metabolic network. This method does not need the biomass
reactions as usually used in FBA method. We try to
investigate what determines the robust mechanism of the
metabolic networks from three aspects, the percentage of
reversible reactions, the average connected degree, and the
optimal growth temperature.

Materials and Methods

The metabolic network of each organism represents its inner
relation of various metabolites. We downloaded metabolic
reactions from the KEGG database (Kanehisa et al., 2004)
at August 2008. The reaction and pathway data locate at
the FTP server (ftp://ftp.genome.ad.jp/pub/kegg/release/
current/). There are 854 organisms in current KEGG
database. The number and content of reactions are variable
in these organisms.

To investigate the compensatory mechanism of reaction
deletion, we develop a method to calculate the impact
degree, which is defined as the number of cascading failure
of following or/and forward reactions when an initial
reaction is deleted. There are two kinds of reactions,
reversible reaction and irreversible reaction. Hence, we
divide each reversible reaction into two irreversible reactions
with different directions. Generally, substrate and product
are defined as the consumed metabolites and the produced
metabolites of reaction, respectively. A reaction’s deletion
may impact other reactions, which takes on two aspects.
One is that the forward reaction may be terminated when
the products cannot be consumed, the other is that the
subsequent reactions without the metabolite (substrate)
produced by the initial reaction will be terminated. These
two kinds of impacted reactions will cascade to impact
others.

Most reactions have multiple substrates and multiple
products. For clearly presentation, we just use a simple
example to illustrate the process. There is a schematic
diagram to illustrate how to calculate the impact degree
for each reaction, as shown in Figure 1. There are seven
metabolites and six reactions in this figure. The arrow
represents the reaction from the substrate to the product. If
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Figure 1. A sample of metabolic reaction network.
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the reaction R1 is deleted, the direct following reactions R2
and R5 are influenced because no substrate produced by the
R1 can supply these two reactions. The reaction R3 is also
directly influenced by the reaction R2. But the reaction R4
and R6 are not influenced by the reaction R3. So, the impact
degree of the R1 is 4, which contains R1, R2, R5, and R3. The
deletion of reaction R1 only influences subsequent reactions.
If the reaction R4 is deleted, it will influence the direct
forward reaction R3 and R4. The metabolite D cannot be
consumed so that these two reactions must be not active in
the living organism. The reaction R2 also cannot be active
because the metabolite C cannot be consumed. The reaction
R1 and R2 are not influenced by the reaction R2. Hence, the
impact degree of the reaction R4 is 4, which contains R4, R3,
R6, and R2. Certainly, if the reaction R1 and R4 are deleted
simultaneously, the impact degree of these two reactions is 6.

The metabolic networks have few cycles in which
metabolites are transitive dependency. Because such cycles
usually have many entrance and exit metabolites, not all the
reactions in such cycles are influenced by the initial deleted
reaction when reactions are cascading failure to the cycles.
Therefore, we do not take account the reactions in the cycles.
Certainly, the existence of these cycles may result in larger
impact degrees of some reactions than that calculated by our
method. However, the number of such reactions is small
compared to the hundreds even thousands of reactions in an
organism.

Results

Deletion of an intracellular reaction in biology primarily
implies that the enzyme that catalyzes the particular reaction
is either not produced or produced but rendered inactive.
The inaction of an enzyme is also the result of knockout of
the corresponding gene(s). However, the relations between
these two joints, gene–enzyme and enzyme–reaction, are not
straightforward. Some enzymes are independent proteins,
which carry out identical reactions and some others need
enzyme complexes (multiple enzymes) to be expressed for
these reactions to occur. Generally, a reaction is catalyzed
by a single-enzyme. Some other reactions can be catalyzed
by many different enzymes, each of which can catalyze
the reaction individually. Here, we mainly investigate the
structure of the metabolic reaction network, and we also
investigate the impact of the enzyme deletion on the
metabolic reaction network. Due to the complex gene–
enzyme relation and the absence of the gene–enzyme
relationships for all the organisms, we do not take account of
the knockout of genes.

The reaction ‘R06432’, which the equation is ‘dTDP-L-
olivoseþ S-Adenosyl-L-methionine$ dTDP-L-oleandroseþ
S-Adenosyl-L-homocysteineþHþ’, has the largest impact
degree with the value of 27. This reaction only exists in the
pathway of polyketide sugar unit biosynthesis in the bacteria
of Streptomyces avermitilis. Only a few reactions have
large impact degrees (Fig. 2). There are 170 reactions that

have average impact degrees are greater than 5. Compared
with the total number of reactions (3,377), the reactions with
great impact degrees only occupy a small part ("5%). Most
reactions have small impact degrees. Especially, there are 955
reactions with the value of 1, which means that they do not
influence any other reactions. In total, the average impact
degree among all reactions in all organisms is "1.98.
Such small value shows that the organisms have perfect
compensatory mechanism.

A reaction should be important if it exists in many
organisms. Hence, our null hypothesis is that the reaction
existing in many organisms should have a small impact
degree because the organism should have strong compen-
satory mechanism to the absence of this reaction. However,
there are cases where few reactions exist in many organisms
and have great impact degrees as shown in Figure 2.

The gene knockout process is of higher biological
relevance than the reaction deletion. The reaction essenti-
ality is determined by the associated gene. Because there
is no gene database to validate the reaction essentiality for
all of the organisms, we can but refer to the E. coli gene
essentiality published by Gerdes et al. (2003). Their work
gave the enzyme–gene relation information of E. coli in
detail. We also extract the reaction–enzyme information
from the KEGG database and relate the reaction to the gene
by the enzyme. Hence, the essentiality of a reaction can
be inferred from the gene in the E. coli. However, some
reactions are determined by multi enzymes or genes. Here,
we consider that if a gene is essential, then the corresponding
reaction is ‘‘essential,’’ and if an enzyme does not exist or
exist but the essentiality of this enzyme is not clear in the
E. coli, then the corresponding reaction is defined as
‘‘unclear,’’ and other reactions are defined as ‘‘non-
essential.’’ For presenting the essentiality of all reactions

Figure 2. The relation between the average impact degree of the reaction and
the number of organisms containing this reaction. Note that node represents reaction.
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clearly, we sort the total impact degree of all reactions from
large to small and separate these reactions into 12 groups,
where each group has 300 reactions except for the last group
(Fig. 3). The essential reactions occupy a big proportion
in the first two groups (top 600 reactions sorted by the
descendent total impact degree). Especially, the reactions
with top largest total impact degrees almost are the essential
ones as shown in Table I. Though many reactions with large
impact degrees are not clear for the essentiality, they are
most likely to be the essential ones in other organism. For
example, the reaction R04109 (L-Glutamyl-tRNA(Glu)þ
NADPHþHþ$ (S)-4-Amino-5-oxopentanoateþ tRNA(Glu)þ
NADPþ) exists in 547 organisms and has a total of 6,213
impact degree among all the organisms. This reaction has an
enzymes (EC 1.2.1.70) functioned as glutamyl-tRNA
reductase. This enzyme is essential in many organisms,
such as Mycobacterium tuberculosis H37Rv (Sassetti et al.,
2003) and Francisella novicida U112 (Gallagher et al., 2007).
Another example is that the reaction R00014 (Pyruva-
teþThiamin diphosphate$ 2-(alpha-Hydroxyethyl)thia-
mine diphosphateþCO2) exists in 809 organisms and
has a total of 8,762 impact degree among all the organisms.
This reaction has enzyme (EC 1.2.4.1) functioning as
pyruvate dehydrogenase. This enzyme is essential in many
organisms, such as B. subtilis 168 (Kobayashi et al., 2003),
S. aureus N315 (Ji et al., 2001), Mycoplasma genitalium G37
(Glass et al., 2006), and M. pul monis UAB CTIP (French
et al., 2008).

When the total impact degree is decreasing, the
proportion of the essential reaction is also decreasing. This
result means that it is most likely to be an essential reaction
if it has great impact degree. Contrarily, if a reaction has
a small impact degree, then this reaction should not be
essential.

We also separate all the reactions into 12 groups by the
weight of the reaction where the weight is defined as the
number of the different organisms containing this reaction.
The reaction in the frontal groups exists in a lot of organisms

(Fig. 4). It is distinct that the reaction with great weight is
most likely to be an essential one (Table II). It is very possible
that the reaction is essential when it exists in many
organisms. These universal reactions are important for the
organisms. However, the relation between the average
impact degree of a reaction and the number of organisms
holding this reaction does not exist with a significant
correlation (Fig. 2). We speculate that the reaction with both
great impact degree and a great weight should be most likely
the essential one. Therefore, we testify the reactions exist
both in the first group of the two kinds of sort orders (Figs. 3
and 4). We find the essential reactions occupy 44.54% of the
total 119 reactions and the reactions with unclear essentiality
occupy 29.41%.We also testify the reactions exist both in the
first two groups of the two kinds of sort orders. There are
417 reactions having both great impact degree and great

Figure 3. Reaction essentiality assertions in different groups. Note that the
reactions are separated into 12 groups sorted by the total impact degree from large to
small.

Table I. List of top 42 reactions with great impact degree.

Reaction Impact degree Essentiality

R00014 8,762 U
R00621 6,833 E
R00036 6,804 E
R01626 6,660 E
R00428 6,505 E
R05046 6,505 E
R05578 6,467 E
R04109 6,213 U
R01799 6,183 E
R00084 6,089 U
R05048 5,865 E
R02272 5,756 E
R07618 5,402 E
R03165 5,291 E
R04639 5,225 E
R00660 5,090 N
R05636 4,769 U
R05688 4,569 E
R03193 4,367 E
R02735 4,083 E
R02199 4,072 N
R05633 4,056 E
R05634 3,967 E
R00586 3,965 E
R00615 3,923 U
R03504 3,671 N
R01818 3,586 N
R07460 3,516 U
R03018 3,490 E
R03197 3,487 E
R05637 3,411 E
R02473 3,312 N
R02783 3,155 E
R01150 3,144 E
R02016 3,135 U
R00734 3,099 E
R03650 3,034 E
R04958 2,913 E
R05883 2,908 U
R00401 2,873 N
R00511 2,869 U
R04457 2,825 U

E, essential; N, non-essential; U, unclear.
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weight. The essential reactions occupy 37.41% and the
reactions with unclear essentiality occupy 28.30%. The
reaction in the unclear group is most likely to be the essential
one though it is unclear in the E. coli. For example, the
reaction R01518 (2-Phospho-D-glycerate$ 3-Phospho-D-
glycerate) exists in 833 organisms and the total impact
degree is also 833. This reaction has enzyme (EC 5.4.2.1)
functioning as phosphoglycerate mutase. This enzyme is
essential in the B. subtilis 168 (Kobayashi et al., 2003),
M. genitalium G37 (Glass et al., 2006), and Francisella
novicida U112 (Gallagher et al., 2007).

We take the metabolic network as reaction graphs where
the node is the reaction and an edge exists between two
reactions if there is a compound, which is both a product of
one reaction and a substrate of the other one (Nacher et al.,
2005; Ramezanpour et al., 2003; Wagner and Fell, 2001). We
calculate the connected degree for each reaction in all the
organisms. We then calculate the average connected degrees
for each reaction among all the organisms. For example, the
reactions R00006 exists in 688 organisms and all the total
connected degrees for this reaction in 688 organisms are
20,147 hence the average connected degree of this reaction is
39.28. In order to calculate the average connected degree
distribution, we round value of the average connected
degree to the integer for all reactions. Hence, the average
connected degree of the reaction R00006 is 39. The average
connected degree distribution is shown in Figure 5. This
distribution is in good agreement with power law,
specifically, P(k)" k#g, where P(k) is the probability of
finding a vertex with degree k, and g is the connected degree
exponent, with its value being 1.08. This reaction graph is
scale-free. The scale-free networks have been thought to be
robust against accidental failures. This is because random
failure affects mainly the node with small connected degree.
Such failed nodes do not disrupt the networks’ integrity
(Albert et al., 2000).

We group all the reactions by the average connected
degree from large to small (Fig. 6). The essential reactions

almost distribute equally in each group. We cannot
speculate the essential reaction by the distribution of the
average connected degree of the reaction node. It is implied
that the reaction node with high average connected degree
need not be important for the real organisms. It is observed
that the essentiality of reactions in a node is not correlated
with node connectivity as structural analysis can suggest.
This character partly determines the robustness of the
organisms because the lethal probability is reduced even if
the hub reaction of the metabolic network was attacked.

For each organism, it has a global property, which is
the average connected degree among all reactions in this
organism. Such global property can represent the complex-
ity of organism and the denseness of pathways in organism.
The more redundant pathways are, the higher of average
connected degree is. We also investigate the ability of the

Figure 4. Reaction essentiality assertions in different groups. Note that the
reactions are separated into 12 groups sorted by the weight, which is the number of
organisms containing the corresponding reaction from large to small.

Table II. List of top 42 reactions with great weight.

Reaction Weight Essentiality

R00377 852 E
R00378 852 E
R00376 852 E
R00375 852 E
R03660 850 U
R03662 848 E
R03658 845 E
R00127 845 E
R01547 845 E
R03656 844 E
R03038 844 E
R03654 843 E
R03664 843 E
R02918 842 E
R03657 841 E
R03665 840 E
R05577 840 E
R03663 839 E
R03661 839 E
R03655 838 E
R00158 838 E
R03650 837 E
R05578 836 E
R03659 833 E
R01518 833 U
R03646 832 E
R01512 831 E
R00658 831 U
R01015 829 U
R00945 827 E
R01056 826 U
R00571 826 E
R00573 826 E
R04773 824 E
R02016 823 U
R01049 822 E
R04771 817 E
R00177 817 E
R00014 809 U
R02018 802 E
R02024 802 E
R02094 802 E

E, essential; N, non-essential; U, unclear.
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organism to compensate for the deletion of multi-reactions
simultaneously. Here, we take account of randomly deleting
10 reactions at a time for all the organisms and repeating this
process to 1,000 times. Hence, every organism has a value
representing the ability to compensate the deletion of ten
reactions. Figure 7 represents the correlation between the
average connected degree and the compensatory ability for
each organism with the value of 0.18. The relativity between
the average degree and the compensatory ability represents
that redundant pathways contribute robustness of the
organism.

For those 854 organisms, there are 52 archaea organisms,
137 eukayote organisms, and 665 bacteria organisms. We
also separate these organisms into nine groups according to
their average impact degrees from large to small (Fig. 8). We
find the archaea organisms have a small average impact

degree compared to two other kinds of organisms. Archaea
organisms may be the oldest form of life on Earth. Most live
in extreme habitats such as extremely hot thermal vents
or hypersaline water. The small average impact degrees of
archaea organisms indicate that these organisms have strong
robustness to resist the various perturbations during the
evolution process.

We also calculate the percentage of the reversible
reactions for each organism. Figure 9 represents the relation
between the average impact degree of random ten reactions
and the percentage of the reversible reactions for each
organism. Though the relativity of these two characters

Figure 6. Reaction essentiality assertions in different groups. Note the reac-
tions are separated into 12 groups sorted by the average reaction connected degree
from large to small.

Figure 7. The relation between the average connected degree and the average
impact degree among all organisms. Note the average impact degree is adopted from
1,000 repetitions of randomly deleting 10 reactions synchronously. Each node is a
reaction. [Color figure can be seen in the online version of this article, available at
www.interscience.wiley.com.]

Figure 5. Distribution of degree in reaction graph with both axes plotted on log
scales.

Figure 8. Category assertions in different groups. Note the average impact
degree is adopted from deleting 10 reactions synchronously among 1,000 repetitions.
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is not strong with the value of 0.18, it implies the
compensating null mutations of the organism are partly
determined by the reversible reactions.

We further investigate whether or not the optimal growth
temperature is correlated with the average impact degree.
The optimal growth temperature of 113 prokaryotic
organisms are obtained from the work of Takemoto et al.
(2007), which contains 18 archaea organisms, and 95
bacteria organisms. Figure 10 shows significant negative
corrections between optimal growth temperature and
average impact degree. The percentage of the reversible

reactions is positively correlated with optimal growth
temperature (Fig. 11).

Discussion

Among many researches to predict the essential genes by
analyzing the metabolic networks, the FBAmethod based on
optimization is the most important one. Currently, many
extensions of FBA method have developed (Burgard et al.,
2003; Dashika et al., 2006). FBA method typically invokes
the optimization of a particular cellular objective. Most
objectives are set as the maximizing biomass yield (Feist and
Palsson, 2008). Some researches approve it (Gianchandani
et al., 2008), but others do not confirm it (Nielsen, 2007;
Schuster et al., 2008). Besides, the biomass reaction, which
represents the growth of the organism is hard to give for
many organisms. It still has many difficulties to predict
essential reaction correctly by FBA method (Becker and
Palsson, 2008). The theory of minimal cut set based on
EFMs is provided firstly by Klamt and Gilles (2004), which is
minimal set of reactions in the network whose knockout will
definitely lead to a failure in certain network functions. The
reactions in such set are essential for the target. The analysis
of potential failure modes in metabolic networks will help to
identify crucial parts in the network structure. Though Haus
et al. (2008) provided an improved algorithm to calculate
the minimal cut set and EFMs for solving even large-scale
metabolic network, the time required was long. Another
disadvantage of calculating the EFMs to sustain the growth is
that the target reaction (biomass synthesize) is also not given
for a lot of organisms’ metabolic network. Our method
does not need the target reaction and hence provides a
compensatory mechanism to predict essential reaction.

Figure 9. The relation between the percentage of reversible reactions and the
average impact degree among all organisms. Note the average impact degree is
adopted from 1,000 repetitions of randomly deleting 10 reactions synchronously. Each
node is an organism. [Color figure can be seen in the online version of this article,
available at www.interscience.wiley.com.]

Figure 10. The relation between the optimal growth temperature and the
average impact degree among 113 prokaryotic organisms, including 18 archaea
organisms, and 95 bacteria organisms. Note the average impact degree is adopted
from 1,000 repetitions of randomly deleting 10 reactions synchronously. Each node is
an organism. [Color figure can be seen in the online version of this article, available at
www.interscience.wiley.com.]

Figure 11. The relation between the optimal growth temperature and the
percentage of reversible reactions among 113 prokaryotic organisms. [Color figure
can be seen in the online version of this article, available at www.interscience.
wiley.com.]
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Zhu and Qin (2005) found that archaea metabolic
networks differentiate significantly from those of bacteria
and eukayote organisms by analyzing the network indices,
degree distribution, and motif profile. Maybe the archaea
metabolic networks suffer small impaction from inner
disturbance as illustrated in our work, which results in the
structure difference from the other two categories. It is an
interesting phenomenon that the structural properties are
correlated with the optimal growth temperature (Takemoto
et al., 2007). Here, we also find that optimal growth
temperature is negatively correlated with the impact degree
among 113 prokaryotic organisms. As we all known that it
does not hold the absolute irreversible reactions. Usually,
some irreversible reactions turn into reversible reactions
when the temperature arises. Therefore, the high tempera-
ture results in high percentage of reversible reactions in
the metabolic network. Because the average impact degree is
negatively correlated with the percentage of reversible
reactions and the small average impact degree implies the
more robustness of metabolic network, the robustness
of organism is also determined by the optimal growth
temperature. The existence of reversible reaction enlarges
the feasible space of flux distribution, which also results in
more robustness. The scopes of compounds are investigated
by Handorf et al. (2005). Such scopes comprise all
compounds, which can be synthesized from the seed
substrates. It demonstrated that most of the deletions of
single reaction have only a small or even no effect on the
scope size. The network expansion is in general very robust
against elimination of single or few reactions. The method of
scopes for compounds analyzed the robustness of all
reactions in the KEGG database, not differentiating the
organisms. They described the robustness of biosphere in
some extent when all reactions are collected together. Their
method is an expanded process from one compound or a
few compounds, whereas our method is reduced processes
that delete reactions from the complete metabolic network.
Both methods provide new insight into robust analysis of
metabolic network.

Conclusion

This article starts with the analysis of the local property of
the metabolic network, which is the impact degree of each
reaction to the metabolic network. It suggests that the
reaction with larger impact degree to others is likely to be
essential. Furthermore, the universal reactions are also likely
essential. If the reaction has both a large impact degree and
exists in a lot of organisms, the reaction should be classed as
essential. Taking the metabolic reaction network as the
graph where the nodes are the reaction and the edges are
the relation of two reactions connected by the common
metabolite, the metabolic networks have a scale-free
property. In graph theory, the scale-free feature can resist
the most uncertain perturbation where the chance to attack
the hub of the network is small. Though graph theory

suggests that hubs are the most important feature of the
whole system, the cellular networks do not follow this rule
that the essential reactions exist not only in the hub nodes
but also in other non-hub nodes.

The average impact degree of an organism is the global
property of this organism. Taking the metabolic network as
a graph, the organism also has another global property,
which is the average connected degree. For all the organisms,
these two kinds of degrees (average impact degree and
average connected degree) have distinct relativity, which
represents redundant pathways contributing to the robust-
ness of the organisms. Another global property of the
organism is the percentage of reversible reactions. If an
organism has many reversible reactions, the one would have
more strong robustness. The robustness also correlates to
the optimal growth temperature.

Furthermore, comparing the three categories of organ-
isms, the archaea organisms have small average impact
degrees. This discovery indicates the archaea organisms with
strong robustness can resist perturbation and live in extreme
environments through evolutionary history.
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