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The Support Vector Machine (SVM) is an algorithm that derives a model used for the classification of data
into two categories and which has good generalization properties. This study applies the SVM algorithm to
the problem of virtual screening for molecules with a desired activity. In contrast to typical applications of
the SVM, we emphasize not classification but enrichment of actives by using a modified version of the
standard SVM function to rank molecules. The method employs a simple and novel criterion for picking
molecular descriptors and uses cross-validation to select SVM parameters. The resulting method is more
effective at enriching for active compounds with novel chemistries than binary fingerprint-based methods
such as binary kernel discrimination.

INTRODUCTION

Virtual screening refers to the use of a computer-based
method to select compounds from a library or database of
compounds in order to identify ones that are likely to possess
a given activity, such as the ability to inhibit the action of a
particular therapeutic target (see e.g. refs 1-3). Selection
of molecules with a virtual screening algorithm should yield
a higher proportion of active compounds, as assessed by
experiment, relative to a random selection of the same
number of molecules; i.e., the sample is enriched for active
compounds. In this work, we are interested in the case where
a heterogeneous set of active compounds is known (as could
be obtained from a prior screening process or from the
scientific literature), and we seek other molecules with the
same activity, preferably from novel compound classes.
These new compounds may include ones which have better
pharmacokinetic properties than those previously known, are
more “leadlike”,4,5 and/or have not been previously patented.

The Support Vector Machine (SVM)6,7 is an algorithm
which has begun to receive attention in the cheminformatics
field for its ability to classify objects into two classes as a
function of their features. Several studies have shown the
SVM to be among the best methods for correctly classifying
molecules.8-11 A standard application of the SVM algorithm
involves defining two classes of objects, determining a set
of numbers that characterize each object, and using the SVM
algorithm to calculate a classification model for the objects.
After this training step, the SVM model is used to classify
other objects. In this work, the two classes of objects are
active and inactive molecules, which are characterized by
their molecular descriptors. Once trained, the model is then
applied to a test set to predict which of its molecules are
active.

A disadvantage of using a classifier such as the SVM is
that it does not rank molecules according to their likelihood
of being active. In practice, the number predicted to be active
using a binary classification approach may significantly differ

from the number of compounds that can be tested experi-
mentally using available resources. Additionally, some of
the compounds predicted to be active may not be available.
In this work, we modify the SVM methodology to provide
for the ranking of molecules. We also describe automated
methods for choosing descriptors and appropriate parameters
for using the SVM to enrich a selection of molecules for a
desired activity.

METHODOLOGY

In this work, molecular descriptors of the active and
inactive compounds in a training data set are used to train a
Support Vector Machine.6,7 The descriptors of these mol-
ecules can be represented as points in a multidimensional
space where each dimension corresponds to one of the
descriptors. The SVM seeks to find a boundary that best
separates the two sets of points corresponding to the active
and inactive compounds. The resultant SVM model then
ranks a test set that consists of other active and inactives,
and the recovery of the active compounds provides a measure
of the performance of the SVM-based enrichment method.
The molecular descriptors in the SVM model are chosen for
their ability to cluster the training set actives in the descriptor
space. As the SVM training process is affected by the choice
of values for several SVM parameters, different SVM models
can be obtained for a given training set. Here, a cross-
validation-derived statistic is used to choose among the
different possible models. The next few sections describe
this process in more detail.

The Support Vector Machine.Each objecti (molecule)
to be classified by the SVM is described by a vectorxi of M
real numbers (descriptors) and can be therefore represented
as a point in anM-dimensional space. The objects in the
first class (active molecules in the training set) are each
assigned a value ofyi ) +1, and the objects in the second
class (inactive molecules) are assigned a valueyi ) -1. In
the linearly separable case, the SVM attempts to find an
optimal hyperplane that perfectly separates the two classes
of objects in theM-dimensional space. The optimal hyper-* Corresponding author e-mail: gilson@umbi.edu.edu.
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plane is one which maximizes the margin, defined as the
closest distance from any point to the separating hyperplane
(Figure 1A). The points of each class then lie on or beyond
one of two margin planes which are parallel to the separating
plane (Figure 1A). The predicted class of another object (a
molecule in the test set) thus depends on which side of the
separating hyperplane the object’s point is located.

A hyperplane is defined by a normal vectorw and a scalar
b such that any point on this plane obeys eq 1

and the equation of vectorw that maximizes the margin is

whereN is the number of objects (molecules) and theRi are
coefficients obtained from the SVM training. Only the points
on, or on the wrong sides of, the margin planes have nonzero
values ofRi. These points are referred to as support vectors.
The coefficientsRi are obtained by maximizing the following
functional

subject to the constraints

and

The value ofb can be subsequently obtained by noting that
for any objecti

Equation 3 has the form of a quadratic optimization
problem and has a unique solution for a given system. To
solve forb and the set ofRi, we used portions of code from
the libsvm suite of programs12 which employs a modified
version of the Sequential Minimal Optimization (SMO)
algorithm.13,14 This method solves the SVM problem by
iteratively solving for pairs ofRi while updating the values

of upper and lower thresholds forb, until convergence of
these values has been reached within a specified tolerance.

The SVM model consists of the values ofb and theRi,
the support vectors and their assigned classes (xi and yi),
and the SVM kernel and its associated parameters, which
are described later. Once the SVM model has been obtained,
the decision function f(x) can be used to predict whether an
untested object, defined by its vectorx, belongs to the+1
or -1 class:

In practice, the separation of the two sets of data points
may not be perfect. Since the solution of the SVM training
problem depends on the points closest to the decision
boundary, one outlying point can greatly skew the position
of the decision boundary with respect to the other points.
Thus, allowing for a small number of training errors can lead
to a decision boundary that provides for superior classifica-
tion of objects in a test set. The L1 soft margin formulation
of the SVM15 allows for this possibility by allowing points
to fall on the wrong side of the appropriate margin plane
but penalizing each of these points by a constant multiplied
by its distance from the margin plane (Figure 1B). This
constant,C, controls the tradeoff between maximizing the
margin and placing each point on the correct side of the
relevant margin plane. The optimal separating plane is then
found using the same procedure as before (eqs 3 and 4), but
with the additional constraint that the values ofRi must be
less than or equal toC. In this work, we used separate error
weighting constants,C+ andC-, for each of the two classes
of objects-active and inactive molecules, respectively. Since
we are more concerned with the misclassification of the
actives than the inactives, the value ofC- was restricted to
be less than or equal to the value ofC+.

The SVM methodology is not limited to the use of a planar
separating boundary to classify the two classes of data points.
A nonplanar decision boundary can be achieved by trans-
forming the points into a higher dimensional space and
performing a planar separation in this space. In practice, this
is achieved using the elegant “kernel trick” in which the dot
product in eqs 3 and 5 is replaced with a kernel function,K,
which represents the dot product in the transformed space.
This avoids explicit calculations involving the higher dimen-
sions, which can even be infinite in number; the transforma-
tion is implicit in the choice of kernel. The generalized

Figure 1. Separating hyperplane of the Support Vector Machine that maximizes the margin between two sets of perfectly separable objects,
represented as circles and squares. (A) Optimal hyperplane that perfectly separates the two classes of objects. (B) Optimal soft margin
hyperplane which tolerates some points (unfilled square and circle) on the “wrong” side of the appropriate margin plane.
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decision function then has the form

Within this framework, use of the so-called linear kernel
recovers the linearly separable SVM:

In this work, we use the Gaussian or Radial Basis Function
kernel:

This kernel was chosen because it readily produces a
closed decision boundary, which is consistent with the
method used to select the molecular descriptors, as described
later. It should be noted that when the value ofγ is large,
the separating boundary has a large number of support
vectors and can become tortuous. This risks overfitting the
training set data to yield an SVM model that is not robust.
In contrast, a small value ofγ can lead to separating
boundaries described with a small number of support vectors
but that may be too smooth to classify the training set
examples with sufficient accuracy. Therefore, a suitable value
of γ is needed for training the SVM.

In this work, we move away from the classification
paradigm but retain other aspects of the SVM methodology.
Removing the sgn function from eq 6 produces a function
that generates a real number instead of-1 or +1:

When applied to the descriptors of a set of untested
molecules, the values produced by eq 9 can be used to rank
the molecules. We refer to the number calculated by eq 9 as
the SVM activity score, where higher scores are more
favorable. The SVM is trained in the same way as if the
resultant model were to be used for classification.

Evaluation of Support Vector Machine Parameters
Using Cross-Validation. In this work, the derivation of an
SVM model for a particular training set requires choosing
appropriate values for the parametersγ, C+, andC-. To
select values for these parameters, multiple SVM models are
obtained from a systematic scan of combinations of param-
eter values, and the resulting models are each assessed by a
cross-validation procedure to yield a statistic called AvRank
(described below). The SVM parameter values that yield the
lowest value of AvRank are then used to train a final SVM
model but with a higher precision than was used in the scan
(see below). This model is then validated by application to
a test set.

The training set statistic, AvRank, is calculated as follows.
The training set, which consists ofk active molecules and
N-k inactive molecules, is subjected to ak-fold cross-
validation procedure. Here, the training set is first divided
into k groups of molecules, each containing one active and
approximately (N-k)/k inactive molecules, chosen randomly.
The SVM is trained on the pooled set comprising the
molecules ink-1 of these groups, and then the SVM activity

scores (eq 9) of the molecules in the one left-out group are
calculated using the SVM model. This process is performed
k times so that each active and inactive is left out once. As
a time-saving measure, the stopping tolerance of the SVM
algorithm is increased from the usual value of 0.001 to a
looser value of 0.01 during the cross-validation process. After
one round of this cross-validation procedure, the molecules
are ranked according to their cross-validated SVM activity
scores, their fractional rankings (the ranking of the molecule
divided by the total number of molecules) are determined,
and the average of the fractional rankings of the actives is
calculated. This procedure can yield slightly different results
depending upon which inactive molecules are randomly
assigned to each of thek groups, so it is performed five times
to obtain five slightly varying values for the average
fractional rank. We define our performance statistic AvRank
as the average of these average fractional ranks.

In the systematic scan of SVM parameters, the values of
C+ andC- are set to 1, 10, 100, 1000, or 10000 with the
restriction thatC- is less than or equal toC+. The values
of the Gaussian kernel parameterγ are set to 0.01 or 0.1.
(When the value ofγ was 1.0 or more, the number of support
vectors in the resultant model was found empirically to be
greater than 85% of the total number of molecules in the
training set, a situation which risks overfitting the training
data.) Some combinations of parameters (sameγ and
differentC+ and/orC-) produce identical models to those
that have been produced earlier in the scan. Therefore, the
SVM model resulting from a given combination ofγ, C+,
andC- is compared to the previously generated models and
then deleted if it is found to be a duplicate. The value of
AvRank is calculated for each unique model. After the scan
of parameters, the final SVM model is calculated for the
training set data using the values of parameters that gave
the lowest value of AvRank, but with the SVM stopping
tolerance value set to 0.001. The set of SVM parameters
obtained in this manner will differ according to the active
and inactive compounds in the training set, and so the scan
over candidate SVM parameters and concurrent calculation
of AvRank values is considered part of the training process
in this work.

Because we are using the SVM to rank compounds, rather
than classify them, we could not apply standard SVM figures
of merit to establish optimal SVM parameters. However, we
did evaluate alternatives to the AvRank statistic. These
include the fractional rank of the worst-ranked active
compound, the average of the square root of the fractional
ranks (a statistic which emphasizes the higher-ranked
compounds), and these same quantities multiplied by func-
tions of the number of support vectors. These alternatives
did not improve the results. It is worth mentioning that the
AvRank statistic devised for this work is similar to the sum
of ranks of the training set actives (SumRank), obtained from
a leave-one-out cross-validation procedure, which is used
to select an appropriate parameter in binary kernel discrimi-
nation (BKD).16,17

Selection of Molecular Descriptors.Each molecule can
be considered to correspond to a point in a descriptor space,
where the molecule’s coordinates are specified by the values
of its descriptors. Descriptors are chosen with the aim of
placing the active molecules in a small cluster whose volume
excludes most of the inactive compounds. Thus, the preferred
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descriptors are those for which the values of the inactive
molecules tend to lie outside of the range of the descriptor
values of the actives. This is consistent with our use of the
Gaussian kernel (eq 8) which readily leads to a closed
boundary around the active compounds to the exclusion of
many inactive compounds. A molecule whose descriptor
values position it close to the center of the cluster will have
a high SVM activity score (eq 9).

The first step in descriptor selection consists of removing
descriptors which have the same value (usually zero) for at
least half of the molecules in the training set. Discrimination
scores for the remaining descriptors are then calculated,
where the discrimination score for a given descriptor is
defined as the fraction of inactive molecules in the training
set whose descriptor values lie outside of the range of
descriptor values of the actives.

For a few descriptors, the values for one or more active
molecules significantly deviate from the values for the other
actives. Using such a descriptor would be inconsistent with
the idea of grouping the active molecules into a single cluster
in the descriptor space. To remove these descriptors, we first
calculate a score for each descriptor which is the median
absolute deviation of the descriptor values of all molecules
divided by the range of descriptor values for the active
molecules, where the median absolute deviation is the median
of the absolute differences of each value from the median.
This score originally arose as a candidate for the descriptor
discrimination score which ranks descriptors. Descriptors
with a value of this score less than 0.1 are eliminated from
further consideration. Of the remaining descriptors, those
with the highest discrimination scores are retained if the
absolute value of the correlation with another descriptor with
a higher discrimination score is less than a user-defined value,
fixed at 0.8 for this work, which we term the correlation
cutoff. In this way, a set of favorable descriptors is selected
prior to the SVM training step.

The descriptor selection used in this work is a so-called
“filter” method in which the descriptors are chosen prior to
applying the support vector machine (e.g. see ref 18). This
class of descriptor selection method was considered to be
preferable to “wrapper” methods such as recursive feature
elimination19 in which the SVM is trained multiple times
and the descriptors subsequently evaluated in light of the
training. However, “wrapper” methods can be time-con-
suming when applied to a large number of available
descriptors (511 for this work). We also avoided the use of
descriptor selection methods such as Golub’s feature selection
criterion20 which presume a separation of active and inactive
compounds into separate parts of the space spanned by the
descriptors. This class of methods conflicts with our concep-
tion of the optimal descriptors as those which place the
actives in a small, closed region in a “sea” of inactive
compounds in the space spanned by the descriptors. The
discrimination score for choosing the descriptors is a simple
measure which is consistent with this concept.

For each of the selected descriptors, the values from all
of the training set molecules are linearly transformed so that
the values for the active compounds in the training set occupy
the interval [0, 1]. This process scales the descriptor data so
that descriptors with large numerical values do not dominate
the SVM model. The same transformation is also used to
scale the descriptors in the test set.

Except where otherwise noted, all SVM models are
derived using the 50 descriptors with the highest discrimina-
tion scores, subject to the correlation cutoff criterion.
However, in one set of calculations, the number of descriptors
was not held fixed but was allowed to vary in the scan along
with the SVM parametersγ, C+, andC-. The candidate
values of the number of descriptors were 10, 20, 30, 40, 50,
60, and 70.

Construction of Training and Test Data Sets. The
molecules used in the present study comprise five sets of 50
molecules which each target a different protein and also a
set of background molecules that are assumed to be inactive.
The active molecules are reversible inhibitors of cyclin-
dependent kinase 2 (CDK2), cyclooxygenase-2 (COX2),
factor Xa (FXa), and phosphodiesterase-5 (PDE5) and
reversible antagonists of theR1A adrenoceptor (R1A AR). (For
convenience, all of these molecules will be referred to
interchangeably as actives or inhibitors.) Each set of 50
molecules was collected from the scientific literature and
covers a variety of chemical classes (Supporting Informa-
tion). The Lewis structures of these molecules were sketched
using IsisDraw 2.421 and saved as MDL Mol files.22,23 The
background set molecules used for most of the calculations
described in this paper were drawn from the National Cancer
Institute (NCI) diversity set of chemical compounds.24 For
one set of calculations, however, molecules from the August
1999 release of the Maybridge database25 were used instead.
In addition, when one set of 50 actives was studied, all of
the other 200 known inhibitors were assumed to be inactive
against the target of interest as were the compounds from
the background set (NCI or Maybridge).

To test the SVM-based enrichment method, the inhibitors
and background molecules must be divided into two sets:
one set that is used for training an SVM model, and a test
set to which the SVM model is applied. Each of the five
sets of 50 inhibitors was divided into two equal-sized data
sets in two different ways. Prior to the division, the
compounds with similar chemistries, as judged by one of us
(R.N.J.), were grouped. The first split of each set of 50
compounds placed the first, third, fifth, etc. compounds of
the ordered list into one set, termed ODD, and the second,
fourth, sixth, etc. compounds into another set, termed EVEN.
The ODD and EVEN sets each contain representatives from
all of the different chemical classes of the inhibitors, except
in the few instances where an inhibitor was not grouped with
another one. Thus, most of the inhibitors in one of these
sets will have at least one similar compound in the other
set. The second separation of each set of 50 inhibitors placed
the first 25 compounds into one set (called 1ST), and the
second 25 compounds into another set (2ND). These two
complementary sets of compounds contain inhibitors from
nonoverlapping chemical classes and present a greater
challenge to the algorithms described in this work.

Each of the four sets of compounds (ODD, EVEN, 1ST,
and 2ND) was supplemented with a background set of
molecules from the NCI diversity set. After filtering out
unsuitable molecules, the odd entries from the remaining
1892 NCI molecules were added to both the ODD and 1ST
data sets, and the even entries were used to supplement the
EVEN and 2ND data sets. Each training and test set can
thus be described in terms of the target of the inhibitors
selected as the actives and the set of inhibitors used; the
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nomenclature is of the form FXa/1ST.
For one set of calculations, larger test sets were used in

which the odd and even entries of the filtered Maybridge
database (25 175 molecules each) replaced NCI diversity set
molecules in the 1ST and 2ND sets. Smaller training sets
were constructed from these test sets by retaining all of the
known inhibitors but only a fraction of the Maybridge
molecules. Starting from the first compound in the given
test set, either every fifth or every 25th Maybridge molecule
was retained for the training set. The resulting data sets
contain 5035 and 1007 Maybridge molecules, respectively.
This process was repeated to generate additional training sets
but beginning from the second compound in the given test
set. We refer to these training sets as 5-1, 25-1, 5-2, and
25-2, respectively, in addition to the nomenclature described
previously.

Calculation of Molecular Descriptors. Prior to the
calculations of their descriptors, the various sets of molecules
(inhibitors, NCI and Maybridge) were edited and modified
to put them in a suitable form for the calculations. After
removal of counterions or other small molecules from each
entry, molecules containing atoms other than H, C, N, O, P,
and S and the halogens were removed. Deuterium atoms in
several Maybridge database entries were manually changed
to hydrogen atoms. Protonation of the molecules in the
Maybridge database and the 250 inhibitors was performed
by generating three-dimensional structures for these mol-
ecules with CORINA26 and then applying a locally modified
version of the molecular format interconversion program,
Babel.27 In this computer program, the rules for performing
protonation were modified to better reflect the expected
ionization state at physiological pH for functional groups
including amidine, guanidinium,N-oxide, and tetrazole. The
NCI diversity set is distributed with computed three-
dimensional coordinates and protonation states that are
representative of gas-phase conditions. Therefore, the hy-
drogen atoms of these compounds were removed and then
added using our modified version of the Babel program.
Molecules found at this stage to possess more than 150 atoms
were not considered further as we could not calculate
descriptors for molecules this large with the available
software (see below). One more molecule, arbitrarily chosen,
was omitted from each of these two sets to make an even
number of molecules in both the filtered NCI diversity set
(1892 molecules) and the filtered Maybridge set (50 350
molecules).

Molecular descriptors were calculated using version 2.1
of the DRAGON program.28 In this work, 517 descriptors
were calculated from descriptor categories 1-6 (constitu-
tional descriptors, topological descriptors, molecular walk
counts, BCUT descriptors, Galvez topological charge indices
and 2D autocorrelations) and categories 17-18 (empirical
descriptors and properties). Descriptors whose values depend
on the three-dimensional coordinates of the molecules
(descriptor categories 7-14) were not used. Additionally,
descriptors that count functional groups and atom types
(categories 15 and 16) were omitted since the descriptor
values do not span a continuous and widely varying range
of values and so are not well-suited to the methods described
in this work. Also, the descriptors X0sol, X1sol, X2sol,
X3sol, X4sol, and X5sol were omitted because their calcu-
lated values were found to vary depending on the order of

the atoms in the input file for some test molecules.
Comparison of the SVM-Based Enrichment Method

with Fingerprint-Based Ranking Methods. Using the 20
data sets, the SVM-based enrichment method was compared
to four ranking methods which make use of pairwise
similarities calculated from molecular fingerprints. In this
work, the fingerprints used were chemical hashed fingerprints
calculated from the GenerFP program in version 3.0.2 of
JChem.29 The fingerprints were generated using the following
(default) parameters: fingerprint length 512 bits (64 bytes);
two bits turned on for each pattern (where a pattern represents
a unique path of atoms and bonds of a given length); and a
maximum of five bonds for generating patterns. The pairwise
similarities were calculated as the Tanimoto similarities
between two fingerprints.30

Four of the fingerprint-based methods used in a compara-
tive study of ranking methods17 were selected for comparison
against the SVM-based enrichment method. These methods
are as follows: mean similarity of the test set compounds
to the active compounds in the training set, SA; the difference
of mean similarities to the training set active and inactive
compounds, SA-I; the maximum similarity to a training set
actives, Smax; and binary kernel discrimination (BKD).16

These methods were implemented as described in the report
of the comparative study.17 An additional ranking function
was generated by a “data fusion” method33 where the test
set SVM and BKD rankings of test set molecules were
summed to generate a new score that ranks the test set
molecules. These ranking methods were coded in the Java
programming language. The BKD scoring of test set
molecules was recoded in the C programming language in
order to compare its speed with that of the SVM-based
enrichment method.

Measures of Performance.To assess the performance
of a particular virtual screening method, we determined the
number of known active compounds that were retrieved in
the top 2% and 10% of a ranked test set of compounds.
Additional calculation of enrichment factors indicated the
ratio of actives retrieved by the method relative to the
expected number of actives in a randomly selected sample
containing the same number of molecules (2% or 10% of
the test set).31 The enrichment factor, EF, is calculated using
eq 10

where Hitssampledis the number of actives in the top-ranked
sample of Nsampledcompounds, Hitstotal is the total number
of actives, andNtotal is the number of molecules in the test
database.

Where the molecules were ranked using the SVM, we also
calculated the modified enrichment factor, EF′, defined by
Halgren et al.32 as

where APRsampledis the average percentage rank of the actives
in the sample. We calculated the EF′ value for the retrieval
of the top-ranked 18 of the 25 known actives (72% of actives)
in a given test set, close to the 70% chosen by Halgren et

EF )
Hitssampled

Nsampled / Hitstotal

Ntotal
(10)

EF ) 50%
APRsampled

Hitssampled

Hitstotal
(11)
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al.32 The advantage of this EF′ statistic is that if two different
sets of molecules’ SVM activity scores give the same ranking
for the 18th active, the modified enrichment factor will yield
a higher value for the set of scores that rank the other 17
actives higher in one list than in the other; the conventional
enrichment factor (eq 10) would not make this distinction.

We also use a statistic we call the relative performance
(RP) to quantify how well each of the virtual screening
methods performs over a number of test sets relative to the
other methods:

where

where the indexi runs over the different test sets and the
index j runs over the different ranking methods. Each term
in the summation in eq 12 is the ratio of the number of
actives retrieved from a test set (indexi) using the specified
virtual screening method (indexj) divided by the number of
actives retrieved from the same test averaged over all of the
test set methods (eq 13). The best performing method has a
relative performance greater than one, and the corresponding
value for the worst-performing method will be less than one.

Use of eq 12 instead of an unweighted average over the
different test sets prevents the results from test sets with
higher numbers of actives retrieved from dominating the
number that is calculated.

RESULTS

We evaluated the SVM-based enrichment method by
developing SVM models using training sets of active and
inactive molecules and then using these models to rank the
molecules in the corresponding test sets. Varying key
parameters and data sets in the calculations provided insight
about the factors that affect the performance of this virtual
screening method.

Variation in the Performance of Candidate SVM
Models. The first trials of our enrichment method explored
its performance as a function of the SVM parameters. SVM
models were trained using each of the combinations of the
SVM parametersγ, C+, andC-, and these models were
then applied to appropriate test sets. Figure 2 shows that there
is generally some variation in the number of actives retrieved
from the top-ranked 2% or 10% of the test sets. This variation
tends to be lower when greater numbers of active compounds
are retrieved from a given test set. All of the SVM models
retrieve more active compounds than would be expected by
a random sampling of compounds.

The AvRank statistic, described in the Methods section,
represents an attempt to select optimal SVM parameters via
cross-validation prior to applying the resultant model to test

Figure 2. Retrieval of actives compounds from (A) the top-ranked 2% of the ODD and EVEN test sets of compounds, (B) the top-ranked
10% of the ODD and EVEN test sets, (C) the top-ranked 2% of the 1ST and 2ND test sets, and (D) the top-ranked 10% of the 1ST and
2ND test sets using SVM models that were trained using different parameters. The vertical lines span the minimum and maximum number
of active compounds found in the top 2% or 10% of the test database for SVM models obtained using different values for the SVM
parametersγ, C+, andC-. The filled circle indicates how many active compounds were retrieved using the SVM model with the lowest
value of the AvRank statistic obtained from a scan of the SVM parameters. The best performance for AvRank occurs when the filled circle
is placed at the top of the vertical line. The horizontal dashed line indicates the number of active compounds expected to be retrieved by
random screening: 0.5 actives from 2% of the database and 2.5 actives from 10% of the database.

RP(j) )
1

Ni

∑
i

Nactives(i, j)
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j
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data. This statistic is calculated for each candidate SVM
model obtained during a scan of the parametersγ, C+, and
C-, and the parameters corresponding to the lowest value
of AvRank are used to select a particular model. (The
parameters selected using AvRank are listed in the Support-
ing Information.) With one exception, the SVM model with
the lowest value of AvRank retrieved two or less fewer active
compounds from the top-ranked 2% or 10% of the test
compared to the best performing SVM models (Figure 2A,B).
The lowest value of AvRank for the CDK2/ODD training
set was for a model that retrieved 13 compounds from the
top-ranked 2% of the CDK2/EVEN test set, midway between
the minimum (9) and maximum (17) number of compounds
retrieved by any of the SVM models. However, SVM models
corresponding to AvRank values less than 2% higher than
the lowest value retrieved 14-16 actives compounds from
the same proportion of the test data set. Thus, for the ODD/
EVEN split of molecules, the training-set derived AvRank
statistic is a reasonably reliable predictor of performance for
a test set.

The performance of the AvRank statistic is less impressive
for the 1ST and 2ND data sets (Figure 2C,D). Use of this
statistic avoided poorly performing models for the CDK2/
2ND and PDE5/1ST training sets (CDK2/1ST and PDE5/
ODD test sets, respectively) but did not help for some other
training sets, notably COX2/2ND and PDE5/2ND (test sets
COX2/1ST and PDE5/1ST, respectively).

Based on the results presented in this section, the remain-
ing calculations in this report used the AvRank statistic to
select the SVM parameters used in the training of SVM
models.

Retrieval of Active Compounds against a Background
of NCI Diversity Set Molecules.The SVM-based method
provides substantial enrichment for the various test sets, as
detailed in Table 1. At least 44% (11 molecules) of the 25
actives were found in the top 2% (21 molecules) of the test
data sets when the ODD and EVEN data sets were used to
train and test the SVM, and at least 84% (21 molecules) of
the actives in a given test set were retrieved in the top 10%
(107 molecules) of a given test set. The results are more
varied for the 1ST and 2ND data sets, presumably because
the active compounds in the training and test sets belong to
nonoverlapping chemical classes, unlike the ODD and EVEN
data sets. FXa inhibitors andR1A AR antagonists were the
easiest to retrieve from the 1ST and 2ND test sets, and the
recoveries were almost as good as for the ODD and EVEN

data sets. For the inhibitors of CDK2, COX2, and PDE5,
the recoveries of active compounds from the 1ST and 2ND
data sets test sets were lower than from the ODD and EVEN
data sets (Table 1). Among these three sets of active
compounds, the SVM models for the CDK2 inhibitors had
the lowest enrichment values. In all cases, more than half of
the active compounds were ranked in the top 10% of the
test data sets. Thus, the SVM successfully retrieves test set
active compounds which have chemistries different from the
training set actives.

The high-ranking actives from a given test set themselves
exhibit a range of different chemistries. Representatives of
more than half of the different chemical classes of actives
are found in the top-ranked 2% of the test set (Table 2) in
19 of the 20 cases. The exception was the 1ST/PDE5 test
set from which seven of the eight PDE5 inhibitors in the
top-ranked 2% of molecules belong to a single class of
compounds.

It is also of interest to examine the background compounds
in the test set that were highly ranked by the relevant SVM
models. A few of the putative false positives retrieved from
the CDK2 test sets are immediately recognizable as being
similar to actives in the training set (Figure 3A); however,
this very high level of similarity is not observed in the false
positives when the active compounds are inhibitors of COX2,
FXa, PDE5, orR1A AR. Many of the high-ranking (assumed)
inactive compounds exhibit a moderate degree of similarity
to some of the training set compounds and have some

Table 1. Results of the SVM-Based Enrichment Methoda

2% database 10% database 2% database 10% database

actives
test
set

72% actives
EF′ n EF n EF

test
set

72% actives
EF′ n EF n EF

CDK2 ODD 17.0 11 22.4 21 8.4 1ST 8.4 4 8.2 16 6.4
CDK2 EVEN 26.5 13 26.5 22 8.8 2ND 5.4 6 12.2 13 5.2
COX2 ODD 37.1 17 34.7 24 9.6 1ST 9.3 9 18.4 17 6.8
COX2 EVEN 39.4 18 36.7 24 9.6 2ND 31.1 15 30.6 21 8.4
FXa ODD 40.6 20 40.8 25 10.0 1ST 37.9 18 36.7 25 10.0
FXa EVEN 27.8 18 36.7 25 10.0 2ND 39.7 19 38.8 24 9.6
PDE5 ODD 36.5 17 34.7 25 10.0 1ST 7.4 8 16.3 14 5.6
PDE5 EVEN 38.6 18 36.7 24 9.6 2ND 11.6 8 16.3 20 8.0
R1AAR ODD 40.1 19 38.8 25 10.0 1ST 38.3 17 34.7 25 10.0
R1AAR EVEN 38.6 19 38.8 25 10.0 2ND 33.4 16 32.6 25 10.0
max. values 40.6 21 42.8 25 10.0 40.6 21 42.8 25 10.0

a Fifty descriptors were used for these calculations.n: number of actives in sample. EF: enrichment factor (eq 10). EF′: modified enrichment
factor (eq 11).

Table 2. Retrieval of Different Chemical Classes of Actives Using
the SVM-Based Enrichment Methoda

number of chemical
classes

number of chemical
classes

actives
test
set

2%
dbb

10%
db

100%
db

test
set

2%
db

10%
db

100%
db

CDK2 ODD 6 9 9 EVEN 8 9 9
COX2 ODD 9 10 11 EVEN 10 11 11
FXa ODD 9 11 11 EVEN 9 10 10
PDE5 ODD 6 8 8 EVEN 7 8 8
R1A AR ODD 10 11 11 EVEN 10 13 13
CDK2 1ST 3 4 5 2ND 3 3 4
COX2 1ST 4 4 4 2ND 5 6 7
FXa 1ST 6 6 6 2ND 5 5 5
PDE5 1ST 2 2 4 2ND 4 4 4
R1A AR 1ST 6 6 6 2ND 6 7 7

a Fifty descriptors were used for these calculations.b X% db: top-
ranked X% of the test database.
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chemical features such as those that occur in some of the
training set actives, as illustrated by the examples in Figure
3B. However, some of the highly ranked background
compounds possess little obvious similarity to the training
set actives (Figure 3C).

To examine the influence of changing the number of
descriptors in the SVM models, we allowed the number of
descriptors to vary in the scan of parameters during training
runs where the 10 1ST and 2ND training sets were used.
Thus, in the addition to varying the values ofγ, C+, and
C-, the number of descriptors was varied from 10 to 70 in
increments of 10. As before, the combination of these
parameters yielding the lowest value of AvRank was used
to generate a final SVM model. The recoveries of active
compounds from the top-ranked 2% and 10% of the various
test sets using these models are similar to the corresponding
recoveries using the models trained using 50 descriptors with
one exception: the recovery of PDE5 inhibitors from the
1ST test set (Figure 4). The 50 descriptor SVM model
selected by AvRank retrieved only 8 and 14 PDE5 inhibitors
from the top-ranked 2% and 10%, respectively, of the 1ST
test set and was the worst of the models with 50 descriptors
(Figure 2). The 70 descriptor model obtained from the more
extensive scan of parameters performed somewhat better,
recovering 11 and 19 PDE5 actives from the top 2% and

10% of the 1ST test set. However, this was not as good as
the best of the 50 descriptor models, which retrieved 12 and
20 actives, respectively, from the same percentages of the
test set. Based on these observations, and the results from
the other nine test sets, there appears to be little benefit from
allowing the number of descriptors to vary during the search
for optimal parameters.

Descriptor Usage.Although each set of 50 descriptors
automatically selected for the various training sets was
unique, some descriptors were more frequently selected than
others, and some were never selected. An average of 11
descriptors was selected for all four training sets (ODD,
EVEN, 1ST, and 2ND) for a given class of actives (inhibitors
of CDK2, COX2, FXa, PDE5, orR1A AR). Furthermore,
certain descriptors were more frequently chosen than others
across all training sets. Ten DRAGON descriptors were each
selected for more than half of the 20 training sets and for at
least one of all of the five classes of actives: ZM1V (first
Zagreb index by valence vertex degrees); X5A (average
connectivity index, chi-5); BEHm2 and BEHm4 (second-
and fourth-highest eigenvalues from a mass-weighted Burden
matrix/weighted by atomic masses); ATS5m, ATS6m,
ATS7m, and ATS8m (Broto-Moreau autocorrelation- lags
5, 6, 7, and 8, respectively/weighted by atomic masses; and
ATS5e and ATS8e (Broto-Moreau autocorrelation- lags 5

Figure 3. Some molecules retrieved from the 1ST (test) set of molecules using an SVM model that was obtained after training with the
2ND data set of molecules with CDK2 inhibitors as the actives. The training set molecule considered to be the most similar to the test set
molecule shown is also displayed. (A) Molecules from the 1ST data set that can be rationalized as having molecular features similar to
those in one or more of the training set molecules. (B) Molecules from the 1ST data set with obviously similar molecules in the training
set. (C) Molecules from the 1ST data set which do not have molecules that can be readily identified as having similar molecular features.
Note that while the neutral forms of the molecules are shown, ionized forms that correspond to the expected protonation states at physiological
pH were used in the calculations.
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and 8, respectively/weighted by Sanderson electronegativi-
ties). Interestingly, many of the descriptors are weighted by
mass (BEHm2, BEHm4, ATS5m, ATS6m, ATS7m, and
ATS8m) and/or are autocorrelation descriptors (ATS5m,
ATS6m, ATS7m, ATS8m, ATS5e, and ATS8e).

Figure 5 shows graphs of the number of actives retrieved
by a given SVM model (trained using 50 descriptors and
one of the 1ST and 2ND training sets) plotted against the
average of the descriptor discrimination scores from the
training step. The graphs show a correlation between the
performance of the SVM-based enrichment method and the
average descriptor discrimination scores, especially when the
top-ranked 2% of the test molecules are examined. This
suggests that training sets whose descriptors have high
discrimination scores are expected to lead to a better retrieval
of actives from a test set than training sets whose descriptors
have lower discrimination scores. In fact, the two sets of
actives with the highest descriptor discrimination score, FXa
inhibitors andR1A AR antagonists, also have the highest
enrichments (Figure 5).

Retrieval of Active Compounds from a Larger Back-
ground Set.We performed additional calculations using the
SVM-based enrichment method to see if the good levels of
enrichment obtained using the NCI diversity set are preserved
when a larger background set is used. Calculations were
performed using training and test sets based on the 1ST and
2ND splits of molecules where the NCI diversity set
molecules were replaced by molecules from the Maybridge
database. The test sets each contain 25 300 molecules, 25
of which are active in any given calculation. The training
sets contained either 5160 molecules (125 inhibitors, 25 of

which are active in a given run, plus 5035 Maybridge
compounds for the 5-1 and 5-2 data sets) or 1132
molecules (125 inhibitors plus 1007 Maybridge compounds
for the 25-1 and 25-2 data sets). In most cases, there was
an increase in the number of actives retrieved from the top
2% of the test sets containing Maybridge molecules relative
to the NCI diversity set-containing test set (Figure 6A). For
the top-ranked 10% of compounds, the levels of enrichment
from the data sets containing Maybridge compounds were
similar to the corresponding data sets in which the back-
ground molecules were taken from the NCI diversity set
(Figure 6B). Thus, the level of enrichment provided by the
method does not appear to be greatly influenced by the
number or composition of background compounds in the test
set. Figure 6 also indicates that there was little benefit from
training with one of the larger data sets (the 5-1 and 5-2
sets) relative to using the smaller training sets (the 25-1
and 2-5 sets) which are approximately one-fifth the size of
the larger sets, and hence less computationally demanding.

CPU Requirements.Using a computer with a 2.5 GHz
Pentium 4 CPU running the Windows XP operating system,
the time required to train the SVM function for the data sets
containing the background NCI diversity set molecules
ranged from 1.5 to 10 min when the best 50 descriptors were
used in the training. Of this time, 5 to 18 s was spent selecting
the descriptors. When the number of descriptors was varied
during the training process, the calculations generally took
7-8 times longer to execute. The training times for the
various 5-1 and 5-2 training sets ranged between 15 and
49 min, whereas the training times were usually 8- to 10-
fold quicker for the corresponding 25-1

Figure 4. Number of actives from the top (A) 2% and (B) 10% of the 1ST and 2ND test sets retrieved using SVM models in which the
number of descriptors was allowed to vary during the training run versus the number of actives retrieved using SVM models in which the
number of descriptors was fixed at a value of 50. The active compounds for the training and testing procedures are indicated as follows:
CDK2 inhibitors- plus signs; COX2 inhibitors- triangles; FXa inhibitors- diamonds; PDE5 inhibitors- circles;R1AAR antagonists-
squares. The outlying points in the graphs both correspond to the retrieval of actives from the PDE5/1ST test set.

Figure 5. Number of actives retrieved from (A) the top-ranked 2% and (B) the top-ranked 10% of test sets versus the average descriptor
score of the corresponding training sets. This evaluation was performed for various 1ST and 2ND data sets. The data points are indicated
in the same way as for Figure 4. The fitted lines haveR2 values of (A) 0.69 and (B) 0.74. When one outlier point was removed from the
graph in (A), theR2 value of the best-fit line increased to 0.88.
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and 25-2 training sets. For 5-1 and 5-2 training sets, the
time to select the best 50 descriptors was approximately two
minutes but was only 6-7 s for the 25-1 and 25-2 training
sets. After the training procedure, the time needed to rank
25 300 molecules using a given SVM model was less than
15 s.

Comparison of SVM-Based Enrichment with Finger-
print-Based Ranking Methods. Using the ODD, EVEN,
1ST, and 2ND training and test sets, the SVM-based
enrichment method was compared against four fingerprint-
based ranking methods, SA, SA-I, Smax, and Binary Kernel
Discrimination (BKD),16 that were used in a previous
comparison of ranking methods17 (Tables 3 and 4). When
applied to the ODD and EVEN training and test sets, BKD
was the most effective in retrieving active compounds,

followed by the SVM and Smax methods. However, the SVM
method performed noticeably better than the other four
methods when applied to the 1ST and 2ND data sets (Table
4), especially when the active compounds are inhibitors of
FXa or R1A AR. The performance of the Smax method is
significantly worse for the 1ST and 2ND test sets relative to
the ODD and EVEN sets. The relative performance measures
for the SA and SA-I methods indicate that these approaches
are not as effective as the other ranking methods.

We also combined the results of the SVM and BKD using
a “data fusion” technique in which a new ranking function
is generated by summing the SVM and BKD ranks of each
molecule in the test database.33 Application of this hybrid
method to each test set recovered more active molecules than
one or both of the SVM and BKD schemes (Tables 3 and

Figure 6. Number of active molecules retrieved in (A) the top-ranked 2% and (B) the top-ranked 10% of test database using the SVM-
based enrichment method where the background molecules were from the Maybridge database (25 300 molecules in each test set, including
125 known inhibitors of which 25 were assigned as actives). The first four vertical bars correspond to models trained on the 5-1, 5-2,
25-1, and 25-2 types of training set, respectively. For reference, the results from using the NCI diversity background for both training and
testing are colored black. As before, the expected numbers of active compounds obtained from random screening are 0.5 and 2.5 for the
top-ranked 2% and 10% of the database, respectively.

Table 3. Comparison of SVM-Based Enrichment Method with Fingerprint-Based Ranking Methods for ODD/EVEN Data Sets

actives in top ranked 2% actives in top ranked 10%

test set SVM SA SA-I Smax BKD SVM+ BKDb SVM SA SA-I Smax BKD SVM+ BKDb

CDK2 ODD 11 8 11 19 20 17 21 19 20 23 24 24
CDK2 EVEN 13 9 12 16 18 18 22 24 21 24 24 23
COX2 ODD 17 13 17 17 18 19 24 18 18 21 24 25
COX2 EVEN 18 10 13 18 20 20 24 20 19 21 23 25
FXa ODD 20 12 14 16 19 21 25 22 21 24 25 25
FXa EVEN 18 16 16 20 20 21 25 24 24 24 25 25
PDE5 ODD 17 15 16 17 20 20 25 23 23 25 25 25
PDE5 EVEN 18 16 16 16 21 21 24 20 20 25 25 25
R1AAR ODD 19 9 14 12 16 20 25 18 18 21 22 25
R1AAR EVEN 19 10 14 14 17 19 25 19 18 22 23 25
standard deviation 2.83 3.05 1.95 2.32 1.60 1.35 1.41 2.36 2.10 1.63 1.05 0.67
rel. performancea 1.08 0.74 0.91 1.06 1.21 [1.25]c 1.08 0.92 0.90 1.03 1.07 [1.11]c

a Calculated using eqs 12 and 13, except where noted.b Column of figures excluded from the calculation of the performance scores for the other
ranking methods.c Modified performance score, whose calculation is described in the text.
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4). To calculate an appropriate relative performance measure
for this combined ranking method, the values for eq 13
(which specifies how to calculate weights in the weighted
average of eq 12) were taken from the results of the five
“unfused” ranking methods. The modified relative perfor-
mance measures for the SVM+BKD ranking scheme usually
exceeded the corresponding measures for the SVM and BKD,
as shown in Tables 3 and 4.

The time taken to calculate scores for 25 300 test
molecules using our implementation of the BKD method was
approximately two minutes. This is somewhat slower than
the than 15 s required to calculate scores for the same number
of molecules using SVM-based enrichment.

DISCUSSION

The SVM-based method successfully enriches all of the
test databases for active compounds, even when the actives
in the test database are of different chemistries from those
in the corresponding training set. The method recovers at
least half of the active compounds in the top-ranked 10% of
a test set of compounds, for more than 5-fold enrichment,
and the recovery of active compounds from the top-ranked
2% of the test sets is 8-40 times better than that expected
from random screening. The levels of enrichment are roughly
independent of the size and composition of the inactive
background molecules, as judged by the results of replacing
the NCI diversity set background molecules with those from
the much larger Maybridge database.

Several factors appear to affect the performance of the
present method. One is the composition of the actives in the
training and test sets. The retrieval of active compounds is
generally higher for the various ODD and EVEN test sets
than for the 1ST and 2ND data sets, presumably because of
the higher degree of similarity between active compounds
in the former two data sets compared to the latter two sets.
Application of the method to the 1ST and 2ND splits
represents an interesting challenge for the method since the
test sets contain active molecules that are generally different
in chemical class to the training set actives. Thus, the ability
to enrich these types of data sets is one of the strengths of
the method. Additionally, the actives that are retrieved in
the top-ranked 2% or 10% of 9 of the 10 1ST and 2ND test
sets span most of the different chemical classes present,
instead of only one or two chemical classes (Table 2). This

result suggests that the method can be used to discover a
novel class of active compounds.

All of the SVM models trained using different parameters
provide a measure of enrichment, although the enrichments
vary from model to model (Figure 2). The ability of the cross-
validation AvRank statistic to select among these models
therefore affects the performance of the method. Encourag-
ingly, the AvRank statistic usually selected one of the better
performing models for the ODD and EVEN data sets (Figure
2A,B). This can be rationalized by noting that for these data
sets, the active molecules in a given training set are
representative of the types of active molecules present in
the corresponding test set. The ability of the AvRank statistic
to choose among the candidate SVM models was somewhat
mixed for the 1ST and 2ND data sets (Figure 2C,D),
presumably because the training set actives are less repre-
sentative of the test set actives. Previous QSAR studies have
shown a similar lack of correspondence between the pre-
dicted performance of a model, as indicated by the value of
a cross-validation statistic obtained from the training set, and
the performance of the model when applied to test set
data.34-36

A third factor affecting the performance of the SVM-based
enrichment method is the choice of descriptors. The auto-
mated selection of descriptors contrasts with a number of
other chemistry papers in which the descriptors for the SVM
appear to have been selected by hand.8-11 In the present
method, descriptors are selected for their ability to cluster
the training set actives into a small region of descriptor space
relative to the space spanned by the inactive compounds, as
indicated by their discrimination scores. Thus, the preferred
descriptors focus on properties that are common to the
training set actives and distinguish them from the inactive
molecules. Unsurprisingly, SVM models that were derived
using descriptors with higher discrimination scores were
generally able to retrieve more actives than models derived
from descriptors with smaller discrimination scores. Thus,
one avenue to improving the performance of the present
method will be to find descriptors that are better able to
capture the underlying common features of the training set
active molecules.

The higher retrieval of active compounds from the 1ST
and 2ND test sets using the SVM-based enrichment method,
compared to several fingerprint-based ranking methods,

Table 4. Comparison of SVM-Based Enrichment Method with Fingerprint-Based Ranking Methods for 1ST/2ND Data Sets

actives in top ranked 2% actives in top ranked 10%

test set SVM SA SA-I Smax BKD SVM+ BKDb SVM SA SA-I Smax BKD SVM+ BKDb

CDK2 1ST 4 3 3 9 5 5 16 13 11 15 13 19
CDK2 2ND 6 5 2 3 4 7 13 10 10 10 16 19
COX2 1ST 9 5 10 5 6 10 17 17 17 12 16 21
COX2 2ND 15 5 11 3 10 14 21 12 15 12 16 19
FXa 1ST 18 5 8 9 7 15 25 20 20 17 22 25
FXa 2ND 19 8 12 8 10 16 24 19 19 14 20 25
PDE5 1ST 8 9 11 3 6 10 14 19 19 18 18 18
PDE5 2ND 8 10 6 2 3 6 20 20 17 14 11 17
R1AAR 1ST 17 6 9 3 8 17 25 16 18 12 21 25
R1AAR 2ND 16 6 6 3 4 13 25 15 15 14 15 23
standard deviation 5.54 2.15 3.46 2.78 2.45 4.32 4.74 3.54 3.38 2.44 3.49 3.14
rel. performancea 1.56 0.89 1.01 0.69 0.85 [1.50]c 1.20 0.97 0.97 0.84 1.02 [1.29]c

a Calculated using eqs 12 and 13, except where noted.b Column of figures excluded from the calculation of the performance scores for the other
ranking methods.c Modified performance score, whose calculation is described in the text.
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further demonstrates the capacity of the SVM method for
retrieving active compounds whose chemical classes are
different to those contained in the training set. The differ-
ences in the representation (descriptors versus binary hashed
fingerprints) of the molecules in the two types of methods
may be an important factor in the performance of these
methods in several respects. First, the set of molecular
descriptors chosen for use by the SVM is system-specific.
This provides a measure of flexibility to the representation
of the molecules which is not afforded by binary fingerprints,
where the encoding of molecular features is invariant with
respect to the training set. Second, the molecular descriptors
used here generally quantify aspects of the chemical structure
of each molecule in its entirety, whereas the binary hashed
fingerprints used in this work, whose maximum path length
is five for the patterns coded, represent local features.
Descriptors which encode nonlocal features may capture
information about the types of groups which interact with
the protein target (e.g. hydrogen bond acceptor, hydrogen
bond donor, aliphatic, and aromatic interactions), even as
the functional groups responsible for these interactions vary
across the different chemical classes of a given set of
inhibitors.

Interestingly, the variability in the number of active
compounds retrieved from the 1ST and 2ND test sets using
the SVM is greater that obtained using any of the fingerprint-
based methods. The trends in the number of active com-
pounds retrieved from these test sets using the SVM can be
accounted for by noting their correlation with the corre-
sponding training set descriptor discrimination scores (Figure
5). The lack of variation in the retrieval of actives by the
fingerprint-based methods can be rationalized by noting the
lack of variability of the average pairwise similarities of the
training and test set actives across the different activity
classes (inhibitors of CDK2, COX2, etc.) (Table 5).

Binary kernel discrimination (BKD) was the only finger-
print-based method tested that outperformed the SVM for
the retrieval of active compounds from the ODD and EVEN
test sets. BKD was also the best of the fingerprint-based
methods in a previous comparative study of these and several
other ranking methods.17 The Smax method, which performed
nearly as well as the SVM for the ODD and EVEN test sets,
performed poorly for the 1ST and 2ND test sets. This can
be understood by noting that the 1ST and 2ND test sets were
constructed to exclude active compounds with chemistries
similar to any of those of the active compounds in the
corresponding training sets (2ND and 1ST, respectively), as
illustrated in Table 6. The SA and SA-I methods were not
among the best ranking methods in this work or in the
previous study.17

The differences between the SVM and the various
fingerprint-based methods suggest that these approaches to
ranking molecules are complementary. This idea is supported
by the performance of the combined SVM and BKD score

which is generated by summing the SVM and BKD rankings
of each molecule.33 This combined ranking function com-
pensates for instances where one of the methods did not
perform particularly well, always performing better than at
least one of SVM and BKD, and sometimes outperforming
both methods.

SUMMARY

This paper describes a novel method of applying the
Support Vector Machine to the problem of enriching a
database of molecules for active molecules. The SVM model
generates substantial enrichment of active molecules with
chemistries different from those in the training set. Com-
parison of the SVM-based enrichment method with ranking
methods that use binary hashed fingerprints show that the
SVM method is the best at finding active compounds which
are chemically distinct from known actives. Interestingly,
the best method tested was a hybrid of the SVM and the
fingerprint-based method, Binary Kernel Discrimination.
After training with known active and inactive molecules, the
SVM and hybrid methods can be used to rapidly rank more
than 10 000 compounds per minute.
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