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Summary A computer-based classification system has been designed capable of dis-
tinguishing patients with depression from normal controls by event-related potential
(ERP) signals using the P600 component. Clinical material comprised 25 patients with
depression and an equal number of gender and aged-matched healthy controls. All
subjects were evaluated by a computerized version of the digit span Wechsler test.
EEG activity was recorded and digitized from 15 scalp electrodes (leads). Seventeen
features related to the shape of the waveform were generated and were employed in
the design of an optimum support vector machine (SVM) classifier at each lead. The
outcomes of those SVM classifiers were selected by a majority-vote engine (MVE),
which assigned each subject to either the normal or depressive classes. MVE classi-
fication accuracy was 94% when using all leads and 92% or 82% when using only the
right or left scalp leads, respectively. These findings support the hypothesis that de-
pression is associated with dysfunction of right hemisphere mechanisms mediating
the processing of information that assigns a specific response to a specific stimulus,
as those mechanisms are reflected by the P600 component of ERPs. Our method may
aid the further understanding of the neurophysiology underlying depression, due to
its potentiality to integrate theories of depression and psychophysiology.
© 2003 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Depression, a condition burdening both the suffer-
ing individual and the community, is associated with
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disturbances of cognition. Based on psychophysi-
ological and neuropsychological data, it has been
suggested that deficits in depression are a result of
a lack of cognitive initiative or motivation [1], and
that depressed patients’ fundamental deficits were
in initiative and in strategic use of information [2].
To understand the nature and course of these

abnormalities in patients with depression it is
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essential to elucidate issues related with diagnostic
demands and therapeutic evaluation. Event-related
potentials (ERPs), measured on the scalp, are a
method of choice for this purpose, because their
high temporal resolution allows for real-time and
non-invasive observation of electrical activity
changes in neural circuits, during the processing of
information related to the presentation of stimuli
(or events) [3]. ERPs consist of a series of elec-
trical potentials, labeled peaks or components,
which are parts of the waveform containing signifi-
cant local maxima and minima. Long latency ERPs
start after 50—70ms from the time the stimulus
was presented. Research about long latency ERP
components such as N100, P200, N200, P300, N400
and P600 is gaining wide interest in psychiatry,
because these components provide information on
the nature, timing, and extent of brain activation
underlying covert cognitive processes [4,5].
Recently, considerable attention has been given

to the P600 or the slow wave (SW) component [6,7].
In particular P600 is suggested to be sensitive to
‘‘storage and retention of information in working
memory’’ [7], where working memory (WM) refers
to the ability to keep information actively in mind
and manipulate it in ways required by a given task
[8]. This component has been also associated to the
mnemonic binding processes by which the different
aspects (i.e. internal and external) of information
are linked into a coherent representation [9], in
other words, it has been conceptualized as an index
of information processing that ‘‘assigns a specific
response to a specific stimulus’’ [10]. In an experi-
ment measuring the SW (in the 375—840ms epoch),
during processing of a WM task in 14 depressed pa-
tients, it has been reported that depressed patients
exhibited reduced late positive wave located at Cz
site, as compared to healthy controls [11]. These
effects have been accounted for ‘‘by dysfunction of
the central executive control of working memory’’
[11]. In another recent study [12], using the SW
elicited during emotionally valenced information in
a WM task, reported that depressive patients, rel-
ative to controls, showed decreased processing of
positive, but not negative information. Further, it
has been found that depressive individuals demon-
strated more negative SW amplitudes with increas-
ing depressive mood severity. These results have
been conceptualized as indexing that depressive
cognition is characterized by a deficit in the pro-
cessing of positive information.
Previous studies on computer-based ERP classi-

fication systems have focused mostly on the use
of components whose latency ranges up to 500ms
and the employment of neural network classifiers
for discriminating between normal controls and pa-

tients with neurologic [13,14] or a feature extrac-
tion component was used for extracting Karhunen—
Loeve vectors, which were inputted to a classifier
using the fuzzy c-mean (FCM) clustering algorithm.
or orrrorpsychiatric disorders [15—17]. Features
were extracted from the total duration of the ERP
recording [14—16], or from only a specific compo-
nent, such as the P300 for discriminating normal
controls from patients suffering from multiple scle-
rosis [13], or the P600 for discriminating normal
controls from patients suffering from schizophrenia
[17].
Based on the above, it would be of interest to

investigate whether the P600 component contains
valuable information that could be used in discrim-
inating depressive patients from normal controls,
employing appropriate pattern recognition-based
test procedures.
In the present study, we have developed a

computer-based P600 component pattern recog-
nition system for discriminating patients with de-
pression from healthy subjects. P600 signals (500—
800ms) were recorded at 15 scalp leads on each
subject. Signals were analyzed by means of fea-
tures extracted from the P600 signal waveform.
These new features, together with the recently
developed powerful support vector machine (SVM)
classification algorithm [18,19], were used in the
design of the classification system. Another contri-
bution of the present work was that the classifica-
tion system consisted of an SVM classifier working
at each lead and the outcome of each lead (ei-
ther ‘‘depressive’’ or ‘‘control’’) was collected by
a majority-vote engine (MVE), which decided on
the class by a majority-vote rule. Furthermore,
for comparison reasons, a conventional statisti-
cal method was used, e.g. stepwise discriminant
analysis, in order to investigate the ability of the
latency and the amplitude of the P600 component
to differentiate between the two subject groups.

2. Materials and methods

2.1. Subjects

Twenty-five patients with depression and an equal
number of gender and aged-matched healthy con-
trols were examined. The controls were recruited
from hospital staff and local volunteer groups and
they were free of psychiatric and physical illness.
All participants had no history of any neurolog-
ical or hearing problems. All participants were
right-handed as assessed by the Edinburgh Inven-
tory [20]. Written informed consent was obtained
from both patients and controls.
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2.2. Stimuli and ERP recording procedure

The subjects were evaluated by a computerized
version of the digit span Wechsler test [21], as
reported in detail in a previous work by members
of our research team [22]. In brief, the subjects
sat in an anatomical chair placed inside an elec-
tromagnetically shielded room. A single sound of
either high (3000Hz) or low frequency (500Hz)
was presented to the subjects, who were asked
to memorize the numbers that followed. The
warning stimulus lasted 100ms. A 1 s interval fol-
lowed and then the numbers to be memorized
were presented. At the end of the number se-
quence presentation, the signal tone was repeated
and subjects were asked to recall the adminis-
tered numbers as quickly as possible. The numbers
were recalled by the subject in the same (low
frequency tone) or in the opposite order (high
frequency tone) than that presented to him/her.
ERPs were recorded using Ag/AgCl electrodes, dur-
ing the 1 s interval between the warning stimulus
and the first administered number. EEG activ-
ity was recorded from 15 scalp electrodes based
on the international 10—20 system of electroen-
cephalography [23], referred to both earlobes
(leads at Fp1, Fp2, F3, F4, C3, C4, (C3 − T5)/2,
(C4 − T6)/2, P3, P4, O1, O2, Pz, Cz, and Fz) (see
Fig. 4). It should be noted that the positions
(C3 − T5)/2 and (C4 − T6)/2 are used as electrode
leads, because these positions correspond to brain
areas serving verbal memory and language [24].

Fig. 1 Interface of the custom-made software system designed to read ERP signals and to extract specific features.
The graph represents the variation of the ERP electrical potential (in volts) with time after stimulus (in milliseconds)
(see Eqs. (1)—(14) for explanation of specific quantities displayed).

Recordings were digitized at a sampling rate of
500Hz.

2.3. Feature generation

A dedicated computer software (Fig. 1) was de-
veloped in C++ and it was used to read the ERP
signals and to calculate features related to the
ERP signal of the P600 component (500—800ms
time interval). The following features were auto-
matically calculated as follows (see Fig. 1), where
500ms ≤ t ≤ 800ms:

(1) Latency (LAT, tsmax)–—the ERP’s latency time,
i.e. the time where the maximum signal value
appears:

tsmax = {t|s(t) = smax} (1)

(2) Amplitude (AMP, smax)–—the maximum signal
value:

smax = max{s(t)} (2)

(3) Latency/amplitude ratio (LAR, tsmax/smax).
(4) Absolute amplitude (AAMP, |smax|).
(5) Absolute latency/amplitude ratio (ALAR,

|tsmax/smax|).
(6) Positive area (PAR, Ap)–—the sum of the posi-

tive signal values:

Ap =
800ms∑

t=500ms

0.5(s(t) + |s(t)|) (3)



14 I. Kalatzis et al.

(7) Negative area (NAR, An)–—the sum of the neg-
ative signal values:

An =
800ms∑

t=500ms

0.5(s(t) − |s(t)|) (4)

(8) Absolute negative area (ANAR, |An|).
(9) Total area (TAR, Apn):

Apn = Ap + An (5)

(10) Absolute total area (ATAR, |Apn|).
(11) Total absolute area (TAAR, Ap|n|):

Ap|n| = Ap + |An| (6)

(12) Average absolute signal slope (AASS, |̇s|):

|̇s| = 1
n

800ms−τ∑
t=500ms

1
τ
|s(t + τ) − s(t)| (7)

where τ is the sampling interval of the signal
(τ = 2ms, for the sampling rate of 500Hz), n
the number of samples of the digital signal (ac-
tual n = (800 − 500ms)/2ms = 150), and s(t)
the signal value of the t-th sample.

(13) Peak-to-peak (PP, pp):

pp = smax − smin (8)

where smax and smin are the maximum and the
minimum signal values, respectively:

smax = max{s(t)}, smin = min{s(t)} (9)

(14) Peak-to-peak time window (PPT, tpp):

tpp = tsmax − tsmin (10)

(15) Peak-to-peak slope (PPS, ṡpp):

ṡpp = pp
tpp

(11)

(16) Zero crossings (ZC, nzc)–—the number of times
t that s(t) = 0, in peak-to-peak time window:

nzc =
tsmax∑

t=tsmin

δs (12)

where δs = 1 if s(t) = 0, 0 otherwise.
(17) Zero crossings density (ZCD, dzc)–—zero cross-

ings per time unit, in peak-to-peak time win-
dow:

dzc = nzc
tpp

(13)

where nzc are the zero crossings and tpp is the
peak-to-peak time window.

(18) Slope sign alterations (SSA, nsa)–—the number
of slope sign alterations of two adjacent points
of the ERP signal:

nsa =
800ms−τ∑

t=500ms+τ

0.5

×
∣∣∣∣ s(t − τ) − s(t)
|s(t − τ) − s(t)| + s(t + τ) − s(t)

|s(t + τ) − s(t)|
∣∣∣∣

(14)

where τ is the sampling interval of the signal
(τ = 2ms, for the sampling rate of 500Hz).

All features were normalized to zero mean and
unit standard deviation [25], according to relation:

x′
i = xi − µ

σ
(15)

where xi and x′
i are the i-th feature values before

and after the normalization respectively, and µ and
σ are the mean value and standard deviation, re-
spectively, of feature x over all subjects (depres-
sives and normal controls).

2.4. Conventional statistical analysis

To investigate whether the two groups of subjects
could be discriminated by conventional statistical
analysis methods, a stepwise discriminant method
was employed, utilizing the amplitudes (parame-
ter AMP) and latencies (parameter LAT) of the P600
component at all 15 leads. It should be noted that
the equality of the covariance matrices of the vari-
ables entered for the two groups was ascertained
with Box’s M-test.

2.5. Best feature selection

An exhaustive search, using the leave-one-out
method [25] and the fast but high-performance
cubic least-squares minimum-distance (C-LSMD)
classifier (see relation 16 and Appendix A), which
is an extended version of the LSMD [26], of all
possible 2, 3, 4, 5, and 6 feature combinations
was performed at each one of the 15 leads. The
purpose was to determine at each lead the best
feature combination having the highest classifica-
tion accuracy, using a robust and fast classification
technique prior to employing more sophisticated
but time demanding classifiers.
Application of the leave-one-out method re-

quires that one sample is left out, and the classifier
is trained (designed) by the rest of the samples.
In this way, the left-out sample is considered by
the system as unknown. Repeating this procedure
for all samples, we can get a realistic evaluation
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of the system’s capabilities. However, by applying
the leave-one-out method, feature normalization
(Eq. (15)) had to be recalculated (new values for µ

and σ) each time a subject was left out.
Data processing was split appropriately and it was

performed on two 2.4MHz Pentium IV workstations.
It took several hours of processing time to complete
the exhaustive search. Combinations with higher
numbers of features were also tested, employing
the forward stepwise feature selection technique
[25] and the C-LSMD classifier.
The discriminant function of the C-LSMD classi-

fier for class c, employed in the feature selection
procedure, is given by:

gc(X) =
d∑
i=1

aciiix3i +
d−1∑
i=1

d∑
j=i+1

aciijx2i xj

+
d−1∑
i=1

d∑
j=i+1

acijjxix2j +
d−2∑
i=1

d−1∑
j=i+1

d∑
k=j+1

acijkxixjxk

+
d∑
i=1

aciix2i +
d−1∑
i=1

d∑
j=i+1

acijxixj

+
d∑
i=1

acixi − bc (16)

where d is the number of features, αc the weight
coefficients, bc the threshold parameter, and xj the
pattern vector elements.
The best-feature combinations thus determined

were used to design at each lead the support
vector machines classifier (see relation (17) and
Appendix B), using the leave-one-out method for
discriminating depressive patients from normal
controls.

2.6. Classification

2.6.1. SVM classification
The discriminant equation of the SVM classifier
[18,19] is a function of kernel k(xi, x) and is given
by:

g(x) = sign


 NS∑

i=1

αiyik(xi, x) + b


 (17)

where xi are support vectors, NS the number of
support vectors, ai the weight parameters, b the
threshold parameter, and yi ∈ {−1, +1} depending
on the class.
In the present study the cubic non-homogeneous

polynomial function was used as kernel, given by
k(x, y) = (x · y + 1)d with d = 3, resulting in the fol-
lowing discriminant function for the SVM classifier:

g(x) = sign


 NS∑

i=1

αiyi(xi · x + 1)3 + b


 (18)

Regarding the kernel function, other kernels were
also tested, such as the Gaussian radial basis
function (RBF) kernel and the linear kernel (see
Appendix B).

2.6.2. Majority-vote classification
For classifying a subject as belonging to either the
‘‘depressives’’ or ‘‘controls’’ category, a classifi-
cation system was developed as shown in Fig. 4.
At each lead there is an SVM classifier working,
designed to use the lead’s particular P600 fea-
tures and to assign the P600 component to one
of the two classes. The outcome of each lead (ei-
ther ‘‘depressive’’ or ‘‘control’’) is collected by a
majority-vote engine, which decides on the class
by a majority-vote rule. The overall system was
evaluated by the leave-one subject-out method.

3. Results and discussion

Fig. (2) shows the grand averages of the ERP sig-
nals of the two groups of subjects. Dashed lines
represent the depressive patients and solid lines
the controls. Discriminant analysis, regarding P600
amplitude (parameter AMP), revealed that only
two leads entered the discriminant function (C4
and C3 − T5/2), being able to classify correctly
only 67.3%, of the originally grouped cases. It is
noteworthy that this classification rate dropped
slightly to 63.3% in cross-validation. The two leads
belong to different components and enter the dis-
criminant function with opposite signs. This was to
be expected since in the case of C4 the absolute
mean value of the depressive group was greater,
while in the case of (C3 − T5)/2 it was less than
that obtained from the normal group. Results of
comparisons of the latencies (parameter LAT) did
not reveal any discrimination. In order to illustrate
the lack of adequate differentiation between the
two subjects’ groups, when the amplitude and the
latency of the P600 are taken into account the
scatter diagram of the P600 amplitude and latency
at FP1 lead is presented (Fig. 3). There is a sig-
nificant overlap between depressives and controls
leading to no conclusive evidence as to probable
differences between the two groups of subjects.
Table 1 displays the optimum feature combina-

tions (highest classification accuracy with smallest
number of features involved) achieved at each lead
in discriminating the two groups of subjects, em-
ploying the leave-one-out method and the C-LSMD
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Fig. 2 Grand averages of ERP signals of depressives (dashed lines) and normal controls recorded at each lead. The
electrode notation is based on the international 10—20 system of electroencephalography [23].

classifier. Best combinations comprised between
two and five features. Additionally, sensitivities
and specificities are shown, corresponding to the
classification accuracy of the ‘‘controls’’ and
‘‘depressives’’ classes respectively. Maximum clas-
sification accuracies varied between 68% and 78%
in the 15 leads, signifying the difficulty in distin-
guishing between the two groups by means of the
P600 component. This was true even when new
features were generated and they were used in the
attempt to extract from the P600 signals informa-
tion of high discriminatory power. It may thus be

said that the information contained in the P600 sig-
nals of a single lead is not capable of distinguishing
effectively between depressives and normal con-
trols, even when powerful classification algorithms,
such as the SVM, are employed. SVM classification
accuracy was also tested with other SVM-kernel
functions, such as the linear and the Gaussian ra-
dial basis functions. The SVM with the linear ker-
nel function provided low discrimination accuracy
while with the radial basis function gave results
(obtained with C = 500 and standard deviation
σ = 0.45, see Appendix B) of slightly lower accuracy
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Fig. 3 Feature ‘latency’ against feature ‘amplitude’
(see Eqs. (1) and (2)) plot of P600 signals at the Fp1 lead
of depressives (triangles) and normal controls (circles).
Feature values are normalized to zero mean and unit
standard deviation (see [25] and Eq. (15)).

to those of the third degree polynomial kernel
(with C = 500).
However, a more careful observation of Table 1

may reveal that leads Fp2, F4, C4, (C4 − T6)/2,
and O2 at the right side of the head (see Fig. 4) dis-
play a slightly higher discrimination accuracy than
the corresponding leads Fp1, F3, C3, (C3 − T5)/2,
and O1 at the left side. In fact, when the out-
come of those leads at right were combined by
the MVE, employing the leave-one subject-out
method, they revealed 92% accuracy in distinguish-
ing normal controls from depressives (Table 2).
A similar trial but at the scalp’s left side corre-
sponding leads revealed lower (82%) classification

Table 1 Best feature combination at each lead for SVM classification, and the corresponding SVM accuracies

Lead Feature combination Sensitivity (%) Specificity (%) Overall (%)

Fp1 LAT, AAMP, LAR, ALAR, TAR 60 84 72
Fp2 LAT, ZC, ALAR, ZCD 76 72 74
F3 LAT, PPS, AAMP, PPT 76 68 72
F4 PAR, SSA, AAMP, ZCD 72 84 78
C3 AMP, TAAR, ZC, ATAR, PPT 72 80 76
C4 PP, LAR, TAR 80 72 76
(C3 − T5)/2 SSA, ZCD 68 68 68
(C4 − T6)/2 AMP, ZC, TAR 80 72 76
P3 AMP, ANAR, ZC, PP, SSA 68 76 72
P4 LAT, TAAR, AAMP, LAR, PPT 64 72 68
O1 LAT, ATAR, ZCD 68 84 76
O2 ZC, PP, SSA 80 76 78
Pz LAT, ANAR, TAAR, PP, LAR 60 84 72
Cz AMP, ZC 64 76 70
Fz LAT, ZC, PPS, ATAR 68 72 70

accuracy (Table 3). In Tables 2 and 3, negative
predictive value is the fraction of those subjects
predicted by the algorithm to be normal controls
that are truly normal controls, while positive pre-
dictive value represents the fraction of subjects
determined by the algorithm to be depressives and
are actually depressives. Right hemispheric differ-
ences between depressive patients and controls
have also been noted in previous studies. In a study
employing late P3 (peak latency 460ms) ERP sig-
nals and principal component analysis, differences
were found at the right parietal region between
controls and depressive patients [27]. Similarly,
other studies on depressed patients subjected to
neuropsychological tests [28] or behavioral lateral-
ity tasks using either visuo-spatial [29] or auditory
stimuli [30] have found evidence of a right poste-
rior deficit in depression. Further support for this
hypothesis comes from studies showing the right
cerebral hemisphere is preferentially sensitive to
the affective context of language [31] in depres-
sives and/or depressives have difficulty processing
receptive affective prosodic speech [32]. Addition-
ally, this abnormal lateralization has been linked
to the treatment outcome of the depression [33].
When the outcomes of all leads were incorpo-

rated into the MVE then high discrimination results
were achieved. Table 4 gives a detailed account
of the MVE result for each subject. The number
of correctly classified leads and the particular mis-
classified leads, as well as the overall sensitivity
(the fraction of depressives correctly identified by
the MVE), specificity (the fraction of normal con-
trols correctly identified by the MVE), and the over-
all classification accuracy are presented. According
to the MVE-rule, a subject (control or depressive)



18 I. Kalatzis et al.

Fig. 4 Schematic diagram of scalp leads distribution and MVE classification system steps: first, the signals from all
leads are inserted in the automatic feature generation software system. Then, an SVM classifier is employed at each
lead to classify each subject to one of two classes (depressives and normal controls). Finally, on the basis of those
lead sub-classifications, each subject is assigned to a particular class using a majority-vote rule.

Table 2 MVE classification accuracy employing right hemisphere leads Fp2, F4, C4, (C4 − T6)/2, and O2

Control Depressive Accuracy (%)

Control 22 3 88 Specificity
Depressive 1 24 96 Sensitivity
Accuracy (%) 95.7 88.9 92 Overall

Negative predictive value Positive predictive value

Table 3 MVE classification accuracy employing left hemisphere leads Fp1, F3, C3, (C3 − T5)/2, and O1

Control Depressive Accuracy (%)

Controls 22 2 88 Specificity
Depressives 6 19 76 Sensitivity
Accuracy (%) 78.6 90.5 82 Overall

Negative predictive value Positive predictive value
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Table 4 Detailed MVE algorithm classification accuracy results

Normal controlsa Depressive patientsb

Normal
control
number

Number of
correctly
classified
leads

Misclassified leads MVE
result

Patient
number

Number of
correctly
classified
leads

Misclassified leads MVE result

1 12 P3, Pz, Fz Normal 1 9 F3, F4, P3, P4, Pz, Fz Depressive
2 11 C3, (C3 − T5)/2, O2, Fz Normal 2 9 C3, (C3 − T5)/2, P4, O2, Cz, Fz Depressive
3 12 Fp1, Fp2, Cz Normal 3 9 Fp1, (C3 − T5)/2, P3, P4, O1, Cz Depressive
4 14 P4 Normal 4 10 F3, C3, P3, P4, Pz Depressive
5 11 Fp2, C4, O1, Pz Normal 5 12 Fp2, C3, O1 Depressive
6 13 (C4 − T6)/2, P3 Normal 6 12 C3, (C3 − T5)/2, (C4 − T6)/2 Depressive
7 10 C3, (C3 − T5)/2, (C4 − T6)/2, Pz, Fz Normal 7 11 Fp1, Fp2, C3, Pz Depressive
8 10 Fp2, F4, C4, P4, Cz Normal 8 10 Fp1, F4, C3, (C3 − T5)/2, O1, Pz Depressive
9 11 F3, (C3 − T5)/2, P3, Cz Normal 9 9 Fp1, C3, O2, Pz, Cz, Fz Depressive

10 9 Fp1, F4, C3, O1, O2, Cz Normal 10 7 Fp1, F3, F4, C3, C4, O1, Pz, Fz Normal
11 6 Fp2, F3, C4, (C3 − T5)/2, (C4 − T6)/2,

P4, O1, O2, Fz
Depressive 11 12 C3, Fp1, Fp2 Depressive

12 13 P3, Pz Normal 12 11 Fp2, P3, Cz, Pz Depressive
13 13 (C4 − T6)/2, O2 Normal 13 12 C3, O2, Fz Depressive
14 11 Fp2, F3, P3, Fz Normal 14 8 Fp1, Fp2, F4, C4, O1, O2, Cz Depressive
15 13 Fp1, C4 Normal 15 9 Fp1, F4, (C3 − T5)/2,

(C4 − T6)/2, P3, P4
Depressive

16 11 F4, C3, C4, (C4 − T6)/2 Normal 16 12 (C3 − T5)/2, O2, Cz Depressive
17 12 Fp2, F3, C4 Normal 17 14 C3 Depressive
18 10 F3, C3, (C3 − T5)/2, Cz, Fz Normal 18 13 (C4 − T6)/2, Pz Depressive
19 10 C3, (C3 − T5)/2, (C4 − T6)/2, P4, Cz Normal 19 12 Fp2, F3, P4 Depressive
20 15 — Normal 20 6 Fp1, F3, F4, C4, (C3 − T5)/2,

P4, O1, Pz, Fz
Normal

21 12 Fp1, O2, Cz Normal 21 9 F4, C3, C4, P3, O1, Fz Depressive
22 13 F3, P3 Normal 22 10 C3, C4, (C3 − T5)/2, (C4 − T6)/2, Pz Depressive
23 8 F3, C3, (C3 − T5)/2,

(C4 − T4)/2, P4, O1, O2
Normal 23 9 Fp1, F3, P3, P4, O1, Cz Depressive

24 11 F3, F4, P4, Cz Normal 24 12 (C4 − T6)/2, P3, Fz Depressive
25 10 Fp2, C4, (C3 − T5)/2, P4, Fz Normal 25 13 P4, Cz Depressive

Overall: 94%.
a Specificity: 96%.
b Sensitivity: 92%.
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is classified to the class with the majority (>7) of
class-assigned leads. An overall classification accu-
racy was 94%, misclassifying one normal-control as
depressive (96% specificity) and mistaking two de-
pressives for normal-controls (92% sensitivity). It
is noteworthy that comparison between the pro-
posed SVM-based classification system and the con-
ventional one shows that the proposed method is
prevailing. Thus, these results may be regarded as
quite promising, especially when compared to indi-
vidually achieved classification accuracies at each
lead. Another important finding related to the reli-
ability of the MVE is that when its self-consistency
was tested (i.e. using no leave-one subject-out),
patients and normal-controls were all classified cor-
rectly. The meaning is that the MVE-system could
classify accurately all subjects that were employed
in its design. However, its robustness would be ex-
pected to increase if, in future, a larger number of
subjects was to be employed in its design.

Appendix A. The cubic least-squares
minimum-distance classifier

The least-squares minimum-distance (LSMD) is a lin-
ear classifier [26]. Extending the input feature vec-
tors of the LSMD with polynomial terms up to third
degree (as a trade-off between the second degree
limited classification capabilities and the compu-
tational requirements of higher degree polynomial
terms [25]), it is possible to discriminate data be-
longing to non-linearly separable classes. Another
important feature of the LSMD is the least-squares
mapping process, which transforms the training pat-
terns from the input space to the decision space (di-
mensionally equal to the number of classes), where
the members of each class are clustered around ar-
bitrary pre-selected points, such that the mapping
error is minimized. Prior to least-squares transfor-
mation, the input space is further augmented by
‘‘−1’’ for convenience.
Let XT = [x1x2 . . . xd] a pattern vector, where d

is the number of features, Z the extended with
quadratic and cubic terms pattern vector, and

Ẑ
T = [ZT − 1] the final augmented pattern. The

transformation matrix A is calculated to minimize
the total mean-square error, which yields A as:

A =

 K∑
c=1

Nc+1∑
i=1

Pc
Nc

VcẐ
T
ci




 K∑
c=1

Nc+1∑
i=1

Pc
Nc

ZciẐ
T
ci




−1

(A.1)

where Ẑ
T
ci is the i-th augmented pattern vector

of class c, Vc the decision space vector around
which the patterns of class c are to be clus-

tered (usually the Vc is the unit vector of class c,
VT
c = [0 . . . 0 1 0 . . . 0], where the only non-zero ele-

ment ‘‘1’’ is in the c-th row of Vc), K the number
of classes, Nc the number of patterns in class c,
and Pc the a priori probability of class c (for equal
probabilities, Pc = 1/K for each c).
Having the transformation matrix A, a new pat-

tern X is classified to class c, for which the following
discriminant function gc(X) is maximum:

gc(X) =
d∑
i=1

aciiix3i +
d−1∑
i=1

d∑
j=i+1

aciijx2i xj

+
d−1∑
i=1

d∑
j=i+1

acijjxix2j +
d−2∑
i=1

d−1∑
j=i+1

d∑
k=j+1

acijkxixjxk

+
d∑
i=1

aciix2i +
d−1∑
i=1

d∑
j=i+1

acijxixj +
d∑
i=1

acixi − bc

(A.2)

where αc are weight coefficients, bc the threshold
parameters, and c = 1, 2, . . . , K. The weight coef-
ficients consist of: d coefficients of xi terms (ai),
d coefficients of x2i terms (aii), d coefficients of
x3i terms (aiii), d!/[2!(d − 2)!] coefficients of xixj
terms, i < j (aij), d!/[2!(d − 2)!] coefficients of xixj
terms, i < j (aij), d!/[2!(d − 2)!] coefficients of x2i xj
terms, i < j (aiij), d!/[2!(d − 2)!] coefficients of
x2i xj terms, i < j (aijj), d!/[3!(d − 3)!] coefficients
of xixjxk terms, i < j < k (aijk), which, including
parameter b, result in a total of (d + 3)!/(d!3!)
coefficients or parameters.

Appendix B. The support vector
machines classifier

A classifier based on support vector machines
[18,19] is a general classifier that it can be applied
to linearly as well to non-linearly separable data,
with or without overlap between the classes.
In the most general case of overlapped and

non-linearly separable data, the problem is (a)
to transform the training patterns from the input
space to a feature space with higher dimensionality
(x ∈ Rd �→ Θ(x) ∈ Rh), where the classes become
linearly separable, and (b) to find two parallel hy-
perplanes with maximum distance between them
and at the same time with minimum number of
training points in the area between them (also
called the margin).
The discriminant function is then given by:

g(x) = sign(w · Θ(x) + b) (B.1)
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where sign ‘+’ corresponds to class 1, sign ‘−’ to
class 2, x is the pattern vector, w the normal vec-
tor to the hyperplanes, and b the bias or threshold
which describes the distance between the decision
hyperplane (which is a hyperplane in the middle
of the margin) and the origin (which is equal to
b/||w||, [18]).
Solving the optimization problem of maximizing

the margin and minimizing the number of training
patterns within the margin, and by use of a kernel
function (that satisfies Mercer’s conditions [18]) in
the place of the inner product Θ(xi)·Θ(xj), the dis-
criminant function of the SVM classifier can be writ-
ten as:

g(x) = sign


 NS∑

i=1

αiyik(xi, x) + b


 (B.2)

where xi ∈ Rd, i = 1—N, d the number of features,
N the number of training pattern vectors belong-
ing to two classes yi ∈ {−1, +1}, αi are coefficients
that are obtained by solving the above mentioned
optimization problem, and NS is the number of pat-
tern vectors (also called the support vectors) with
non-zero αi’s.
Threshold b may be expressed [18] as:

b = 1
NS

NS∑
j=1


yj −

N∑
i=1

αiyik(xi, xj)


 (B.3)

Functions that are commonly used as kernels are:

(i) The linear kernel:

k(xi, xj) = xi · xj (B.4a)

(ii) The polynomial kernel:

k(xi, xj) = (xi · xj + θ)d (B.4b)

where d is the degree of the polynomial and θ

an offset parameter.
(iii) The Gaussian radial basis kernel:

k(xi, xj) = exp

(
(xi − xj)T(xi − xj

2σ2

)
(B.4c)

where σ is the standard deviation.
(iv) The sigmoidal kernel:

k(xi, xj) = tanh(κ(xi · xj) + θ) (B.4d)

where κ is the gain and θ the offset.
(v) The inverse multiquadric kernel:

k(xi, xj) = ((xi − xj)
T(xi − xj) + c2)−1/2 (B.4e)

where c is a non-negative real number.
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