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CGH microarrays and cancer
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Genetic alterations are a key feature of cancer cells and
typically target biological processes and pathways that
contribute to cancer pathogenesis. Array-based comparative
genomic hybridization (aCGH) has provided a wealth of

new information on copy number changes in cancer on a
genome-wide level and aCGH data have also been utilized in
cancer classification. More importantly, aCGH analyses have
allowed highly accurate localization of specific genetic
alterations that, for example, are associated with tumor
progression, therapy response, or patient outcome. The genes
involved in these aberrations are likely to contribute to cancer
pathogenesis, and the high-resolution mapping by aCGH
greatly facilitates the subsequent identification of these cancer-
associated genes.
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Introduction

DNA copy number changes are common in cancer and
lead to altered expression and function of genes residing
within the affected region of the genome. Traditionally,
such segments in the tumor genome are thought to harbor
either oncogenes or tumor suppressor genes depending
on whether they are present in increased or decreased
copy number, respectively. Identification of regions with
copy number aberrations and especially the genes
involved thus offers a basis for better understanding of
cancer development and more importantly is likely to
provide improved tools for clinical management of cancer,
such as new diagnostics and therapeutic targets.

Comparative genomic hybridization (CGH) technique
was developed in the early 1990s for genome-wide
characterization of copy number changes, especially in
cancer [1]. In this technique, total genomic DNA is
isolated from tumor and normal control cells, labeled
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with different fluorochromes and hybridized to normal
metaphase chromosomes. Differences in the tumor to
normal fluorescence ratio along the metaphase chromo-
somes are then quantitated and reflect changes in the
DNA sequence copy number in the tumor genome.
Subsequently array-based CGH (aCGH), where arrays
of genomic sequences replaced the metaphase chromo-
somes as hybridization targets, was established [2—4] and
solved many of the technical difficulties and problems
caused by working with cytogenetic chromosome prep-
arations. The main advantage of aCGH is, however, the
ability to perform copy number analyses with much
higher resolution than was ever possible using chromo-
somal CGH [5-7].

Different kinds of aCGH platforms are currently avail-
able ranging from arrayed bacterial artificial chromosome
(BAC) clones to cDNA clones and various oligonucleo-
tide-based formats [5-7]. The technical and methodo-
logical issues of aCGH as well as the general applications
of this technology both in cancer research and in human
genetics have been recently discussed in several excellent
reviews [5-7]. This article will concentrate on recent
discoveries obtained in cancer research through the
aCGH approach and will especially focus on studies
published within a two-year period from 2005 to 2007.
The use of aCGH for genome-wide screening of copy
number changes as well as for targeted analyses of specific
regions of interest will be discussed. Studies with more
focused applications, such as tumor classification or
identification of specific copy number changes associated
with clinicopathological tumor characteristics, tumor pro-
gression, patient outcome, and therapy response, will also
be covered (Figure 1).

Global analysis of copy humber aberrations
and identification of putative target genes

A vast number of tumor samples representing both com-
mon tumor types, such as breast [8-11] and colorectal
cancers [12,13], as well as more rare tumor entities,
including gastrointestinal stromal tumors [14-16], insuli-
nomas [17], and ependymomas [18], have been analyzed
in genome-wide aCGH studies. These studies have
sought to provide a comprehensive high-resolution view
of copy number changes in various tumor types and have
provided a wealth of new information on the patterns of
copy number alterations occurring during cancer devel-
opment. A number of regions that are frequently involved
in gains and losses have been identified. For example,
analysis of ependymomas [18] disclosed multiple fre-
quently occurring regions of both gain (2q23, 7p21,
12p, 13q21.1, and 20p12) and loss (5931, 6q26, 7936,
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Applications of aCGH in cancer research.

15q21.1, 16924, 17p13.3, 19p13.2, and 22q13.3) thus
illustrating the extent of copy number aberrations in
cancer genomes.

In addition to genome-wide surveys, targeted analyses
utilizing specifically constructed arrays aiming at provid-
ing complete tiling path coverage of a specific region of
the genome have become increasingly feasible [19°,20—
23]. Such studies have been applied for the characteriz-
ation of common copy number changes at the q-arm of
chromosome 8 in breast cancer where an extremely
complex pattern of copy number changes with alternating
areas of amplification and deletion was revealed [23].
More specifically, this study identified a total of six
distinct amplicons together with three deletions at the
8q21 and 8q24 regions in breast cancer [23]. Similarly,
analysis of meningiomas using a chromosome 1 specific
tiling path array disclosed four separate commonly
deleted candidate loci [19°]. The above-mentioned
examples demonstrate that copy number changes pre-
viously thought to represent simple gains or losses can
indeed consist of complex discontinuous sets of aberra-
tions that can only be discovered with the use of the high-
resolution technologies.

The ultimate goal of all aCGH studies is to pinpoint the
locations of cancer-associated genes as accurately as
possible. The application of increased resolution array
platforms is thus expected to facilitate the subsequent
identification of target genes. Especially the use of oligo-
nucleotide arrays has further increased the mapping resol-
ution of aCGH and allows extremely precise definition of
aberration boundaries and breakpoints, with a theoretical
resolution of less than a kilobase [24°°,25]. One of the clear
advantages of the increased mapping resolution of aCGH
has been the more straightforward identification of small
homozygous deletions, pinpointing the possible locations
of tumor suppressor genes [26-28,29°,30,31]. For example,
analysis of mantle cell lymphomas identified several
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regions of homozygous deletions, one of which (2q13)
was subsequently shown to target the proapoptotic BIM
gene [27]. A similar screen in ovarian cancers disclosed a
total of 27 homozygous deletions including one corre-
sponding to the well-known RB/ tumor suppressor gene
[30]. Likewise, analysis of oral cancers revealed a homo-
zygous deletion of the FAT gene, a member of the human
cadherin superfamily [31]. These examples illustrate that
high-resolution aCGH has indeed improved the detection
of homozygous deletions in cancer and thereby facilitated
the identification putative novel tumor suppressor genes.

The increased resolution of aCGH has also recently led to
the discovery that translocations, that by cytogenetic
analysis have been considered to be balanced, frequently
involve copy number gains or losses [32,33]. For instance,
analysis of cytogenetically well-characterized prostate
cancer cell lines revealed that a high fraction (80-92%)
of translocations was accompanied by copy number
changes [33]. It remains to be seen whether these trans-
location-associated copy number aberrations actually lead
to relevant changes in cancer cell function or whether
they simply reflect mechanistic events related to the
breaking and fusion of the chromosomes.

Tumor classification by aCGH

Previous genome-wide copy number analyses have indi-
cated that different tumor types typically possess more or
less specific sets of genetic changes although some indi-
vidual aberrations, such as amplification of the KRBB2
locus at 17q12, can indeed be observed across multiple
tumor types. To specifically explore the utility of copy
number patterns for tumor classification, Jong ez a/. per-
formed a meta-analysis combining aCGH data from 373
primary tumors obtained using three different array plat-
forms (BAC, cDNA, and oligo) in four different institutes
[34°°]. Importantly, no platform or institute specific pat-
terns were highlighted suggesting that copy number data
derived from different laboratories using different array
formats can indeed be easily merged. Clustering analysis
revealed that tumors were separated not only according to
their tissue of origin (e.g. lymphomas, breast, colon, and
prostate cancers were found in their own clusters) but also
according to their embryonic origin (hematopoietic,
mesenchymal, and epithelial tissues) [34°°]. This meta-
analysis thus confirms that tumor type specific copy
number patterns do exist and can be used for efficient
tumor classification.

Genomic copy number profiles can also distinguish dis-
tinct subgroups within histologically defined disease enti-
ties [10,35-37]. In multiple myeloma, unsupervised
clustering of aCGH data was able to divide cancer cases
into specific subgroups that also showed differences in
clinical outcomes [36]. Similar subclassification of tumors
has also been reported in other tumor types. In breast
cancer, copy number patterns classified tumors into
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specific subtypes that correspond to those previously
discovered through expression profiling [10]. Detailed
characterization of copy number changes can thus
improve disease classification and may identify clinically
useful subgroups of patients.

Clinical significance of copy number
changes in cancer

Association of specific genetic changes or patterns of
changes to known tumor characteristics, tumor pro-
gression, or patient outcome has been one area of interest
in aCGH studies. As might be expected, comparison of
tumor samples representing different stages of tumor
development, such as premalignant or 7z situ lesions,
invasive cancers, and metastatic disease, has demon-
strated that the overall number of copy number changes
increases during tumor progression [10,17,38-42]. For
example, in Wilm’s tumors increased number of aberra-
tions was associated with tumor progression and relapse
[42]. In addition, a specific genetic change, the loss of 17p,
was also linked to tumor progression [42] indicating that
this aberration is probably a late event in tumor devel-
opment. Specific genetic aberrations have also been
linked with certain clinicopathological tumor features.
As an example, gain of 1q and loss of 5q were observed
more frequently in estrogen receptor negative breast
tumors [10]. Such associations further imply that specific
genetic events are involved in the development of differ-
ent clinically relevant subgroups of tumors.

In addition to tumor progression, the high number of copy
number aberrations has also been linked with poor patient
prognosis [37,38], and the identification of specific
genetic aberrations associated with patient outcome has
been the goal in a number of aCGH studies
[10,13,36,37,43-46,47°° 48]. Several different aberrations
have been implicated in different tumor types and both
increased and decreased copy number are found to have
prognostic significance. For instance, 17q23.2-qter gains
and 17p13.1-p13.3 losses were indicative of poor patient
outcome in medulloblastomas [44], whereas gain of 1q or
loss of chromosome 13 were associated with poor prog-
nosis in multiple myeloma [36]. In ovarian cancer, ampli-
fication at 5q31-q35 was linked with poor prognosis,
whereas losses at 4p16 seemed to provide a favorable
outcome [47°°]. Moreover, losses on 1p36 and 21q22 were
shown to represent independent indicators of poor prog-
nosis in colorectal cancer [13], whereas amplification of
20q11.1 had similar independent prognostic value in giant
cell tumors of the bone [45]. Interestingly, some aberra-
tions, such as losses of 1p in mantle cell lymphomas and
diffused large B cell lymphomas, have also been linked
with good prognosis [37,43]. These data have obvious
clinical significance and identification of target genes for
such outcome-associated regions, especially those linked
with poor prognosis, is likely to provide new information
on cancer progression.

Finally, specific genetic aberrations discovered by aCGH
have also been linked to differential response to various
cancer therapies [49,50,51°°]. Increased number of genetic
changes was shown to be associated with therapy resistance
in ovarian cancer where twice as many aberrations were
observed in the treatment resistant tumor group as com-
pared with the sensitive tumor group [49]. Furthermore,
data from this study also showed that losses of 1p36.33 and
gains of 17q11.2 were found more often in tumors that were
resistant to treatment, whereas losses of 13q12—q13 were
seen in sensitive cases [49]. Another study on ovarian
cancer highlighted multiple different genetic aberrations
associated with chemoresistance and suggested that losses
of 13g32.1 and 8p21.1 were the most reliable markers of
treatment resistant disease [51°°]. Contrary to ovarian
cancers, analysis of breast tumor samples from patients
with or without a recurrence after tamoxifen treatment did
not reveal any difference in the overall frequency of copy
number changes between the two tumor groups [50].
However, a specific set of aberrations, namely losses of
11p15.5-p15.4, 1p36.33, 11q13.1, and 11p11.2, were found
significantly more often in the recurrence group thus
indicating that these loci might harbor genes associated
with treatment resistance and tumor progression. Since
treatment resistance is such an important clinical problem,
similar studies on other tumor types are clearly warranted.

Conclusions

During the past two years, a large number of studies
utilizing the aCGH technology in cancer have been pub-
lished. These studies highlight the overall patterns of copy
number aberrations in various tumor types and identify in
high-resolution-specific genetic alterations associated with
certain tumor entities, disease progression, therapy
response, or patient outcome. Thereby aCGH data provide
an excellent starting point for the identification of genes
involved in these aberrations. However, it has to be keptin
mind that aCGH merely points to the region of interest,
and functional analyses are always necessary to establish
the actual contribution of putative target genes to disease
pathogenesis. The data derived from aCGH studies pre-
sent an essential contribution to our knowledge on cancer-
associated genetic aberrations and illustrate that aCGH
technology still continues to function as an important tool
in cancer research.
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