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ABSTRACT: Bioinformatics, in its broad sense, involves application of computer
processes to solve biological problems. A wide range of computational tools are
needed to effectively and efficiently process large amounts of data being gener-
ated as a result of recent technological innovations in biology and medicine. A
number of computational tools have been developed or adapted to deal with the
experimental riches of complex and multivariate data and transition from data
collection to information or knowledge. These include a wide variety of cluster-
ing and classification algorithms, including self-organized maps (SOM), artificial
neural networks (ANN), support vector machines (SVM), fuzzy logic, and even
hyphenated techniques as neuro-fuzzy networks. These bioinformatics tools are
being evaluated and applied in various medical areas including early detection,
risk assessment, classification, and prognosis of cancer. The goal of these efforts
is to develop and identify bioinformatics methods with optimal sensitivity,
specificity, and predictive capabilities.
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INTRODUCTION

Technological advances in biological and biomedical areas, especially in genomics
and proteomics, are resulting in huge amounts of high-dimensional data with the
number of “features” or “predictors” exceeding sample size by orders of magnitude.
This new statistical paradigm, termed a “curse of dimensionality”, has required the
medical researchers to turn to the fields of artificial intelligence and machine
learning in their quest for adequate analysis tools. Analogously as the recognition
of the field of medical statistics as a specialized area of applied statistics resulted in
the development of numerous new statistical methodologies, the fields of artificial
intelligence and machine learning are currently being retooled and refined to suit the
practical needs of bioinformatics. Integration of modern computational tools in bio-
informatics and innovative high-throughput biotechnologies carry with them a great
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impact potential in health care. The -omic (comprehensive analysis of components
within a biological grouping, i.e., proteomics for proteins) revolution is stimulating
development of new and reinvention of older computational methods. This review
describes some of the commonly used and evolving bioinformatics methods and data
mining tools and includes examples of their application to early cancer detection or
diagnosis, risk identification, risk assessment, and risk reduction. It is not intended
to be exhaustive, but only to present a brief overview. Individual topics are discussed
in a more comprehensive manner in separate chapters in this volume. Another chapter
reviews newer computational methods in cancer-related bioinformatics.

BIOINFORMATICS METHODS

Clustering

An excellent survey of the material on clustering techniques in microarray data
analysis is Tibshirani er al.! (http://www-stat.stanford.edu/~tibs/research.html/).
Clustering methods are used to arrange cell lines and genes in some natural order,
with similar cell lines (and/or genes) placed close together. There are two major
approaches to clustering: bottom-up and top-down. Hierarchical clustering is a
bottom-up clustering method that starts with each cell line (gene) in its own cluster.
It works by agglomerating the closest pair of clusters at each stage, successively
combining clusters until all of the data are in one cluster. A number of methods are
in common use for measuring the similarity of the expression profiles, such as
Euclidean distance, Pearson correlation, Manhattan distance, and others.? The
relationships between each sample (or gene) is represented by a hierarchical tree, the
dendrogram, which can be cut at any level to yield a specified number of clusters.
Top-down clustering starts with a preset specified number of clusters and initial
positions for the cluster centers. The K-means is used to reposition the cluster centers
through the following steps: (1) observations are assigned to the closest cluster center
to form a partition of the data; (2) the observations in each cluster are averaged, pro-
ducing new values for the center vector of that cluster. Steps 1 and 2 are iterated, and
the process converges to the minimum of total within cluster variance. Tree-
structured vector quantization carries out K-means clustering in a top-down, binary
manner. It is commonly used in image and signal compression. The principal com-
ponents analysis (PCA), when applied to the genes, finds the linear combinations
of gene expressions having the highest variance. Similarly, when applied to cell
lines, it finds the highest variance linear combination of the cell lines. The correla-
tion of each gene with the leading principal component provides a way of sorting
(clustering) the genes as well as cell lines. The self-organizing map (SOM) is similar
to K-means clustering, with the constraint that the cluster centers are restricted to
remain in a one- or two-dimensional manifold. An iterative procedure is used to
readjust the positions of the centers. There is a similarity between SOMs, multi-
dimensional scaling, and principal components. In a comparative study, it was
reported that K-means clustering produces tighter clusters than hierarchical clustering,
but the latter tends to produce a greater number of smaller clusters, potentially a
valuable feature for discovery.!
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Unlike K-means clustering, hierarchical clustering produces an ordering of the
objects, which can be informative for data display. Because SOMs are constructed
from a two-dimensional representation of the data, it is a good idea to check the
resulting predicted classes against an algorithm that functions directly in the original
dimension of the data set, such as K-means.

The above methods are the one-way clustering techniques; however, the use of
two-way clustering, that is, simultaneous clustering both the genes and cell lines, has
also been investigated.! A simple approach to this problem is to apply a one-way
clustering method separately to the genes and to the cell lines. Block clustering, in
contrast, uses both gene and cell line information to simultaneously cluster both. The
two-way clustering procedures seek a global organization of genes and cell lines.
This study reported that these types of procedures are able to discover gross global
structure, but may not be effective for discovering finer detail. In response to this
finding, a new method called gene shaving was proposed. The gene shaving
technique can search for sets of genes that optimally separate the cell lines.> The
algorithm begins by finding a nested sequence of candidate clusters, with all gene
clusters in the initial position and one gene cluster in the final position.

Artificial Neural Networks

Artificial neural networks (ANN), modeled after normal brain processes and
neurophysiological learning, are powerful computational tools for multifactorial
classification and multivariate nonlinear regression. Technological advances and
availability of computational power brought by the era of personal computers made
ANN a popular method for routine analysis in a wide spectrum of scientific and
engineering applications, including automatic target recognition, stock market
analysis, expert systems, pattern recognition, medical imaging, and DNA microarray
analysis. However, ANN methodologies often represent more art than science. Many
decisions related to the choice of ANN structure and parameters are often completely
subjective. Theoretical recommendations for the size of training data set are lacking,
and an optimum size is almost never available in practice. Special attention also has
to be paid to avoid overtraining that would result in memorization instead of gener-
alization of the data. Therefore, there is a considerable uncertainty in the optimal
design of the ANN architecture. The final ANN solution may be influenced by a
number of factors (e.g., starting weights, number of cases, and their order during the
training phase, number of training cycles, etc.).

Bootstrap sampling (random sampling with replacement) to produce a large
number of individual neural networks was one proposed approach addressing this
problem.* Parametric or nonparametric statistical analysis of the resultant distribu-
tion of neural networks would yield predictive intervals. ANN is a strongly nonlinear
approximation and, therefore, the topology of the objective function in the space of
the ANN parameters is usually very complex. In particular, the objective function
may contain many local minima, and gradient methods of optimization, such as
Newton-Raphson, steepest descent, etc., can easily lead the minimization procedure
to one of these local minima, resulting in very suboptimal weights. To avoid this
problem, a number of sophisticated optimization algorithms have been developed,
such as genetic algorithm, simulated annealing, and various versions of stochastic
optimization.
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Genetic algorithms are based on the concept of natural selection, survival of the
fittest. Using principles of inheritance, mutation and/or cross-over, genetic algorithms
generate a series of random potential solutions (population) and use objective fitness
function to evaluate each member of the population. The probability of a particular
gene being copied in the next generation (reproduction) is determined by its fitness
(i.e., its contribution to the objective function). The reiterative process continues
with the fitter members until the fittest member of the population is identified as the
optimized solution. It has been shown theoretically and computationally that such a
process provides a random walk in the space of the ANN parameters toward minimum
of the objective function. A fundamental advantage of the genetic algorithm is that
in principle it is able to find the global minimum. Genetic algorithms are highly
intensive computationally and require millions of readjustments (“generations”) of
the objective function to reach a convergence.

Simulated annealing is another method of finding a global minimum. The set of
arguments of the objective function (the ANN weights, for example) are likened to
a thermodynamic system. Objective function is considered as its energy, and the
search for the minimum is analogous to the search of thermodynamically stable state
with the lowest energy possible. It was shown that simulated annealing has a high
probability to converge to a global minimum. Similar to genetic algorithm, simulated
annealing is highly computationally intensive.

There are many versions of stochastic optimization. Their common theme is a
random walk in the phase space toward the minimum of objective function. The
arguments of objective function are perturbed randomly. The new set of parameters
are accepted if the objective function is decreasing. The whole process is often
likened to the random walk of a drunken person in his/her attempt to find the way
home. A surprising feature of this kind of algorithm is that average time required to
reach the goal is often smaller than that resulting from exact analysis and prediction
of each step. The advantages of stochastic algorithms are especially noticeable for
the random walk in high-dimensional space. Generally speaking, this family of
algorithms does not guarantee convergence to the global minimum. However, a great
advantage of stochastic optimization methods is that, unlike the gradient methods,
they generally do not require computation of the objective function gradients. Taking
into account high dimension of the parameter space and high computational cost of
the gradient evaluation, this feature is highly important and makes the convergence
process comparatively fast.

Despite all the obstacles and difficulties in design and training of ANNSs, there are
numerous examples of highly successful applications of ANNs. Recently, a marked
increase in application of ANNs in biomedical areas, especially in cancer research,
has been observed. It is currently widely recognized that cancer risk evaluation
based on a single or few biomarkers may not be possible. ANN is inherently suited
in this regard because of its ability to perform simultaneous analysis of large
amounts of diverse information. ROC (receiver operating characteristics curve)
methodology, which is frequently used as a measure of classification performance,
has been adapted to evaluation of the ANN performance.*> The y-axis and x-axis on
the ROC curves represent sensitivity and specificity, respectively, and the area under
the curve is an indication of how well the independent variable separating two
dichotomous classes performs.
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Support Vector Machine

An important recent innovation in the statistical learning theory is the support
vector machine (SVM).® SVM represents a particular instance of a large class of
learning algorithms known as kernel machines and is a powerful supervised algorithm
for classification. This algorithm projects data into higher dimensional space where
two classes are linearly separable. It finds a hyperplane in the space of the data points
that separates two classes of data and maximizes the width of a separating band
between the data points and the hyperplane. The support vectors are defined as the
ones nearest to this margin, and only the support vectors define the model and need
to be stored. There are many fundamental advantages of the SVM algorithms
compared with other methods. First, unlike ANN, SVM produces a unique solution
because it is basically a linear problem and does not have such a pitfall as multiple
local minima. Second, SVM is inherently able to deal with very large amounts of dis-
similar information. Third, the discriminant function is characterized by only a com-
paratively small subset of the entire training data set, thus making the computations
noticeably faster. SVM is a highly promising tool in genomics and proteomics.

Boosting

Abundance of exploratory tools, each possessing their pros and cons, creates a
difficult problem of selecting the best of them. It seems to be a good idea to try to
combine their strengths for creating an even more powerful tool. To a certain extent,
this idea has been implemented in a new family of classification algorithms known
under the general term “boosting”. Boosting was proposed in a series of ground-
breaking works.” Boosting is a general method for combining many weak classifiers
to produce a stronger classifier. Boosting sequentially applies a classification
algorithm to reweighed versions of the training data and then takes a weighted
majority vote of the sequence of classifiers thus produced. For many classification
algorithms, this simple strategy results in a dramatic improvement in performance.
This seemingly mysterious phenomenon can be understood in terms of well-known
statistical approaches, such as additive models and maximum likelihood.®

Bagging

Another technique that has evolved as a mechanism for improving existing
classification algorithms is “Bagging”, an acronym for (B)ootstrap (Agg)regation.’
Given a particular classifier and a data set, bagging proceeds by drawing B bootstrap
samples from the data set (random sample with replacement of equal size). Each
bootstrap sample trains a classifier. Since sampling with replacement tends to pick
from those already sampled about a third of the time, a bootstrap sample of size n
contains roughly 2n/3 unique samples. Consequently, #/3 of the original sample is
left out. The validation step is carried out by predicting class membership, for each
of the n elements of the original sample, using the (roughly) B/3 classifiers that
element did not train. Final class membership is predicted using the most popular
vote. The point of bagging a classifier is to pick a middle way between overfitting
(low variance, but high bias) and oversmoothing (low bias, but high variance). A
very promising new tool that incorporates bagging in a very clever way is random
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forests.!012 This tool performs bagging on classification (or regression) trees with
the added novel idea of random feature set selection each time a node is split during
the training process. This has the effect of decorrelating the ensemble of classifica-
tion/regression trees and helps to strengthen the divide between training and valida-
tion. An especially nice additional property of random forest is that it performs so
well with practically no real tuning parameters. The random forest algorithm has
recently been successfully applied in the analysis of proteomics data.!?

Fuzzy Logic

The real world, including that of medicine, is imprecise, vague, and ambiguous,
that is, fuzzy. Lotfi Zadeh, the founder of fuzzy logic, proposed that one could
exploit tolerance for imprecision and partial truths to achieve tractability, robustness,
interpretability, and decreased computational cost. Fuzzy logic deals with ambiguity
and vagueness, as opposed to probability that involves uncertainty and likelihood. A
distinction between fuzzy and binary or crisp logic is that the former involves con-
cepts of more or less or degree of membership (partial set membership) or continuity
as opposed to yes or no or absence or presence or discreteness. Fuzzy logic uses the
linguistic variable (i.e., computing with words instead of numbers). It provides a
mathematical tool for representing and manipulating information in a way that
resembles human communication and reasoning processes. It embeds existing struc-
tured human knowledge into workable mathematics. A typical fuzzy inference system
includes fuzzification (classifying numeric data into fuzzy sets), knowledge/rule
base (employing linguistic reasoning with “if ... then” rules mapping the input into
output variables), inference engine (applying the rule base to the fuzzy set to obtain
a fuzzy outcome), and defuzzification process (converting the fuzzy outcome to a
crisp one).

Nowadays, fuzzy logic devices are present in many everyday consumer products
(e.g., automobile brakes, camera and camcorder autofocus, meteorology instrumen-
tation, intravenous infusion pumps, kitchen devices, etc.). Theory and applications
of fuzzy logic in medicine have been reviewed in several recent publications.!418
Some of the fuzzy techniques that have been employed for biomedical data analysis
include fuzzy clustering, fuzzy classification, and hybrid systems, such as combina-
tions of fuzzy logic and neural networks (neuro-fuzzy networks), genetic algorithm,
evolutionary algorithm, or discrete wavelet transforms. For example, the advantage
of some hybrid methods like neuro-fuzzy systems is that they combine the advantages
of fuzzy systems that deal with explicit knowledge (understood and explainable) and
neural networks that deal with implicit knowledge (acquired by learning).

APPLICATIONS

Genomics in Early Cancer Detection and Classification

The innovative technologies of gene expression analysis are providing promising
tools for the identification of cancer cell signatures and cancer molecular targets,
thereby facilitating early detection of cancer and intervention. Computational methods
used for microarray data analysis have been reviewed.!® Perou e al.2% used hierarchi-
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cal clustering for human breast tumor classification and identification of molecular
portraits. Alizadeh er al.?! studied gene expression in the three most prevalent adult
lymphoid malignancies. Two previously unrecognized types of diffuse large B-cell
lymphoma, with distinct clinical behaviors, were identified based on gene expression
data and were shown to have markedly different median survival, even within a low-
risk profile, according to the currently accepted diagnostic criteria. Two-way hier-
archical clustering on cell lines and on genes was used to identify the two tumor sub-
classes, as well as to group genes with similar expression patterns across the three
different samples. However, these results were obtained after thresholding, which is
a step fraught with problems over validity. Using a gene shaving technique, it was
possible to duplicate two subtypes with differing median survival in an unsupervised
manner, without thresholding.? Hierarchical clustering has several drawbacks (non-
uniqueness, inversion problems, grouping based on local decision, lack of an oppor-
tunity to reevaluate the clustering, etc.) and other approaches have also been
employed. Unsupervised methods, such as the Kohonen SOMs, have been used for
gene clustering in promyelocytic leukemia.22

Use of supervised methods for microarray data analysis has also been recently
reviewed.23 Supervised ANNs have been used to classify estrogen receptor status in
human breast tissue following PCA to reduce the dimensionality?* and correctly
classify the small, round blue-cell tumor subtypes and identify possible gene targets
for therapy.?> Others have successfully applied ANN to distinguish among subtypes
of neoplastic colorectal lesions and showed that ANN outperformed hierarchical
clustering in classification power and was able to distinguish between 27 different
subtypes of neoplastic colorectal lesions.26 SVMs have also been successfully
applied in microarray gene expression analysis,2’ tumor classification,282% cancer
diagnosis,3? and prognosis.3! A group at Stanford developed supervised learning
software for genomic expression data mining and made it available from their Web
site (http://www-stat.stanford.edu/~tibs/SAM/index.html/).32 It is in the form of an
Excel add-in and is applicable to cDNA, oligo, SNP, and protein array data. It
correlates expression data to clinical parameters. A fuzzy logic approach to identify
connected networks of genes describing how the genes interrelate has also been
proposed.33

Proteomic Profiling, Bioimaging, and Pattern Recognition

Proteomics is the analysis of the proteome, which is a term applied to the proteins
expressed by the genome of a species. Importance of the problem was recently
emphasized by founding the Human Proteome Organization (HUPO) (http://
www.hupo.org/) with the aim of elucidating the human proteome. In general, there
is a poor correlation between mRNA and protein levels.3* In addition, genomics does
not provide information regarding posttranslational events (such as phosphorylation,
acetylation, lipidation, glycosylation, or ubiquitination). Proteome imparts cellular
functionality as proteins carry out most of the work of the cell. The majority of drug
targets are proteins. Proteomic fingerprinting provides complementary information to
genomic fingerprinting. Proteins can serve as markers and targets of chemoprevention.
Newer technological advances have enabled growth and interest in proteomics.
Some of the tools presently available or under development include surface-enhanced
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laser desorption/ionization time-of-flight (SELDI-TOF) and matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF), mass spectrometric (MS)
techniques, surface plasmon resonance (SPR) technology, laser capture micro-
dissection (LCM), and a number of protein, antibody, and tissue microarrays.

There are a number of difficulties inherent in proteomic research. For example,
estimated number of proteins in the proteome exceeds that of genes in the genome
by more than an order of magnitude. There is no PCR equivalent to amplify protein
signal. Proteins are in a continual dynamic flux depending on cellular status and
activity. Proteomic research will lead to new developments in identification and
detection of biomarkers, recognition of new drug targets, individualized patient
therapy, and enhancements in rational drug design. These new technologies have
facilitated disease detection and diagnosis based on protein fingerprinting, relying
on multiple instead of single protein biomarkers. It is not simply a matter of presence
or absence of number of proteins, but rather their relative amounts to each other. This
realization led to a considerable improvement in predictability. Bioinformatics tools
are critical in the analysis of the huge amount of data being generated by the newer
parallel analytical techniques.

Appropriate combinations of analytical and bioinformatics tools have been used
to define an optimum discriminatory proteomic pattern in women without sign of
disease, early-stage ovarian cancer, late-stage ovarian cancer, and benign diseases.>
In this study, genetic algorithm and unsupervised SOM were used to analyze SELDI-
TOF data from serum proteins applied to a hydrophobic interaction protein chip. In
order to identify 5 proteins with different relative abundances between two training
sets, on the order of 1020 combinations would be required and would be overwhelming
even with today’s computer technology. However, the problem can be greatly
simplified by use of a genetic algorithm. Petricoin et al.3 report that this approach
yielded 100% sensitivity, 95% specificity, and 94% predictability.

Another study presented promising preliminary results in using neural network
with a back-propagation algorithm for the tumor classification and biomarker iden-
tification of human astrocytoma based on tissue protein data.3% Qu ez al.37 applied a
modified AdaBoost algorithm proposed by Freund and Schapire.” Using this algo-
rithm, 97% sensitivity and specificity have been achieved in discrimination between
healthy men and those with prostate cancer and benign prostate hyperplasia based
on serum protein data. The same group also obtained satisfactory results (positive
predictive value of 91% for general population) for early detection of prostate cancer
based on serum protein fingerprinting with a decision tree classification algorithm.38

ANN is also a powerful tool for image analysis and pattern recognition. It is
the technique behind the FDA-approved computer-assisted diagnosis instrumenta-
tion ImageChecker® that is used to analyze digital mammograms and draws the
physician’s attention to suspicious features that may be indicative of cancer (http://
www.r2tech.com/prd/prd001.html/).

ANNSs have been used to classify patterns of subcellular structures in fluorescence
microscope images of HeLa cells.?® Images of subcellular structures were parame-
terized using an elaborate system of 37 geometric and texture features. The 37
vectors of these features were used as input vectors for the back-propagation ANN.
The ANN was able to successfully recognize all 10 subcellular structures used in the
training process. This method allows monitoring of dynamic protein properties and
relates them to changes with disease states and therapeutic intervention.
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Usefulness of fuzzy logic was demonstrated in computer-aided cancer detection
in the areas of bioimaging, classification, and pattern recognition. A fuzzy logic
approach was used in detection of lobulated and microlobulated masses in digital
mammography,*? and fuzzy-neural and feature extraction techniques were employed
for detecting and diagnosing microcalcifications on digital mammograms.*® A
breast cancer diagnosis system (BCDS) combined a fuzzy microcalcification
detection algorithm with a feature extraction method and a back-propagation neural
network (BPNN) for classification of benign or malignant microcalcifications with
89% classification rates.*!

Multifactorial Analysis of Early Detection, Risk Identification,
Risk Assessment, and Risk Reduction of Cancer

Cancer is a complex, multifactorial collection of diseases. The goal of chemo-
prevention is to identify risks, assess risks, detect early, and intervene to reduce risk
of cancer prior to the appearance of clinical signs and pathological abnormalities.
Individual variables (biomarkers and indicators of cancer) are not adequately predic-
tive or discriminatory. However, simultaneous consideration of multiple factors
(composite medical index or panel of markers) should provide a more useful
indication into the initiation, progression, and reversal of carcinogenesis. A further
complication is that the predictability of an outcome is not based on presence or
absence of several biomarkers or their linear summation, but on a complex, nonlinear
relationship between them. The challenge is to identify suitable composite medical
indices that would provide acceptable sensitivity, specificity, and predictability.

Different multivariate analytical tools have been employed to identify a composite
variable for early detection, risk identification, risk assessment, and risk reduction
of cancer. ANNs have been frequently used in cancer detection, cancer classifica-
tion, and prognosis.*23-26-36.42:43 Tnputs into ANNs can include data from any or all
of the following: clinical findings, clinical chemistry, gene microarrays, protein
microarrays, biomarkers, genetic factors, environmental factors, etc. The output
variable represents a composite variable or a predicted outcome (in terms of a
cancer risk or prognosis) for the individual patient.*

Other computational methodologies that have been shown to be useful in the area
of diagnosis, classification, and prediction based on multifactorial analysis include
SVMs, 3031 genetic algorithms and SOMs,3? and fuzzy logic.**

The fuzzy logic approach in conjunction with a panel of biomarkers demonstrated
accuracy, sensitivity, and specificity in the diagnosis and classification of lung
cancer.** For example, this study was able to distinguish malignant versus benign
cases with a sensitivity of 88% and a specificity of 86%. It was also able to discrim-
inate between non-small-cell carcinoma (NSCLC) versus small-cell carcinoma
(SCLC) with sensitivity and specificity of 91% and 91% and squamous versus adeno-
carcinoma with sensitivity and specificity of 77% and 79%, respectively. This
approach was especially effective in early stages of cancer and in patients with all
marker levels in the gray area. Another study*® employed genetic algorithm to auto-
matically produce a fuzzy BCDS in relation to the Wisconsin Breast Cancer Diag-
nosis (WBCD) database. This fuzzy-genetic approach provided a high classification
performance and interpretability. Subsequently, these same authors*® introduced a
combination of a fuzzy system and a cooperative coevolutionary approach in the
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area of breast cancer diagnosis. Evolutionary methods are search or optimization
techniques and are especially useful in search of large and complex spaces. Coopera-
tive coevolutionary approach involves two coevolving cooperative species (database
membership function and a rule base). Two genetic algorithms (subset of evolutionary
algorithms) were used to control the evolution of two populations. The advantages
of this approach were that it provided higher classification performance with a lower
computational cost than other systems.

In all cases, these multifactorial computational methodologies have enabled or
significantly improved detection, classification, or prognosis of cancer over
evaluations based on a single variable.

Drug Discovery

Pharmaceutical companies recognize the value of the huge amounts of data being
generated by new -omics and high-throughput technologies, and are trying to leverage
these data into drug discoveries with the help of evolving bioinformatics tools. In an
effort to streamline, expedite, and optimize drug discovery and development, pharma-
ceutical companies are actively incorporating bioinformatics into their practices. As
a result, new fields such as chemogenomics, chemical genomics, and chemical
genetics have emerged. Although definitions for these fields vary and overlap, these
areas encompass new approaches to drug discovery and therapeutic target identifi-
cation/validation.#’-4? The idea behind them is that drugs can be used to identify
new therapeutic targets, and targets can be used to identify new drugs in the context
of genomics/proteomics. In a sense, chemical genomics integrates chemical struc-
ture space and biological structure space and provides an in silico approach to drug
discovery and optimization. There are a number of new companies with a primary
focus on chemical genomics that have emerged recently and are developing their
versions of the chemical genomic mousetraps. In addition, another related -omic
discipline has emerged: pharmacogenomics.”® Pharmacogenomics is a discipline
examining an individual’s response to drugs based on an individual’s genetic makeup.
It promises to enable optimized, personalized therapy for each patient. Advances in
biological, analytical, and computational technologies have allowed for emergence
of innovative computer-aided drug design (CADD). Genetic algorithms are fre-
quently used in CADD.3!-32 New data mining techniques and visualization tools can
be used to characterize effects of chemopreventive intervention and thereby facilitate
drug discovery. The expectation is that they will be useful in identifying appropriate
targets, suitable biomarkers, and more fitting drug agents.
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