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ABSTRACT

A fundamental problem in human health is the inference of disease-causing genes, with

important applications to diagnosis and treatment. Previous work in this direction relied on

knowledge of multiple loci associated with the disease, or causal genes for similar diseases,

which limited its applicability. Here we present a new approach to causal gene prediction

that is based on integrating protein-protein interaction network data with gene expression

data under a condition of interest. The latter are used to derive a set of disease-related

genes which is assumed to be in close proximity in the network to the causal genes. Our

method applies a set-cover-like heuristic to identify a small set of genes that best “cover”

the disease-related genes. We perform comprehensive simulations to validate our method

and test its robustness to noise. In addition, we validate our method on real gene expression

data and on gene specific knockouts. Finally, we apply it to suggest possible genes that are

involved in myasthenia gravis.

Key words: gene-disease association, gene expression analysis, myasthenia gravis, protein-

protein interaction network.

1. INTRODUCTION

HIGH-THROUGHPUT TECHNOLOGIES SUCH AS YEAST TWO-HYBRID SCREENS (Fields and Song,

1989) and co-immunoprecipitation (Lee et al., 2002) are routinely used nowadays to map molecular

interactions within the cell. Applications of these maps include the prediction of protein function (Sharan

et al., 2007) and orthology (Bandyopadhyay et al., 2006), the inference of protein modules (Sharan et al.,

2005) and more.

In the last two years, large scale maps of protein-protein interactions (PPIs) have become available for

humans (Rual et al., 2005; Stelzl et al., 2005), leading to an array of works aiming at harnessing PPI

data to improve the understanding of human disease. In particular, many authors have shown the utility of

these networks in inferring disease-causing genes. Franke et al. (2006) considered diseases with several

associated loci. For such diseases they aimed at identifying a set of genes, spanning the associated loci,

whose protein products are connected in a functional network, comprised of PPIs, co-expression relations
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and gene-ontology similarities. Lage et al. (2007) integrated PPI data with information on the phenotype

similarity of different diseases. They developed an algorithm for predicting causal genes that relies on the

observation that genes causing similar diseases tend to be connected in a PPI network. Kohler et al. (2007)

grouped diseases into families using a random walk method from known genes in its family to prioritize

candidate genes. Wu et al. (2008) scores a candidate gene based on the correlation between the vector of

similarities to diseases with known causal genes using a propagation method. Mani et al. (2008) used gene

expression data in combination with molecular interaction data to identify interactions that exhibit a gain

or a loss of expression correlation in a given phenotypic class. They then ranked genes according to the

enrichment of their direct neighborhood with such interactions.

Here we present a new algorithm for predicting disease-causing genes. Rather than assuming information

on disease loci, or on gene-disease associations, we make use of the abundant information on genes that

change their expression levels within the affected tissue under the disease state. We call the latter disease-

related genes. Our algorithm relies on the assumption that in the disease state, one or more causal genes

are disrupted, leading to the expression changes of downstream (disease-related) genes through signaling-

regulatory pathways in the network. To uncover the causal genes, we make a parsimonious assumption,

seeking the smallest set of genes that could best explain the expression changes of the disease-related

genes in terms of probable pathways leading from the causal to the affected genes in a network of physical

interactions. Ideally, this network should contain protein-protein and protein-DNA interactions. However,

the latter are not available at large scale for humans. Hence, in practice, we use PPI data only.

In simulations, our algorithm attains very high accuracy on a wide range of parameters, including the

size of the input affected set, the noise level within the set, the size of the search space, and the number

of causal genes simulated. In validation on real expression data from knockout experiments, our algorithm

manages to pinpoint the disrupted gene with high accuracy. Further validations on expression data from

different types of cancer show high accuracy in pinpointing known oncogenes. Importantly, we show that

our method outperforms a naive algorithm that ranks disease-associated genes according to their distances

in the network to the directly affected genes. Finally, we apply our method to suggest possible genes that

are involved in myasthenia gravis.

2. RESULTS

We have developed a novel algorithm for identifying disease causing alterations in the pathway of gene

expression. Our approach is based on analyzing the network-proximity of candidate proteins within the

network to a set of proteins that were implicated in the investigated disease. We used read data to optimize

the maximal search depth parameter l used throughout this section, as described below.

Performance on simulated data

To evaluate the performance of the algorithm, we applied it to simulated data. In each simulation, one or

more “disease-causing” proteins were taken at random from the network, and artificial loci, consisting of

50–200 genes each, were constructed around the genes they encode. To construct a “disease-related” subset

of a certain size (between 30–180), proteins were chosen at random from the set of proteins of distance at

most 3 from the “disease-causing” ones. The simulation setting ensures that the random instances follow

our assumptions on the disease-causing genes. Thus, the simulations mainly serve to test under what

conditions can one recover these genes, overcoming false network signals such as hubs that happen to be

close to the disease-related set.

For each locus size and “disease-related subset,” 50 random tests were conducted. The results obtained

in simulations of a single causal gene are summarized in Figure 1A. Notably, when limiting the search to

a certain locus, the algorithm almost always ranks the simulated causal gene first. The accuracy is lower

when searching the entire network: the average rank of the causal gene ranges between 3.8 and 5.8, and

it is ranked first 22–52% of the time, depending on the locus size.

We compared our performance to that of a naive approach that ranks proteins according to their sum

of distances to the input disease-related genes. As can be seen in Figure 1B, our method is considerably

more accurate when searching the entire network, achieving performance gains of more than 70%.
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FIG. 1. Performance on simulated data. The average rank of the correct simulated gene as a function of the size

of the disease-related set. Each graph corresponds to a different test set. The different plots correspond to loci of

different sizes. The “all” plot depicts the results obtained when searching the entire network. (A) Success rate tests.

(B) Comparison to a naive approach.

To test the robustness of the algorithm to noise in the input list of disease-related genes, simulations

were carried out in which the size of the disease-related set was fixed at 100, and up to 25% of the proteins

in the set were replaced by random proteins. Genes whose “coverage” expectation was equal to that of

the simulated causal gene were removed (as they are indistinguishable from it based on our measure).

The results are depicted in Figure 2A and show that the algorithm’s results are robust even at high noise

levels.

Finally, we tested the utility of the algorithm in recovering more than one causal gene. To this end, we

conducted experiments in which up to four disease-causing genes were simulated (with a 100-genes sized

locus around each one). The results are depicted in Figure 2B. Evidently, the performance is very good for

one to two genes, but worsens with three or more genes. For example, with four disease-causing genes,

the algorithm detects at least one (as the first ranking) 96% of the time, but identifies all four only 10%

of the time.

Validation on real data

To further evaluate the algorithm’s performance, we applied it also to real data sets in which a causal

gene is known. To this end, we used gene expression data for diseases where the genetic origin is known,

or knockout data sets where a gene was knocked out and as a result other genes changed their (wild-type)

FIG. 2. (A) Performance in noisy simulations. (B) Performance on simulated data with multiple disease-causing

genes. The success rate measures the percentage of runs where the simulated causal genes were ranked first, for one

to four target genes. In all cases, the size of the disease-related genes was fixed to 100.



184 KARNI ET AL.

expression levels. To simulate partial knowledge on the location of the causal gene, we used information

on the chromosomal segment in which the gene is located from the OMIM database (Hamosh et al.,

2002).

In order to choose an optimal maximal depth with which to run our algorithm, we applied it with maximal

depth of 1–5 to three of the data sets (ATM knockout, NF�B knockout, and MLL gene expression data),

which are described in detail below. For depths 1 and 2, correct results were found only when considerably

narrowing the search segments (to a few dozens of genes, data not shown). The results for depths 3–5 are

shown in Figure 3A. As evident from the figure, the best results (except for the ATM knockout data) were

attained at maximal depth 3, which was subsequently used in all our runs.

The first set of experiments was performed on knockout data from Elkon et al. (2005), where the knockout

effect of several genes was investigated under DNA damage conditions. In response to knocking out the

transcription factor NF�B, 48 genes changed their expression levels. This gene is located in chromosomal

segment 4q24, which contains 31 genes, 15 of which appear in the PPI network. Reassuringly, NF�B

was ranked first in all our tests. When knocking out the signaling protein ATM, 47 genes changed their

expression levels. ATM lies within segment 11q22, which contains 75 genes, 31 of which appear in our

network. Overall, ATM ranked third, with an average rank of 3.12.

Next, we used data on acute lymphoblastic leukemia (ALL) (Armstrong et al., 2001), consisting of

expression profiles for a subset of acute leukemias involving chromosomal translocation of the mixed

leukemia gene (MLL). Overall, 67 genes were found to be differentially expressed and appeared in our

network. The MLL gene is located at segment 11q23, which contains 168 genes, 61 of which are in

the network. When applying the algorithm to this data, MLL scored best with an average rank of 1.5.

The second highest ranking gene, with an average rank of 2.86, was matrix metallopeptidase 7 (MMP-7), a

member of the matrix metalloproteinase family. This gene has been linked before to leukemia (Lynch and

McDonnell, 2000), and many other forms of cancer (Liu et al., 2007; Rome et al., 2007). Three additional

proteins that ranked among the top 10 are involved in phosphorylation signaling cascades known to be

involved in the leukemic processes (Perry et al., 2002).

The results on the different validation sets are summarized in Figure 3B, which plots average ranks

under different loci sizes for each of the diseases. As evident from the figure, our method significantly

outperforms the naive one. Notably, in these three data sets, the known causal gene was not differentially

expressed, hence the network information was essential for its discovery.

Finally, we applied our algorithm to input sets from multiple expression studies on breast cancer (Pawitan

et al., 2005; Sotiriou et al., 2003; van de Vijver et al., 2002; Wang et al., 2005). We tested the rate at which

our algorithm managed to recover BRCA1 (breast cancer 1, early onset) or BRCA2 (breast cancer 2, early

onset), two of the major causal genes known. Here our search was conducted on 114 genes of the BRCA-1

FIG. 3. (A) Performance with different maximal search depths (1–5) for three real data sets: ATM and NF�B

knockouts and MLL gene expression data. (B) Performance comparison to a naive approach on the same data sets as

in A using a maximal search depth of 3.
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TABLE 1. AVERAGE RANKS OF BRCA1 AND BRCA2

ON BREAST CANCER DATA FROM DIFFERENT STUDIES

Data source BRCA1 BRCA2

Pawitan et al. (2005) 5.72 >10

Wang et al. (2005) 2.88 1.76

Sotiriou et al. (2003) >10 2.5

van de Vijver et al. (2002) >10 3.06

associated segment (17q21) and the 32 genes of the BRCA2 associated segment (13q12). The results,

summarized in Table 1, show that at least one of BRCA1 or BRCA2 was recovered in each of the data

sets. Intriguingly, the BRCA1 set of top 10 genes from both Pawitan et al. (2005) and Wang et al. (2005)

were enriched with genes involved in transcriptional regulation, whereas the BRCA2 sets from Sotiriou

et al. (2003), van de Vijver et al. (2002), and Wang et al. (2005) were rich in phosphorylation-associated

genes, in accordance with the distinct functions of these two genes.

Application to myasthenia gravis

After establishing the utility of our algorithm in predicting disease-causing genes, we sought to apply it

to a multi-factorial disease for which the causal genes are not known. As our test case we used myasthenia

gravis (MG), a neuromuscular autoimmune disease. We used data from Gilboa-Geffen et al. (2007), which

contains a list of genes that are significantly expressed in the thymus of patients with mild and severe

cases of the disease. First, we applied the algorithm to each severity class separately, using 391 genes for

mild MG and 354 genes for severe MG. Then, we composed a list of 63 genes which appear in the severe

cases but not in the mild ones. In all these applications the search for causal genes was conducted on the

entire set of proteins in the network. The results are summarized in Table 2.

In mild MG, the highest ranking proteins contribute to general housekeeping functions: cell growth and

cell-cell interactions, transcriptional activity and peroxisome properties. In severe MG, we also observed

impairments in hematopoietic differentiation compatible with the lymphocytic hyperproliferation which is

characteristic of MG thymuses (Gilboa-Geffen et al., 2007).

When looking at the set of genes that were differentially expressed in the severe cases, but not in the

mild ones, the highest ranking protein was major histocompatibility complex, class I, B (HLA-B). This

protein is part of the HLA class I heavy chain paralogs, which play a central role in the immune system

and are expressed in nearly all cells. The linkage between HLA and MG is supported by previous studies

(Donmez et al., 2004; Huang et al., 1999; Vandiedonck et al., 2005). The second highest ranking protein

was cAMP-dependent protein kinase catalytic subunit alpha isoform 1 (PRKACA). This protein is known to

phosphorylate and inhibit acetylcholine receptor functioning and affect the disease (Li et al., 1996; Plested

et al., 2002).

TABLE 2. A SUMMARY OF THE RESULTS OF RUNNING

THE MGC ALGORITHM ON MYASTHENIA GRAVIS DATA

Mild Severe Severe but not mild

LGALS3BP INSR HLA-B

PEX6 ZMYM2 PRKACA

INSR GJA1 PPP1R2

CD46 GUCY2C HLA-A

POU4F2 CD46 CALCOCO1

ITGAL EBF1 GRLF1

ZDHHC4 GATA3 GYS1



186 KARNI ET AL.

3. CONCLUSION

We presented a new approach to causal gene prediction that is based on integrating protein-protein

interaction network data with gene expression data under disease conditions. The latter are used to highlight

a set of disease-related genes that are assumed to be in close proximity to the causal genes in the PPI

network. Based on this assumption, we apply a greedy heuristic that recovers putative causal genes as those

admitting pathways to a maximal number (in expectation) of disease-related genes. We comprehensively

validated the accuracy of our algorithm in pinpointing causal genes, both in simulations and on real network

data. By applying our algorithm to data on myasthenia gravis, we were able to suggest candidate causal

genes and gain insights about their roles in the progression of the disease.

While our results are encouraging, several enhancements could be introduced to our framework. First,

it would be revealing to integrate protein-DNA interactions into the network and study the impact of

such interactions on the identified genes and pathways. To date, no experimental large-scale transcriptional

network is available for human, although recent computational efforts have aimed at inferring it (Adler

et al., 2007). As our results indicate, the algorithm exhibits high retrieval rate when using PPI data only.

This may be explained by the known correlation between PPI and gene expression data (Deng et al.,

2003). Second, it could be beneficial to analyze different stages of a certain disease to obtain clues on

its progression. As suggested by the MG example, and as further indicated by our initial results on other

diseases, advanced stages of a disease tend to imply larger sets of causal genes that are more widespread

in the network.

4. METHODS

Problem definition. We study the problem of predicting one or more disease-causing genes given a set

of genes that are implicated in a disease. We propose a network-based framework for it, which relies on

the assumption that the protein product of a disease-causing gene should be highly connected in a network

of physical interactions to the protein products of genes affected by it. Formally, the basic problem we

consider is defined as follows:

Definition 1 (Gene Cover (GC)). Given a graph G D .V; E/, a subset U � V and a distance

threshold l , find a subset of vertices D of minimum size such that for each u 2 U there exists a vertex in

D of distance at most l from u.

As we show below, GC is NP-complete as it is polynomially equivalent to Set Cover.

Theorem 1. The decision versions of GC and Set Cover are polynomially equivalent.

Proof. Let .S; C; k/ be an instance of Set Cover where S is the set of elements, C is a collection

of subsets of S and k is a parameter. W.l.o.g., we assume that C covers S . We can easily transform this

instance into an instance .G; S; 1; k/ of (the decision version of) GC as follows: we construct a bipartite

graph G D .S; C; E/ with vertices on one side representing elements and vertices on the other side

representing subsets. For every T 2 C and s 2 T we add an edge .s; T / to E . It is trivial to observe that

the Set Cover instance admits a solution iff the GC instance admits a solution (the only problematic case

is when an GC solution contains an element from S , but such an element can always be substituted by a

subset containing it).

In the other direction, suppose we are given an instance .G; U; l; k/ of GC. We transform it into an

instance .U; C; k/ of Set Cover, where C is defined as follows: for each vertex v in G we create a subset

T � U composed of all vertices that are of distance at most l from v (including v if it is part of U ). If

T ¤ ; we add it to C . Again there is a solution to the GC instance iff there is a solution to the Set Cover

instance.

On the positive side, Set Cover can be efficiently approximated to within a logarithmic factor (Cormen

et al., 2001); as the reduction from Gene Cover to Set Cover is approximation preserving, it implies an

O.log jU j/ approximation algorithm for GC as well.
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A biologically-motivated formulation. The combinatorial formulation presented above treats all edges

of the protein network being analyzed in a uniform manner. Since, protein-protein interactions vary greatly

in their associated confidence scores, it is desirable to take edge reliabilities into account. A natural

extension to the distance-based formulation above is to quantify the relatedness of a protein v to a set U

by the expected number of proteins in U that can be reached from it by paths of length at most l . Denote

this expectation by El .v; U / (we defer the details of its computation to the next section), and consider the

following formulation of the gene coverage problem:

Definition 2 (Maximum-expectation Gene Cover (MGC)). Given a graph G D .V; E/, a subset

U � V , a distance threshold l , and a parameter k, find a subset of vertices D of size k such that
P

v2D
El.v; U / is maximal.

It is possible to approximate MGC to within a factor of O.log jU j/ by adapting the greedy-based

approximation algorithm for Weighted Set Cover. Below we provide a practical heuristic to MGC which

is based on this approximation strategy.

In many cases, additional information is available that can help us to limit the search space (Wu et al.,

2008). Specifically, association studies may provide information on genomic regions which are associated

with the investigated disease, reducing the initial search space from thousands of proteins to a few hundred

(McCarthy et al., 2008). Similarly, copy number variation data can pinpoint areas of the genome whose

copy number is modified in the disease state (McCarroll and Altshuler, 2007); these areas are then good

candidates for causal gene searches.

Expectation computation. Let U D fu1; : : : ; ung. Recall that El.v; U / denotes the expected number

of vertices in U that are reachable from v by paths of length at most l . From the linearity of expectation,

El .v; U / D

n
X

iD1

El.v; fui g/ D

n
X

iD1

Pl .v; ui / (1)

where Pl .a; b/ is the probability of having a path of length at most l between a and b.

For two vertices a and b, let …l.a; b/ D f…1; : : : ; …mg denote the set of paths of length at most l between

a and b. Let �i be a random variable indicating whether the path …i exists. Then Pl .a; b/ D Prob.[m

iD1
�i /.

This probability can be computed using the inclusion-exclusion formula in time that is exponential in m.

To save on running time, one can partition the set of paths into subsets that are edge-disjoint. This

is done by constructing a new graph whose vertices represent paths and whose edges connect edge-

intersecting paths. The connected components of this graph yield the desired partition. Let �1; : : : ; �t

denote the resulting subsets of paths, and consider a pair of vertices a; b. Then Pl .a; b/ D 1 �
Q
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where the probability of an intersection of paths is simply the product of the probabilities of the edges in

the intersection.

The MGC algorithm. We focus on the biologically motivated MGC. Our algorithmic approach is

motivated by the greedy approximation algorithm to Weighted Set Cover. Given a protein network G and

a subset of disease-related proteins U , we apply an iterative algorithm to infer the disease-causing genes.

Intuitively, at each iteration the protein, whose “coverage” expectation with respect to the current subset

U is maximal, is chosen and the diseased proteins that it “covers” are removed from U . However, the

expectation computation gives an advantage to high degree proteins. To circumvent this problem, we

compare the original expectation to that obtained w.r.t. 100 random disease-related subsets of the same

size as U . The results of the random runs are used to derive a z-score for each vertex, and the highest-

scoring vertex is chosen at each iteration. The algorithm terminates when the highest score attained is

below a predefined threshold (1.65, corresponding to a p-value of 0.05), or when all the disease-related

genes have been “covered.” Due to the randomized nature of the algorithm (in computing the z-score), the
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results may change slightly between runs. Hence, each experiment is repeated 50 times, and the genes are

ranked based on their average ranks in these 50 runs.

Network construction. PPI data were collected from the HPRD database (Peri et al., 2003; Mishra

et al., 2006) and two large scale yeast-two-hybrid experiments (Rual et al., 2005; Stelzl et al., 2005).

The constructed network consists of 28,972 interactions among 7,915 proteins. The interactions were

assigned confidence scores based on the experimental evidence available for each interaction using a

logistic regression model adapted from Sharan et al. (2005). From this network we then removed the most

substantial hubs, which had over 150 network connections. Thus, the network used in this paper consists

of 27,707 interactions among 7,870 proteins.
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