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MicroRNAs are key regulators of gene expression1–4, but
the precise mechanisms underlying their interaction with
their mRNA targets are still poorly understood. Here, we
systematically investigate the role of target-site accessibility, as
determined by base-pairing interactions within the mRNA, in
microRNA target recognition. We experimentally show that
mutations diminishing target accessibility substantially reduce
microRNA-mediated translational repression, with effects
comparable to those of mutations that disrupt sequence
complementarity. We devise a parameter-free model for
microRNA-target interaction that computes the difference
between the free energy gained from the formation of the
microRNA-target duplex and the energetic cost of unpairing
the target to make it accessible to the microRNA. This model
explains the variability in our experiments, predicts validated
targets more accurately than existing algorithms, and shows
that genomes accommodate site accessibility by preferentially
positioning targets in highly accessible regions. Our study thus
demonstrates that target accessibility is a critical factor in
microRNA function.

Previous experimental and computational studies have addressed the
mechanisms by which microRNAs recognize their targets5–14. These
efforts have focused primarily on the quality of the sequence match
between microRNA and target rather than on the role of the mRNA
secondary structure in which the target is embedded. It is likely that
secondary structures contribute to target recognition, because there is
an energetic cost to freeing base-pairing interactions within mRNA
in order to make the target accessible for microRNA binding.
Several studies have indeed considered the secondary structure of
the target15–20, but the effect of site accessibility on microRNA-mRNA
interactions had not been quantified by systematic experimentation,
and the utility of incorporating site accessibility in the genome-wide
identification of microRNA targets had not been tested by a principled
computational model (Supplementary Note online).
To examine the importance of target accessibility in microRNA-

mRNA interactions, we developed a quantitative luciferase assay in
Drosophila melanogaster tissue culture (S2) cells for measuring

translational repression by microRNAs21. Notably, our assay uses
endogenously expressed microRNAs combined with mild overexpres-
sion of the target reporter; it has a sensitive and linear readout that
permits the study of individual target sites. Moreover, we validated
that measured reductions in luciferase activity are attributable to
translational repression and not to transcript degradation22 (Supple-
mentary Table 1 online). The microRNAs we examined are all
robustly expressed in S2 cells, with between 500 and 5,000 copies
per cell (Supplementary Fig. 1 online). We used this assay to measure
over 60 microRNA-target interactions, spanning a wide range of target
types and mutation designs.
We first focused on validated sites with near-perfect sequence

complementarity to the microRNA in the 3¢ UTRs of the three
proapoptotic genes hid (targeted by bantam), rpr (miR-2) and grim
(miR-2)12,21. All three targets mediated significant repression in our
assay, both when we used the full-length UTRs and when we used the
B200-base-pair (bp) fragments centered on the site (Fig. 1a). To test
the effect of site accessibility on the strength of microRNA repression,
we forced these targets into highly paired stem structures by engineer-
ing mutations that introduced their reverse complement in proximity
to the target. These closed structures markedly reduced microRNA-
mediated repression for the hid and rpr sites. However, only a small
differential was seen for the grim site. Notably, this difference in
behavior can be explained by target accessibility: the original grim site
is predicted23 to be part of a closed stem structure, in contrast to the
original rpr and hid sites, which lie in open loop structures (Fig. 1a).
Next, we tested whether the importance of site accessibility is asym-
metric relative to the 5¢ or 3¢ end of the microRNA, as is the case for
sequence complementarity11,12. We found that stem structures cover-
ing the 5¢ seed or 3¢ complementary region of rpr result in comparable
intermediate repression, suggesting that for a site with significant
3¢ pairing, accessibility of both target ends is equally important
(Fig. 1a). Finally, we explored the effects of the wider sequence
context on the efficacy of microRNA repression by swapping each
site into the other B200-bp UTR fragments. Both the hid and rpr
native sites functioned similarly well across all sequence contexts,
consistent with their predicted open structure in all UTRs. In contrast,
the native grim site functioned poorly in the grim and hid UTRs,
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where its structure is closed, but markedly better in the rpr UTR,
where its structure is more open (Fig. 1b).
To gauge the relative importance of site accessibility, we experi-

mentally compared these effects to those resulting from disruptions of
sequence complementarity to the microRNA. As expected, deleting
either the 5¢ seed or the entire binding site was in most cases more
detrimental than placing the site in a closed stem structure, suggesting
that even closed structures retain a low level of functionality; these
results also persisted when the truncated sites were swapped into the
other sequence contexts (Fig. 1b). Notably, single-base mutations,
insertions or deletions in the 5¢ seed had an effect similar to that of
closing the structure (Fig. 1c and Supplementary Fig. 2 online).
Taken together, our results indicate that site accessibility is critical
for efficient repression, and is no less important than individual
nucleotide matches in the seed.
Existing methods for microRNA target prediction score microRNA-

target interactions based only on the sequence of the target site. These
methods assign the same score to all targets with the same sequence
and cannot explain the variability that we observed in our experi-
ments, which arises from differences in accessibility imposed by the
sequence surrounding the target. For example, a model based only on
the binding energy of the microRNA-target duplex, DGduplex, achieves
poor correlation (r ¼ 0.36, P o 0.11) to the observed degree of
repression (Fig. 2b). To account for the effect of accessibility on the
strength of microRNA repression, we devised an energy-based score
for microRNA-target interactions, DDG, equal to the difference

between the free energy gained by the binding of the microRNA to the
target, DGduplex, and the free energy lost by unpairing the target-site
nucleotides, DGopen (Fig. 2a). To compute these quantities, we used
energy-based secondary structure prediction algorithms; such algo-
rithms have good accuracy24 and should be particularly reliable for
our purposes, because we considered the ensemble of all possible
secondary structures and extracted only the free energy of the
ensemble. Notably, although our model used a purely thermodynamic
score with no parameters and arbitrary cutoffs, its predicted interac-
tion energy, DDG, is strongly correlated (r ¼ 0.7, P o 4 " 10–4) with
the measured degree of repression (Fig. 2c).
Despite this success, in some cases our predictions disagreed with

the experimental measurement. In most of these instances, the
sequences immediately surrounding the target show strong base-
pairing interactions within the mRNA. Because microRNAs are held
within a large protein complex (the RNA-induced silencing complex,
RISC)25,26, it seemed plausible that tight secondary structures sur-
rounding the target site may restrict the access of the RISC-bound
microRNA to the target and would have to be unpaired for a
microRNA-mRNA interaction to occur. To test this idea, we modified
the component of our model that computes the energetic cost of
making the target accessible, DGopen, to include the cost of unpairing
additional bases flanking the target and explored a range of flank sizes
upstream and downstream of the target (Fig. 2d). Indeed, for most
moderate flank sizes, the predictions of this revised model show
markedly improved correlation to the repression measurements,

Target site

Flank

Flank

5′ end

0.4

0.3

0.2

0.1

0.0
UTR

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.4

0.3

0.2

0.1

0.0
N C ∆5 ∆ N C ∆5 ∆ N N C M2 M3 M6 I5C ∆5

∆5

∆

∆

N
or

m
al

iz
ed

 lu
ci

fe
ra

se
 r

at
io

Sequence context:
grim
hid
rpr

N

N
or

m
al

iz
ed

 lu
ci

fe
ra

se
 r

at
io

C UTR N C UTR N C C3 C5C3+ C5+

b

a

c

grim (miR-2) hid (bantam) rpr (miR-2) rpr (miR-2)

grim (miR-2) hid (bantam) rpr (miR-2)

Figure 1 Role of microRNA target-site
accessibility in microRNA-mediated repression.
(a) Expression level mediated by various 3¢ UTR
constructs for three different microRNA targets
(sequence pairing of microRNA to target site is
indicated below the graph). Shown are results for
full-length 3¢ UTRs (UTR), B200-bp native UTR
fragments centered on the microRNA binding site
(N), and B200-bp constructs in which the
sequence flanking the target site has been
changed to force it into highly paired structures
(C). For rpr, we also tested constructs in which
only the 3¢ half (rpr-C3) or 5¢ half (rpr-C5) of the
site are forced into a stem structure; in rpr-C3+

and rpr-C5+, this stem is extended to a total
length of 22 nucleotides, such that its length is
equal to the rpr-C stem. RNA structure icons
above columns show predicted minimum free
energy secondary structure around the target site
for each construct (green, 5¢ end marked blue,
closed flank marked light brown). (b) Effect of
3¢ UTR sequence context on site function. Shown
are results of swapping each of the three target
sites into the other two 3¢ UTR fragments, as well
as the effects of deleting the 5¢ seed (D5) and
the entire target (D); see schema in c. RNA
structure icons are shown for grim-N in all three
sequence contexts, with marking of the site itself
(green) and the flanking region (light brown).
(c) Effect of mutations in the 5¢ seed, compared
to mutations that close the secondary structure.
Seed of the rpr miR-2 target site is highlighted
in gray; arrows point to the mutated bases
(2, 3 and 6); the triangle points to the insertion
point (before base 5). All results shown are
average values of normalized Renilla/firefly
luciferase ratios obtained from 4–8 replicates.
Error bars, s.e.m.
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with a broad maximum centered around a flank of 17 upstream and
13 downstream nucleotides (r ¼ 0.77) (Fig. 2e).
Binding sites with near-perfect complementarity to the entirety of

microRNA, such as those tested above, are thought to represent only a
small portion of functional targets2,12. We therefore extended our tests
to a broader range of naturally occurring sites. We chose miR-184,
which is expressed at intermediate levels in S2 cells, and 12 of its
predicted targets, and we analyzed them in their native environment
(full-length 3¢ UTR and B200-bp fragments centered on the site) as
well as when swapped into the rpr B200-bp UTR fragment (Fig. 3a).
These targets all showed good to excellent 5¢ seed complementarity to
the microRNA, with varying degrees of 3¢ complementarity. While a
model using only the binding energy of the microRNA-target duplex,
DGduplex, achieved almost no correlation with the degree of measured
repression (r ¼ 0.04, P o 0.9), the correlation improved when site
accessibility was incorporated (r ¼ 0.2, P o 0.4) and was strong when
a flank requirement was added (r ¼ 0.5, P o 0.03) (Fig. 3b,c).
Notably, the differentials in measured site repression between the
native and the rpr sequence context were strongly correlated to
the differences in interaction energy DDG predicted by our model
(r ¼ 0.87, Supplementary Fig. 3 online). These results indicate that
target accessibility has a critical role in microRNA-mRNA interactions
for a wide range of target types, and that our model accurately
captures these effects.
To further test the predictive power of our model and compare it

to existing methods, we applied it to all 190 microRNA-mRNA

interaction pairs experimentally tested in Drosophila to date (Supple-
mentary Table 2 online). Because these experiments typically used
full-length UTRs, which can include multiple sites, we followed an
approach similar to that of most other prediction methods and first
scanned the 3¢ UTR of each target for potential microRNA sites, using
standard seed parameters that require near-perfect matches to the
5¢ end of the microRNA. We then used our model to compute the
DDG score of each putative site and appropriately summed these DDG
scores to derive a total interaction energy for each microRNA-target
pair. Because microRNA-target pairs are primarily reported in binary
format, as being either functional or non-functional, we used the
standard area under the curve (AUC) measure to evaluate the
sensitivity and specificity of our method. Our model achieved an
AUC of 0.76, higher than the 0.71 and 0.74 scores achieved by two
other state-of-the-art prediction methods, PicTar10 and the algorithm
developed by Stark et al.8, respectively, and a substantial improvement
over the 0.64 score of miRanda6 (Fig. 4a). This is particularly notable
because these other algorithms employ various filters, such as conser-
vation of sites in related species and additional statistical criteria; our
model employs no such parameters or thresholds. Our integration of
site accessibility in microRNA target prediction thus represents both a
measurable improvement and a simplification over existing methods.
As was the case with our own experimental data, including the

requirement to unpair bases flanking the target improved the perfor-
mance of our model on the literature-derived targets for most
flank sizes, with a maximum around a flank of 3 upstream and 15

Figure 2 Our microRNA-target interaction
model explains variability in target strength
due to differences in accessibility. (a) Illustration
of interaction energy DDG for microRNA-target
interactions, computed as the free energy
gained by transitioning from the state in which
microRNA and target are unbound (left) to the
state in which the microRNA binds its target
(right). The region of the target site that
needs to be unpaired for a microRNA-target
interaction to occur includes the microRNA
bound region (green) and likely additional
flanking nucleotides (brown). (b) Methods
that consider only the target-site sequence
do not explain the variability in our experiments.
Shown is a scatter plot of the free energy of
microRNA-target binding, DGduplex (x axis),
and the observed expression level of the
microRNA target constructs shown
in Figure 1 (y axis). Constructs with identical
target site sequence but mutated proximal
sequence have the same DGduplex and are thus
located at the same position along the x axis.
(c) As in b, but for our model score, DDG.
Constructs with identical target sites but
different proximal sequences have different
unpairing energies, DGopen, and thus differ in
their x-axis position. The correlation between
our model score and the measured expression
level is shown along with its associated P value
(top). See Supplementary Figure 7a (online) for
the correlation between DGopen and the measured
expression. (d) Heatmap showing the correlation
between our model score, DDG, and the
measured expression level of the microRNA
target constructs from hid, grim and rpr, when
requiring unpairing of different numbers of flanking nucleotides upstream and downstream of the target site. The correlation shown in each entry of the
heatmap is computed as in Figure 2c. (e) As in c, when requiring unpairing of the target-site nucleotides plus 17 and 13 nucleotides upstream and
downstream of the target, respectively.
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downstream nucleotides, where the score is 0.79 (Fig. 4b). The fact
that most moderate flank sizes result in better predictions for all three
datasets strongly suggests that efficient microRNA-target interaction
requires unpairing of bases flanking the target in addition to those in
the target site itself. However, further experiments will be needed to
determine the size of the required flank.
The only other available method that incorporates secondary

structure into microRNA-target prediction is STarMir, which is
based on a two-step nucleation-expansion model19. STarMir’s pre-
dicted scores showed poor correlation to measured expression levels
for our two sets of experimental constructs (Supplementary Fig. 4
online), and its performance on the literature-derived targets was only
on par with that expected by chance (Fig. 4a). In contrast, our
parameter-less model produced scores with high correlation to
measured expression values for the constructs used to validate
STarMir (r ¼ 0.8, Supplementary Fig. 4).

Because our results indicate that site accessibility is critical in
microRNA-mRNA interaction, we factored it into a genome-wide
target prediction algorithm, Probability of Interaction by Target
Accessibility (PITA). PITA uses standard settings to identify initial
seeds for each microRNA in 3¢ UTRs, applies our model to each such
putative site, and then combines sites for the same microRNA to
obtain a total interaction score for the microRNA and UTR. We

Figure 3 Our model predicts microRNA-target
interactions across a wide range of target types.
(a) Expression mediated by 3¢ UTR fragments
containing miR-184 complementary sites (N)
and by constructs containing the miR-184 target
site in the rpr sequence context (N 4 rpr).
Sequence complementarity is depicted
schematically at left (black dots indicate
sequence match, orange dots indicate G:U
pairing, and offset blue dots indicate unpaired
nucleotides on either the target site (top) or the
microRNA (bottom); gray underlay indicates seed
region). Results shown are average values of
normalized Renilla/firefly luciferase ratios
obtained from 4–8 replicates. Error bars, s.e.m.
(b) As in Figure 2d, heatmap showing the
correlation between our model score, DDG, and
the measured expression level of miR-184
targets, when requiring unpairing of different
numbers of flanking nucleotides upstream and
downstream of the target site. The correlation
shown in each entry of the heatmap is computed
as in Figure 2e. (c) Correlation between our
predicted interaction energy, DDG, and the
measured expression level of each construct for
the miR-184 targets from a, when also requiring unpairing of target-site nucleotides and 14 and 15 nucleotides upstream and downstream of the target,
respectively. See Supplementary Figure 7b for the correlation between DGopen and the measured expression.
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Figure 4 Our model accurately predicts previously published microRNA-
target interactions. (a) Graphs showing the sensitivity and specificity of
different microRNA-target prediction methods on all 190 microRNA-target
interaction pairs that have been experimentally tested in Drosophila to date
(Supplementary Table 2). Results are shown for four existing microRNA
target prediction methods, including the recent structure-based method of
ref. 19, and for two versions of our model, one requiring unpairing of only
target-site nucleotides and another that also requires unpairing of 3 and
15 flanking nucleotides upstream and downstream of the target site,
respectively. For each prediction method, the targets were sorted by score,
and the rate of false predictions (x axis) and true predictions (y axis) was
plotted for each possible score prediction threshold. The area under the
curve (AUC) for each method is shown, computed by extending each plot to
the upper right corner as is customary. The results obtained by a random sor-
ting of the targets are shown by a dotted line. See Supplementary Figure 7c
for the performance of a model based only on DGopen. (b) Heatmap for
the performance of the model on the set of validated microRNA-target
pairs from a, when unpairing of different numbers of flanking nucleotides
upstream and downstream of the target site was required, and where each
entry is reported by the AUC measure, computed as in a.
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applied PITA to all 3¢ UTRs of fly, worm, mouse and human, resulting
in prediction catalogs for these organisms, which are available
throughour laboratorywebsite (seeMethods forURL) (Supplementary
Fig. 5 online).
In comparing our predictions to those of two other prediction

methods8,10, we found an overlap ranging from 19% to 31%,
depending on the organism and method being compared (Supple-
mentary Table 3 online). Although these overlaps are statistically
significant, they also highlight the major influence that accessibility
has on predictions: many sites predicted by other algorithms have low
accessibility and thus are not predicted by PITA; by contrast, many
highly accessible sites predicted by our approach do not pass the
prediction threshold of other methods. We reasoned that if site
accessibility has such a substantial effect on microRNA interactions,
genomes may have evolved to accommodate this constraint, perhaps
by preferentially positioning targets in regions that have open struc-
tures and are thus more accessible (Fig. 5a). Indeed, we found
that microRNA seeds in all four organisms showed a notable pref-
erence for highly accessible regions, as compared to an equal-sized
collection of seeds whose genomic locations were chosen at random
(Supplementary Fig. 6 online). Moreover, when the analysis was
limited to conserved seeds, the fraction of seeds in more accessible
regions increased, suggesting that the preferential positioning of
targets at accessible regions is evolutionarily selected for and thus
likely to be functionally important (Fig. 5b–e).
In conclusion, our results show that site accessibility is as important

as sequence match in the seed for determining the efficacy of
microRNA-mediated translational repression, and they suggest that
effective microRNA binding also requires unpairing of the local region
flanking the target. We introduce a parameter-free thermodynamic
model that explains these effects and shows that preferential position-
ing of microRNA target sites in regions of high accessibility is a
conserved feature in genomes. Our findings thus indicate that the

thermodynamics of intra- and intermolecular base pairing account for
a significant portion of the microRNA-target interaction, consistent
with observations for siRNA-target interactions27. However, our
model does not explain the entire variance in our experiments. This
may be in part due to limitations of RNA structure prediction
algorithms and their inability to account for the effects that RNA
binding proteins have on secondary structures. Moreover, microRNAs
bind as part of the RISC complex, and although there is no evidence
for ATP-dependent unwinding of the mRNA27,28, RISC proteins are
likely to constrain base-pairing interactions between microRNA
and target site and otherwise influence the mechanics of the duplex
formation. Thus, further experiments will be needed to understand
how different aspects of the interaction contribute to the strength
of microRNA-mediated repression. Nevertheless, our results provide
an important cornerstone for deciphering the rules that govern
microRNA-mRNA interactions.

METHODS
Reporter constructs and luciferase assay. Our assay used a dual luciferase
system in which two luciferase enzymes, one (from Renilla reniformis) contain-
ing the experimental target sequence and another (from firefly) containing the
control21, are expressed from a single plasmid. Both luciferase genes were
controlled by heterologous promoters (SV40, HSVTK; Promega) that in S2
cells increased transcript levels tenfold over endogenous levels (tested for Gli,
ttk; data not shown). Notably, even when strong microRNA target sequences
were introduced into the Renilla luciferase, their transcript abundance showed
no significant change, indicating that any observed reduction in luciferase
activity was attributable to translational repression and not to transcript
degradation (Supplementary Table 1).

To facilitate larger scale analysis of 3¢ UTR sequences, we created a gateway
(Invitrogen) version of the dual luciferase vector psicheck-2 (Promega) by
ligating a blunt-ended cassette containing attR sites flanking the ccdB gene and
the chloramphenicol resistance gene into the PmeI site within the psicheck-2
polylinker. Full-length and truncated UTR sequences were amplified by PCR
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Figure 5 MicroRNA targets in animal genomes
are preferentially located in regions of high
accessibility. (a) Demonstration of the concept of
preferential positioning of microRNA targets in
regions of high accessibility on two 3¢ UTRs from
the fly. The target locations and accessibility are
shown along each UTR. (b–e) Shown is the
difference between the distribution of target
accessibility scores, DGopen, for all microRNA
seeds that have a conservation of at least 0.9 in
the 3¢ UTRs of human (a), mouse (b), fly (c) and
worm (d), and the distribution of an equal-sized
set of seeds whose locations were chosen at
random from each of the respective organisms.
For each accessibility value x (x axis), we plotted
the difference between the fraction of real seeds
and the fraction of randomly placed seeds whose
accessibility is x. Because the DGopen measure
depends on the number of G and C nucleotides,
random seed locations were selected such that
they had the same GC content distribution as
that of the real seeds. The fraction of real seeds
that are more accessible than the random seeds
is indicated (shaded area), along with the
significance level of the difference between
the distributions, as measured by the
Kolmogorov-Smirnov test. See Supplementary
Figure 6 for the same comparison without the
conservation requirement.
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from genomic or plasmid DNA, cloned into pEntr vector and then recombined
into the psicheck-2 destination vector using the LR recombinase kit (Invitro-
gen). For the hid, grim and rpr 3¢ UTRs, we engineered B200 bp truncated
versions using 50-bp-long synthetic oligonucleotides such that the central
microRNA target site was flanked by restriction sites to facilitate mutagenic
replacements (5¢–NotI–target site–XhoI–3¢). The oligos were purified by PAGE,
annealed, ligated and cloned into psicheck2. We confirmed all clones by DNA
sequencing (Genewiz). The sequences of all constructs used in this study are
compiled in Supplementary Table 4 (online). We transfected 106 S2 cells with
reporter plasmid (1 mg) using Cellfectin (Invitrogen), and after 20 h, we lysed
the cells and tested for luciferase activity using the dual luciferase assay kit
(Promega). The Renilla/firefly luciferase ratios were normalized against the
empty psicheck-2 vector and averaged over 4–8 replicates. We assessed
statistical significance using one-factor and two-factor ANOVA with the
Student-Newman-Keul post hoc test. Note that none of our test constructs,
even those in which the entire site was deleted, completely reverted to the
expression level of the empty vector, suggesting that any significant addition of
3¢ UTR sequence (4150 bases) reduces translation efficacy.

Thermodynamic model for microRNA-target interactions. Our model scores
microRNA-target interactions by an energy score, DDG, equal to the difference
between the energy gained by binding of the microRNA to the target, DGduplex,
and the energy required to make the target region accessible for microRNA
binding, DGopen. DGduplex is the binding free energy of the microRNA-target
duplex structure in which the microRNA and target are paired according to
pairing constraints imposed by the seed. To compute this value, we modified
RNAduplex23 such that in addition to microRNA and target sequences, it is
given explicit seed pairings upon which the target was chosen and considers
only structures that comply with these constraints. The code then computes the
binding free energy of each of the complying structures (a computation that
can be done efficiently using dynamic programming) and selects the minimum
free energy structure as DGduplex. DGopen is computed as the difference between
the free energy of the ensemble of all secondary structures of the target region
(see below) and the free energy of all target-region structures in which the
target nucleotides (and additional nucleotides upstream and downstream in the
case of flanking) are required to be unpaired. The free energies of these two
ensembles are computed using RNAFold23, by iterating over all possible
structures (for the second term, all structures subject to the above unpairing
constraints) and appropriately summing their respective free energies. These
computations can be done efficiently using dynamic programming. The area of
the target that is given to RNAFold for folding consists of the target (and
flanking region when applicable) and 70 additional nucleotides upstream and
downstream. The value of 70 nucleotides was chosen to reduce the time
complexity of the above computations and is based on the fact that there is a
low probability of secondary structure base-pairing interactions between
nucleotides that are separated by more than 70 nucleotides (data not shown).
Finally, the total interaction score, DDG, is equal to the difference between
DGduplex and DGopen. To integrate multiple sites with DDG scores s1,y, sn, for
one microRNA on the same UTR into an overall microRNA-UTR interaction
score, T, we compute the statistical weight of all configurations in which exactly
one of the sites is bound by the microRNA according to T ¼ log

Pn
i¼1 e

si .
We chose this simple method of integrating multiple sites over computing
the actual probability of microRNA binding, and over computations that
include configurations in which two sites can be bound simultaneously, because
such computations would require knowledge of an additional (unknown)
microRNA free concentration parameter.

Identifying seeds for microRNAs. We follow standard seed parameter settings
and consider seeds of length 6–8 bases, beginning at position 2 of the
microRNA. No mismatches or loops are allowed, but a single G:U wobble is
allowed in 7- or 8-mers.

MicroRNA-target interaction pairs experimentally tested in the literature.
The compilation of experimentally tested Drosophila microRNA-mRNA pairs
(Supplementary Table 2) was based on a previously published list8, to which
we added targets reported in TarBase29 and ref. 30, and 25 targets of miR-2 and
miR-184 from our own experiments. The resulting non-redundant list consists

of 190 total pairs, of which 102 were reported as functional microRNA targets
and 88 were reported as non-functional.

UTRs for genome-wide microRNA-target predictions. The fly (dm2), mouse
(mm8), human (hg17) and worm (ce4) genomic sequences were downloaded
from the University of California, Santa Cruz (UCSC) Genome Bioinformatics
Site (http://genome.ucsc.edu), along with gene annotations and conservation
tracks. For genes lacking a 3¢ UTR annotation, we used predicted 3¢ UTRs, with
a stringent length cutoff of 500 bp (fly), 800 bp (human and mouse) or 300 bp
(worm) downstream of the annotated end of the coding sequence. For
the genome-wide PITA catalogs, which can be downloaded from our website,
we used a looser cutoff of 1 s.d. above the mean length of the annotated
3¢ UTR. Predicted UTRs account for 21% (3,914 genes) of the UTRs in fly,
5% (843 genes) in human, 10% (1,858 genes) in mouse and 54% (10,821
genes) in worm.

Testing preferential positioning of microRNA seeds for regions of open
secondary structure. For each organism, we scanned the 3¢ UTRs for perfect
microRNA target seeds at least seven bases long, disallowing G:U wobbles,
mismatches or loops. Because DGopen is affected by GC content, an equal-sized
collection of locations with the same GC content distribution as that of the true
microRNA seeds was randomly chosen as a control set. We computed the
accessibility (DGopen) score of each true and control seed (without flank) and
compared their distributions using the Kolmogorov-Smirnov test. For the
conservation-restricted test, conservation tracks based on a phylogenetic
hidden Markov model (phastCons) were downloaded from the UCSC site
(comparing 12 Drosophila species, mosquito, honeybee and red flour beetle for
the fly track and 17 vertebrates, including mammalian, amphibian, bird and
fish species for the human and mouse tracks). Only microRNA seeds having an
average (along the seed) conservation score higher than 0.9 were considered.
For these comparisons, the control set of random seeds was also chosen from
areas of the 3¢ UTR with a conservation score higher than 0.9.

URLs. For our data, results, an online tool for predicting microRNA-target
interactions on any microRNAs and target sequences of interest, and the
downloadable PITA executable, see http://genie.weizmann.ac.il/pubs/mir07.

Note: Supplementary information is available on the Nature Genetics website.
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