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The prediction of protein secondary structure is an
important step in the prediction of protein tertiary struc-
ture. A new protein secondary structure prediction
method, SVMpsi, was developed to improve the current
level of prediction by incorporating new tertiary classi®ers
and their jury decision system, and the PSI-BLAST PSSM
pro®les. Additionally, ef®cient methods to handle unbal-
anced data and a new optimization strategy for maximiz-
ing the Q3 measure were developed. The SVMpsi produces
the highest published Q3 and SOV94 scores on both the
RS126 and CB513 data sets to date. For a new KP480 set,
the prediction accuracy of SVMpsi was Q3 = 78.5% and
SOV94 = 82.8%. Moreover, the blind test results for 136
non-redundant protein sequences which do not contain
homologues of training data sets were Q3 = 77.2% and
SOV94 = 81.8%. The SVMpsi results in CASP5 illustrate
that it is another competitive method to predict protein
secondary structure.
Keywords: directed acyclic graph scheme/position-speci®c
scoring matrix/protein structure prediction/secondary
structure/support vector machines

Introduction

The study of protein secondary structure plays an important
role in protein tertiary structure prediction with the ab initio
method or protein fold recognition by providing additional
constraints (Russell et al., 1996; Baldi et al., 1999; Baker and
Sali, 2001). Many methods have been applied to predict
secondary structure solely from the protein sequence, including
DSC (King and Sternberg, 1996) based on linear discrimin-
ation, NNSSP (Salamov and Solovyev, 1995) based on the k-
way nearest-neighbor method, PREDATOR (Frishman and
Argos, 1997) based on the internal pairwise alignment method
rather than a global multiple alignment and PSIPRED (Jones,
1999) and Jnet (Cuff and Barton, 2000) based on neural
networks.

A support vector machine (SVM) constructs an optimal
separating hyperplane which maximizes the margin (i.e. the
distance between the hyperplane and the nearest data point of
each class) by mapping the input space into a high-dimensional
feature space. The mapping is determined by a kernel function.
Training with SVMs has crucial advantages including fast
convergence, typically ~1±2 orders of magnitude faster than
neural networks (NNs) (Ding and Dubchak, 2001), tending not
to over-®t and the ability to ®nd the problem formulation as a
quadratic convex function minimization that is easier to solve

(Vapnik, 1995, 1998; Burges and SchoÈlkopf, 1997; Osuna et al.,
1997; Burges, 1998; Cristianini and Shaw-Taylor, 2000; Hua
and Sun, 2001) The previous study for secondary structure
prediction using support vector machines achieved good results
by using the frequency pro®les with evolutionary information
and removing the in¯uence of noise and outliers by discarding
a fraction of samples which are hard to predict because they are
located near the optimal separating hyperplane. However, the
prediction level is not suf®cient to compare favorably with the
recent results of the neural network approaches.

The recent approaches based on neural networks, for
example PSIPRED and Jnet, have been successfully advanced
by PSI-BLAST PSSM (position-speci®c scoring matrix) pro-
®les (Jones, 1999) derived from sequences that have remote
similarities, by an iterative strategy. Jones (Jones, 1999)
expected that other secondary structure prediction methods will
show measurable improvements in accuracy by using PSI-
BLAST pro®les instead of using the multiple sequence
alignment approach and Hua and Sun (Hua and Sun, 2001)
have already pointed out that it is also possible to achieve
signi®cant improvement by incorporating PSI-BLAST-gener-
ated pro®les in the SVMs approach.

In this paper, we show the improvement of prediction
accuracy by new tertiary classi®ers and their jury decision
system, ef®cient methods to handle unbalanced data and a
new optimization strategy for support vector machines that
maximizes the Q3 measure. We also apply this to PSI-
BLAST pro®les, in order to improve the current prediction
level and to show that the support vector machine
approach is a valid method for secondary structure
prediction. We further investigate a new way to reduce
the in¯uence of noise and outliers by using the theoretical
relationships in the soft margin support vector machine.
The training sets with an unbalanced number of data items
in each class can produce an ill-balanced binary classi®er
that may have low recall for the smaller class. If we use
an ill-balanced binary classi®er, it may not produce a good
®nal prediction result in spite of high prediction accuracy
in each binary classi®er, which constitutes the cascaded
tertiary classi®er. We adopted the one-versus-one scheme
and directed acyclic graph (DAG) scheme (Heiler, 2002)
for handling three class problems since these demonstrate
better performance results for multi-classi®cations (Hsu and
Lin, 2002). We built the jury decision system for all the
designed tertiary classi®ers to obtain better prediction
accuracy. Here, we will show that SVMpsi can achieve
the most accurate published Q3 and SOV94 scores on the
RS126 (Rost and Sander, 1993) and CB513 (Cuff and
Barton, 1999) data sets. In the ®fth critical assessment of
structure prediction (CASP5) experiment, we predicted the
most accurate structure for ®ve proteins compared with the
other groups. The average Q3 and SOV3 scores for SVMpsi
were 79.10% and 79.38%, respectively. The results dem-
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onstrate that SVMpsi is one of the most promising methods
for protein secondary structure prediction.

Materials and methods

Vector space representation of proteins

The secondary structure is assigned from the experimentally
determined tertiary structure by DSSP (Kabsch and Sander,
1983), STRIDE (Frishman and Argos, 1995) or DEFINE
(Richards and Kundrot, 1988). We use DSSP since it has been
the most widely used secondary structure de®nition. It has
eight secondary structure classes: H(a-helix), G(310-helix),
I(p-helix), E(b-strand), B(isolated b-bridge), T(turn), S(bend)
and ± (rest). Then reduction from eight classes to three states of
helix (H), sheet (E) and coil (C) is done by using one of the
following methods:

1. H,G and I to H; E to E; all other states to C
2. H,G to H; E,B to E; all other states to C
3. H,G to H; E to E; all other states to C
4. H to H; E,B to E; all other states to C
5. H to H; E to E; all other states to C
The 8- to 3-state reduction method can alter the apparent

prediction accuracy (Cuff and Barton, 1999). Although we can
expect an accuracy increase by using method 5, we used
different methods for different data sets to provide fair
comparison of our results with other methods. The details are
discussed in the subsection where we present our data sets.

We tested protein secondary structure prediction using PSI-
BLAST pro®les and designed classi®ers for the three-cluster
problem based on the binary classi®ers generated by SVMs.
The ®nal position-speci®c scoring matrices from PSI-BLAST
against the SWALL (Bairoch and Apweiler, 2000) non-
redundant protein sequence database are used. We applied
PFILT (Jones et al., 1994; Jones and Swindells, 2002) to mask
out regions of low-complexity sequences, the coiled coil region
and transmembrane spans. For PSI-BLAST, an E-value
threshold for inclusion of 0.001 and three iterations were
applied to search the non-redundant sequence database.

The position-speci®c scoring matrix has 203N elements,
where N is the length of the target sequence and each element
represents the log-likelihood of a particular residue substitution
based on a weighted average of BLOSUM62 (Henikoff and
Henikoff, 1992) matrix scores for a given alignment position in
the template. The pro®le matrix elements in the range [±7,7]
are scaled to the [0,1] range by using the following function:

f �x� �
0:0 if x � --5

0:5� 0:1x if --5 < x < 5

1:0 if x � 5

(
�1�

where x is the value from the raw pro®le matrix. We selected
the above function after testing various scale functions to
maximize the Q3 score. As in the PHD coding scheme, we used
a sliding window method (Qian and Sejnowski, 1988; Rost and
Sander, 1993). In order to allow a window to extend over the
N-terminus and the C-terminus, an additional 21st unit was
appended for each residue. Therefore, each input vector has
213w components, where w is the sliding window size. The
window is shifted residue by residue through the protein chain.
We constructed three one-versus-rest classi®ers, each of which
determines whether the secondary structure of the residue is a

particular secondary state or not (H/~H, E/~E, C/~C), and three
one-versus-one classi®ers (H/E, E/C and C/H).

Prediction accuracy assessment

Several standard performance measures were used to assess
prediction accuracy. Q3 is a measure of the three-state overall
percentage of correctly predicted residues:

Q3 �
Si2fH;E;Cg# of residues correctly predictedi

Si2fH;E;Cg# of residues in class i
� 100 �2�

The correlation coef®cient (CH, CE, CC) introduced by
Matthews (Matthews, 1975) is

Ci � piri ÿ uioi�������������������������������������������������������������������pi � ui��pi � oi��ri � ui��ri � oi�
p �3�

where pi is the number of correctly predicted residues in
conformation, ri the number of those correctly rejected, ui the
number of those incorrectly rejected (false negative) and oi that
of those incorrectly predicted to be in the class (false positive),
for i = H,E,C. The per residue accuracy (QH, QE, QC; QH

pre,
QE

pre, QC
pre) for each type of secondary structure (Hua and Sun,

2001) was also calculated as

Qi �%� � # of residues correctly predictedi

# of residues in class i
� 100 �4�

and

Q
pre
i �%� �

# of residues correctly predictedi

# of residues in class i
� 100 �5�

where conformation state i can be H, E or C.
The segment overlap measure (SOV ) is a measure for

evaluation of secondary structure prediction methods by
secondary structure segment rather than individual residues
(Rost and Sander, 1994; Zemla et al., 1999). SOV is calculated
as

SOV � 1

N

X
i2fH;E;Cg

X
S�i�

minov�s1; s2� � �
maxov�s1; s2� � len�s1�

� �
� 100 �6�

where S(i) is the set of all overlapping pairs of segments (s1, s2)
in conformation state i, len(s1) is the number of residues in
segment s1, minov(s1, s2) is the length of the actual overlap and
maxov(s1, s2) is the total extent of the segment. The quality of
match of each segment pair is taken as a ratio of the overlap of
the two segments minov(s1, s2) and the total extent of that pair
maxov(s1, s2). The de®nition of d and the normalization factor
N is different between SOV94 (Rost and Sander, 1994) and
SOV99 (Zemla et al., 1999). We calculated SOV94 for RS126
and CB513 to compare the results since PHD (Rost and Sander,
1994), PSIPRED (Jones, 1999) and SVMfreq (Hua and Sun,
2001) methods used SOV94.

H.Kim and H.Park

554



Training and testing data sets

For comparing our new results with some previously published
results (Hua and Sun, 2001) that used a frequency-based coding
scheme, we selected non-homologous RS126 and CB513 data
sets. The results show that the PSI-BLAST pro®les are also
helpful in improving accuracy in the SVM approach. The
CB513 set includes the CB396 data set and almost all proteins
of RS126 except nine homologues for which the SD signi®-
cance score is >5 (Cuff and Barton, 1999). The SD score is a
more stringent measure of sequence similarity than the
percentage identity since it corrects for bias due to the length
and composition of sequences.

We prepared a data set of 480 proteins by removing proteins
from CB513 that have <30 residues and those that contained
only a few sequences in the ®rst iteration of PSI-BLAST. The
16 proteins that are shorter than 30 residues are removed since
it has been shown that they do not have well de®ned secondary
structure (Cuff and Barton, 1999). The prepared KP480 data set
may not be the same as the 480 data set of Jnet (Cuff and
Barton, 2000), although they are generated from CB513 by
removing proteins that are shorter than 30 residues. Each data
set is divided into seven folds that have a similar number of
proteins and similar composition of the secondary structure to
perform cross-validation tests.

In addition to the cross-validation tests for accessing the
performance of the prediction method, we prepared a blind test
set of 136 protein sequences that were not used in the training
set. The test set was prepared using a structural similarity
criterion so that it does not have any protein that is contained in
the same fold family, i.e. the CATH (Orengo et al., 1997) T-
level, with the CB513 training set. Each protein sequence of the
test set represents unique protein folds. Only highly resolved
structures (resolution <1.8 AÊ ) of which the length is >60
residues and <600 residues were included in the blind test set.
The structural similarity criterion is more stringent than the SD
score, which is a measure of pairwise sequence similarity (Cuff
and Barton, 1999; Jones, 1999). Hence there is no pair of
similar sequences between the training and blind test sets. We
used 8- to 3-state reduction method 2 for the RS126 data set to
provide a fair comparison of our results with those of other
methods such as PHD (Cuff and Barton, 1999), DSC,
PREDATOR, NNSSP and their consensus method (Cuff and
Barton, 1999), although PHD (Rost and Sander, 1993) and
SVMfreq (Hua and Sun, 2001) methods based on frequency
pro®les used reduction method 1. The 8- to 3-state reduction
method 4 was used for the KP480 set for comparison with the
Jnet result based on the 8- to 3-state reduction method 4 (H to
H, E,B to E, all other states to C). In Jnet, the 310-helix was
removed since it represents a weak 1 kcal/mol hydrogen bond
so that it does not represent core secondary structure. We
adopted the 8- to 3-state reduction method 2 for the 7-fold
cross-validation test of the CB513 data set and for the blind test
of 136 non-redundant sequences, which is one of the most
widely used and to compare the prediction performance of our
method with that of other methods.

Results

Parameter optimization of the prediction system

In an L1 soft margin support vector machine (Vapnik, 1995,
1998), we need to select a kernel function and the regulariza-
tion parameter C in each binary classi®er, to construct a
classi®er for multiple classes. The primal formulation of the

soft-margin SVMs maximize margin and minimize training
error simultaneously by solving the following optimization
problem:

min
w;xi

1
2
wtw� C

Xn

i�1

xi

s:t: yi wtxi � b� � � 1ÿ xi; xi � 0; i � 1; . . . ; n
�7�

where xi represents an input vector, yi = 61 according to
whether xi is in the positive or negative class, n is the number of
the training data and C is a parameter that controls the trade-off
between margin and classi®cation error represented by slack
variables xi. The separating hyperplane in a mapped high-
dimensional feature space can be represented as wtj(x) + b = 0,
where w is the solution of the primal formulation and j(´) is a
non-linear function which maps the input space into a higher
dimensional space.

The corresponding dual quadratic programming problem
with the application of a kernel function K(xi, xj) can be written
as

max
ai

Xn

i�n

ai ÿ 1

2

Xn

i;j�n

aiajyiyjK�xi;xj�

s:t:
Xn

i�1

aiyi � 0; 0 � ai � C; i � 1; . . . ; n

�8�

where ai are the solutions of the dual formulation. The dual
formulation of the soft margin SVM with control parameter C
shows that the in¯uence of a single training example is limited
by C. Our substantial tests show that the RBF (radial basis
function) kernel, de®ned as

K�xi;xj� � exp�ÿg k xi ÿ xj� k2� �9�

is appropriate for complex classi®cation problems, when
parameters g and C are selected from the optimization process.

Since multi-class classi®cation is based on binary classi®ers
in the support vector machine, the criteria for selecting the
optimal parameters g and C in each binary classi®er play a
critical role. A common practice is to choose the parameters
that maximize the accuracy (i.e. maximize the number of
correct predictions) in each binary classi®er. Certainly the
optimization criteria should depend on the performance
measure of the ®nal results, which we would like to optimize.
In the case of the protein secondary structure prediction, two of
the most commonly used performance measures are Q3 and
SOV3. Using the example of Q3 measure and the three-class
classi®er that is built upon two binary classi®ers, which
determine the membership in H/~H (H versus not H) in step 1
and E/C (E versus C) in step 2, we now illustrate this point
further. The total number t of training data items and Q3 can be
represented as

Q3 = (pH + pE + pC)/t

where

t = pH + rH + uH + oH
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using the notation introduced before. To re¯ect the fact that the
value of Q3 depends on the results from steps 1 and 2, Q3 may
be rewritten in various ways, including

Q3 � pH

uH � pH

� uH � pH

t
� pE � pC

t

� pH

t
� uH � rH

t
� pE � pC

uH � rH

� pH

t
� #��H�

t
� pE � pC

#��H�

�10�

where #(~H) denotes the number of data items not in H. The
dif®culty comes from the fact that the result in step 2 depends
on the result from step 1 and there is no easy way to re¯ect this
in the expression for Q3. We have chosen our optimized
parameters by ®ne tuning based on accuracy, recall and the
precision of each step. The recall (R) and precision (P) for H
and ~H in step 1 are de®ned as

RH � pH

pH � uH

;R�H � rH

rH � oH

PH � pH

pH � oH

;P�H � rH

rH � uH

�11�

Unlike in query processing, it is important to consider recalls
and precision of both positive and negative classes in the
classi®cation. The optimized parameters chosen based on the
results of each step and in both binary classi®ers, are g = 0.05
and C = 1.0 on the RS126 data set and on the KP480 set, and g =
0.05 and C = 2.5 on the CB513 data set for the PSI-BLAST
pro®les.

In a soft margin SVM, the support vectors satisfy the
following relationships:

0 < ai < C $ SV with xi � 0

ai � C $ SV with xi > 0
ai � 0 else

�12�

where SV means a support vector and a training point xi is the
support vector only when ai ¹ 0. To reduce the in¯uence of
noise and outliers, after ®nding the support vectors from the
training stage, support vectors that are close to the optimal
separating hyperplane or on the other side of the hyperplane
can be partly or totally removed by ignoring those with ai = C
in the retraining stage. However, there was no signi®cant effect
of this strategy on the prediction results when our encoding
scheme based on PSI-BLAST was used, which shows that the
PSI-BLAST pro®le in secondary structure prediction is robust
in the presence of noise and outliers.

Optimal window length for binary classi®ers

The optimal window length of the sliding window coding
scheme was obtained by testing the accuracy for the various
window sizes. When the window size is too short, it may lose
some important classi®cation information and prediction
accuracy, and a too long window size may suffer from
inclusion of unnecessary noise. For convenience, we call our

method using PSI-BLAST pro®les SVMpsi and Hua and Sun's
method (Hua and Sun, 2001) based on the frequency pro®les
approach SVMfreq. Table I shows that the optimal window
length of SVMpsi is much longer than that of SVMfreq on the
RS126 data set. The prediction accuracy for the binary
classi®er does not change dramatically when a window length
>15 is used, which shows that the SVMpsi method effectively
dealt with noise. We chose a window length of 15 for all results
in this paper. This is slightly smaller than the sliding window
length of 17 of the ®rst layer neural network for sequence to
structure prediction in Jnet (Cuff and Barton, 2000).

Tertiary classi®er design

There are many ways to design a tertiary classi®er for
secondary structure prediction based on binary classi®ers.
We used several methods proposed by Hua and Sun (Hua and
Sun, 2001) to compare our results with theirs. Their methods
are based on three one-versus-rest binary classi®ers (H/~H, E/
~E, C/~C) and three one-versus-one binary classi®ers (E/C, C/
H, H/E). Three cascade tertiary classi®ers, SVM_TREE1(H/
~H, E/C), SVM_TREE2(E/~E, C/H) and SVM_TREE3(C/~C,
H/E), were made up of two binary classi®ers. In the
SVM_MAX_D tertiary classi®er, the class for a testing sample
was assigned as that corresponding to the largest positive
distance to the optimal separating hyperplane among
SVM_TREE1, SVM_TREE2, and SVM_TREE3 classi®ers.
The SVM_VOTE classi®er combines all six binary classi®ers
using a simple voting principle: the testing sample was
predicted to be in state i if the largest number of the six binary
classi®ers classi®ed it as state i. SVM_JURY used the jury
technique to combine all the results of the tertiary classi®ers
discussed above.

We designed two additional tertiary classi®ers based on a
one-versus-one scheme and a DAG scheme (Heiler, 2002). The
one-versus-one classi®er for secondary structure prediction
chooses the majority results based on three classi®ers H/E, E/C
and C/H. Many test results show that one-versus-one classi®ers
are more accurate than one-versus-rest classi®ers because the
one-versus-rest scheme often needs to deal with two data sets
with very different sizes, i.e. unbalanced training data (Heiler,
2002; Hsu and Lin, 2002). However, a potential problem with
the one-versus-one scheme is that the voting scheme might
suffer from incompetent classi®ers. For example, while the test
point is helix (H), the result from the one-versus-one classi®er
E/C that is not related to helix inappropriately contributes to
the decision. We can reduce this problem by using the DAG
scheme that can classify a new data point after two binary
classi®cations for three class problems without in¯uence from

Table I. Dependence of testing accuracy on window length for each binary
classi®er

Classi®er l = 7 l = 9 l = 11 l = 13 l = 15 l = 17 l = 19 l*

H/~H 86.08 86.70 87.18 87.36 87.46 87.40 87.37 15
E/~E 85.44 85.90 86.02 86.16 86.07 86.27 86.07 17
C/~C 77.34 77.52 77.47 77.74 77.92 77.70 77.71 15
E/C 81.43 81.42 81.84 81.74 81.85 81.78 81.51 15
C/H 83.87 84.64 84.79 84.84 84.88 84.98 84.74 17
H/E 88.03 89.26 89.91 90.17 90.24 90.06 89.88 15

The results are on the RS126 with PSI-BLAST pro®les and SVM with RBF
kernel where g = 0.05 and C = 1.0. Combined results of 7-fold cross-
validation are shown. l* represents the optimal window length for each
binary classi®er.
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incompetent classi®ers. For example, if the testing point is
predicted to be E (not C) from E/C classi®er, then the H/E
classi®er is applied, whereas if the point is predicted to be not
sheet (~E) from E/C classi®er, the classi®er C/H is applied to
determine if it is coil or helix. We developed the JURY2
classi®er, which combines the results of SVM_MAX_D,
SVM_VOTE, ONEvsONE, and DAG.

The results from the one-versus-one scheme and the DAG
scheme were better than those of SVM_TREE1, SVM_TREE2
or SVM_TREE3. Moreover, the results were comparable to
those of SVM_MAX_D or SVM_JURY prediction although
they used only one-versus-one classi®ers for decisions instead
of all six binary classi®ers (see Table II). This shows that the
one-versus-one scheme or DAG scheme that utilizes only one-
versus-one classi®ers is a good approach in the three-class
classi®cation problem, such as protein secondary structure

prediction, since we can reduce the computational complexity
and the dif®culty of big unbalanced classi®cation by using one-
versus-one rather than one-versus-rest binary classi®ers.

Handling unbalanced data

For handling unbalanced data, we used different penalty
parameters in the SVM formulation (Osuna et al., 1997):

max
ai

Xn

i�1

ai ÿ 1

2

Xn

i; j�1

aiajyiyjK�xi;xj�

s:t:
Xn

i�1

aiyi � 0

0 � ai � C�; if yi � 1
0 � ai � Cÿ; if yi � ÿ1

�13�

Table II. Accuracy of tertiary classi®ers on the CB513 set

Classi®er Q3 QH QE QC QH
pre QE

pre QC
pre CH CE CC SOV94

SVM_TREE1 76.0 77.2 65.4 80.8 84.1 74.4 71.5 0.67 0.59 0.55 80.6
SVM_TREE2 76.1 78.2 64.2 80.7 83.9 74.8 71.6 0.68 0.58 0.54 80.8
SVM_TREE3 75.6 78.1 66.2 80.0 82.5 74.4 72.7 0.67 0.58 0.54 81.8
SVM_MAX_D 76.4 78.3 65.6 80.6 83.7 74.4 72.3 0.68 0.59 0.56 82.2
SVM_VOTE 76.5 78.1 65.6 81.1 84.4 74.8 72.1 0.68 0.60 0.56 80.2
SVM_JURY 76.5 78.2 65.6 80.9 84.6 74.8 72.1 0.68 0.60 0.56 80.1
ONEvsONE 76.5 77.9 65.6 81.0 84.5 74.5 72.0 0.68 0.60 0.55 80.0
DAG 76.4 78.1 66.0 80.6 84.3 74.1 72.2 0.68 0.59 0.55 81.6
SVM_JURY2 76.6 78.1 65.6 81.1 84.4 74.8 72.1 0.68 0.60 0.56 80.1

Combined results of 7-fold cross-validation are shown.

Fig. 1. (a) Average secondary structure prediction accuracy (Q3). (b) The percentage of amino acids covered with reliability index of greater than or equal to
the values shown on the x-axis. For example, for residues with reliability index of >9, the average accuracy is 96.0% and the percentage of residues with this
index is 22.8%. Predictions are for a blind test set of 136 proteins.
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Using different penalty parameters (C+ and C±), we can
resolve the situation when the recall value of the smaller class
is too small to produce good secondary structure prediction.
We optimized the weight parameters for each binary classi®er
in order to produce optimal Q3 or SOV3.

Reliability index and support vectors

When using machine learning approaches for the prediction of
the secondary structure of a new sequence, it is important to
know the prediction reliability. We used a reliability index (RI)
to assign the prediction reliability. We can expect that a sample
that has a large positive distance to the optimal separating
hyperplane has a high probability of belonging to the positive
class. The reliability index is de®ned as

RI �
0 if d(i) < 0.1

INT�d�i�=0:134� if 0.1 � d(i) < 1.2

9 if d(i) � 1.2

(
�14�

where d(i) means the distance of the sample in state i to
the optimal separating hyperplane of the binary classi®er.
The thresholds in the reliability index de®nition are chosen
to make the percentage of residues about 22% for RI = 9
and about 12% for RI = 0. Figure 1 shows the average
accuracy (Q3) and the percentage of residues covered
against the cumulative reliability index from the SVMpsi
method for the 136 blind test set proteins; 49.8% of all
residues were predicted with RI > 5 and 92% of them
were correctly predicted; 22.8% of all residues were
predicted with RI = 9 and 96% of them were correctly
predicted. The ratio of the number of support vectors to all
training samples for each of the six binary classi®ers is
<50%, except in the C/~C binary classi®er. This shows that
the PSI-BLAST pro®les made classi®cation easier than the
multiple alignment frequency-based pro®les that had a ratio
of ~50%. We developed a protein secondary structure
predictor that is based on SVMlight (Joachims, 1999). The
single predicted a-helix is modi®ed to the same secondary
structure of the more reliable prediction (larger distance to
optimal separating hyperplane) at the previous and next
residue, since the occurrence of a single helix is not
realistic.

Discussion

Comparison with results of other methods

Table III shows that the accuracy of the binary classi®er is
signi®cantly improved with SVMpsi. It is interesting that the
accuracy of the H/E binary classi®er is improved by more than
9%, whereas that of the C/~C binary classi®er is improved by
4.72% on the RS126 data set. Whenever a binary classi®er
involves the class of coil (C) (C/~C, C/H, C/E), the prediction
accuracy was lower. This seems to be because the class C
involves states that are not as well de®ned, and therefore items
that belong to class C do not seem to have high within-class
consistency. As shown in Table IV, the Q3 and SOV94 of the
SVMpsi method based on the PSI-BLAST pro®les are higher
than those of the SVMfreq method based on the frequency
pro®les with multiple sequence alignments (Hua and Sun,
2001) as well as PHD, DSC, PREDATOR and NNSSP for the
RS126 data set. The Q3 of SVMpsi outperforms the Bi-
directional Recurrent Neural Network (BRNN) proposed by

Baldi et al. (Baldi et al., 1999) of 72.0% on the RS126 set. We
can expect higher accuracy if the SVMpsi method is used as a
component of the consensus method in conjunction with other
good predictors, such as PSIPRED and Jnet. Q3 scores for
RS126 and CB513 are improved by 4.9 and 3.1%, respectively
and SOV94 scores are improved by 5.0 and 3.9%, respectively,
compared with Hua and Sun's results (Hua and Sun, 2001). The
improvement is much more than that of Jnet (3.1%) and
comparison with PHD. We can say that the improvement of
SVMs with PSI-BLAST is higher than that of NNs with the
PSI-BLAST pro®les. The SVMpsi method achieves the highest
published Q3 and SOV94 values on both the RS126 and CB513
data sets to date. In the blind test of 136 protein sequences, the
weighted average accuracy by sequence length, SOV94 and
SOV99 scores were 77.2, 81.8 and 73.9%, respectively. Jones'
PSIPRED method based on neural networks (Jones, 1999),
which used the PSI-BLAST pro®les, achieved an overall pre-
residue accuracy of Q3 = 76.5% and SOV94 = 73.5% on his test
set, which includes 187 sequences after training with over 1000
protein structures. Our results cannot be compared directly
with those of PSIPRED since they used a different training set
and test proteins that contain some sequences of the CB513
data set. Cuff and Barton (Cuff and Barton, 2000) showed Q3 =
75.2% from cross-validated predictions of their 480 non-
redundant testing set proteins when the PSI-BLAST pro®les
were used. We obtained Q3 = 78.5%, SOV99 = 75.6% and
SOV94 = 82.8% from 7-fold cross-validated predictions on our
KP480 non-redundant test set. A direct comparison of
performance between the two methods was not possible
because the prepared KP480 data set may not be exactly the
same as the 480 data set of Jnet. However, it shows that the
SVM approach is another good method to perform secondary
structure prediction. The Q3 of the KP480 data set is higher
than that of the CB513 data set. This is as expected because it
helps to increase prediction accuracy to remove the sequences
that are shorter than 30 residues and to use the 8- to 3-state
reduction method 4 (H to helix, E,B to sheet, all other states to
coil) instead of reduction method 2.

CASP5 experiment

We could improve the support vector machine approach for the
protein secondary structure prediction by new tertiary classi-
®ers and their jury decision, an ef®cient method to handle
unbalanced data and PSSM pro®les. This was promoted to

Table III. Accuracy of each binary classi®er in the corresponding optimal
window length

Classi®er RS126 CB513

SVMfreq* SVMpsi* SVMfreq² SVMpsi²

H/~H 80.36 87.46 83.02 86.75
E/~E 81.25 86.27 83.39 86.69
C/~C 73.20 77.92 75.52 78.40
E/C 76.69 81.85 78.32 81.84
C/H 77.63 84.98 79.97 84.83
H/E 80.87 90.24 83.08 90.52

SVMfreq*, SVMpsi*: results obtained on the RS126 set using 8- to 3-state
reduction method 1. SVMfreq², SVMpsi²: results obtained on the CB513 set
using 8- to 3-state reduction method 2. SVMpsi results were obtained by
PSI-BLAST pro®les and SVM_JURY2 tertiary classi®er. The SVMfreq* and
SVMfreq² results are from Hua and Sun (Hua and Sun, 2001). Combined
results of 7-fold cross-validation are shown. SVMpsi is the new method
proposed in this paper.
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improve the current level of prediction using SVMs, since
neural network approaches have been studied for various
structures and pro®les by many researchers. It is not fair to
compare only the absolute Q3 values when they are trained by
different datasets. To evaluate our method, we participated in
the ®fth CASP (Critical Assessment of Structure Prediction)
experiment in 2002. Figure 2 shows the results for the
predictions that were submitted to CASP5. The average Q3

and SOV3 scores for SVMpsi were 79.10 and 79.38%,
respectively. We predicted the most accurate structure for
®ve proteins compared with the other groups. This was ranked
fourth among all participating groups. Twenty-one groups

could predict the most accurate structure at least for one
protein. The ®rst rank group predicted the most accurate
structure for seven proteins. It is not possible to say the exact
rank with respect to average Q3 or SOV3 since the target size is
small and the leading groups submitted different numbers of
proteins. However, it shows that the SVMpsi method can at
least match the current levels of prediction.

Further improvements and other applications

We have focused in this paper on the contribution of the local
interaction to the protein secondary structure using a sliding
window scheme. The tertiary interactions between residues far

Fig. 2. Bar graph showing the distribution of Q3 and SOV scores for a set of 54 test proteins in CASP5. The y-axis represents the number of proteins.

Table IV. All results used 8- to 3-state reduction method 2, except PHD* and SVMfreq*, results for which were obtained on the RS126 set using 8- to 3-
state reduction method 1, and SVMpsi³, results for which were obtained on the KP480 set using 8- to 3-state reduction method 4

Method Q3 (%) QH (%) QE (%) QC (%) SOV94 (%) SOV99 (%)

PHD* 70.8 72.0 66.0 72.0 73.5 ±
SVMfreq* 71.2 73.0 58.0 73.0 74.6 ±
PHD² 73.5 ± ± ± 73.5 ±
DSC 71.1 ± ± ± 71.6 ±
PREDATOR 70.3 ± ± ± 69.9 ±
NNSSP 72.7 ± ± ± 70.6 ±
CONCENSUS 74.8 ± ± ± 74.5 ±
SVMpsi* 76.1 77.2 63.9 81.5 79.6 72.0

SVMfreq² 73.5 75.0 60.0 79.0 76.2 ±
SVMpsi² 76.6 78.1 65.6 81.1 80.1 73.5

SVMpsi³ 78.5 80.2 65.8 83.5 82.8 75.6

PHD², DSC, PREDATOR, NNSSP, CONCENSUS: results obtained on the RS126 set from Cuff and Barton (Cuff and Barton, 1999). PHD*: results obtained
from Rost and Sander (Rost and Sander, 1993, 1994). SVMfreq², SVMpsi²: results obtained on the CB513 set. SVMfreq*, SVMfreq²: results obtained from
Hua and Sun (Hua and Sun, 2001). SVMpsi*, SVMpsi², SVMpsi³: results obtained on the RS126, CB513 and KP480 data set, respectively. Combined results
of 7-fold cross-validation are shown. SVMpsi is the new method proposed in this paper.
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apart in sequence but close in three dimensions can be
considered (Baldi et al., 1999) to improve prediction accuracy.
However, a prediction accuracy of the secondary structure of
>79% was obtained in CASP5 even when only the local
contribution was considered. This shows that the local
sequence environment of a residue substantially determines
its secondary structure. It is possible that our method can be
improved by considering long-range interaction. The SVMpsi
method can also be improved by using larger training sets that
contain new protein structure information, since the CB513
dataset used for the current SVMpsi was developed in 1999. It
may require more memory to store data points while obtaining
the optimal separating hyperplane. The prediction takes a long
time if the ratio between the number of support vectors and the
data points is large. The optimization of kernel parameters may
become dif®cult due to the computing time. A remaining
problem is to handle huge training datasets using the SVMs
approach. The neural networks (NNs) approach suffers from
the local minima, determination of appropriate structure of
neural networks and too many parameters. Although SVMs
also suffer from the kernel choice, we have shown that it is a
comparable method for protein secondary structure prediction.
This approach can be used for biologically important, relevant
problems, such as prediction of solvent accessibility and
disul®de bonding state and connectivity. Although the local
information is already effectively implemented by the sliding
window, it is important to consider the long-range interactions
that are a major driving force underlying remote contact. Using
the acquired information, it is possible to improve the accuracy
of the prediction of protein tertiary structure. This will also be
useful for studying protein folding processes.
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