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ABSTRACT The prediction of protein relative
solvent accessibility gives us helpful information
for the prediction of tertiary structure of a protein.
The SVMpsi method, which uses support vector
machines (SVMs), and the position-specific scoring
matrix (PSSM) generated from PSI-BLAST have
been applied to achieve better prediction accuracy
of the relative solvent accessibility. We have intro-
duced a three-dimensional local descriptor that con-
tains information about the expected remote con-
tacts by both the long-range interaction matrix and
neighbor sequences. Moreover, we applied feature
weights to kernels in SVMs in order to consider the
degree of significance that depends on the distance
from the specific amino acid. Relative solvent acces-
sibility based on a two state-model, for 25%, 16%, 5%,
and 0% accessibility are predicted at 78.7%, 80.7%,
82.4%, and 87.4% accuracy, respectively. Three-state
prediction results provide a 64.5% accuracy with 9%;
36% threshold. The support vector machine ap-
proach has successfully been applied for solvent
accessibility prediction by considering long-range
interaction and handling unbalanced data. Proteins
2004;54:557–562. © 2003 Wiley-Liss, Inc.
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INTRODUCTION

The task of predicting protein structure from the se-
quence is important, since the function of a protein is
closely related to its structure, which is difficult to deter-
mine experimentally. There are largely two types of meth-
ods in protein structure prediction. The first type includes
threading and comparative modeling, which rely on prior
knowledge of similarity among sequence and known struc-
tures. The second type, called de novo or ab initio methods,
predicts the protein structure from the sequence alone,
without relying on the similarity of known structure.
Currently, it is difficult to predict high-resolution three-
dimensional (3D) structure from ab initio methods for
studying the docking of macromolecules, predicting pro-
tein partner, designing and improving ligands, and protein–
protein interaction.1

For the knowledge-based methods, protein secondary
structure prediction2–8 has been studied as an intermedi-

ate step for predicting tertiary structure of proteins,
especially in the case when the sequence similarity is
lower than 30%, since the secondary structure is more
conserved than the protein sequence. The protein solvent
accessibility prediction has also been studied based on the
neural network approach9–13 with training by the conju-
gate gradient descent algorithm (i.e., back-propagation),
Bayesian method,14 or information theory.15

Though the prediction of solvent accessibility is less
accurate than that of secondary structure from the homol-
ogy approach, since it is less conserved than secondary
structure,10 there has been much effort to improve predic-
tion accuracy to obtain important information regarding a
buried or exposed residue for constructing tertiary struc-
ture from sequences. For example, the prediction of second-
ary structure and solvent accessibility can be aligned to
known 3D structure to detect a putative remote homologue
for threading. The predictions can also be used as addi-
tional constraints in ab initio methods.

In this article, we have introduced a long-range interac-
tion 3D local descriptor and have used the SVMpsi8

method, including feature weights, to improve prediction
of protein relative solvent accessibility. We applied a
directed acyclic graph (DAG) scheme16 for the three-class
classification problem in SVMpsi to avoid one-versus-rest
classification, which has higher complexity than one-
versus-one classification.

MATERIALS AND METHODS
Relative Solvent Accessibility

Amino acid solvent accessibility is the degree to which a
residue in a protein is accessible to a solvent molecule. The
relative solvent accessibility can be calculated from

RelAcci ! 100*Acci/MaxAcci, (1)

where Acci for the ith residue is the solvent accessibility
(given in Angstrom units) calculated from coordinates by
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the dictionary of protein secondary structure (DSSP) pro-
gram.17 The number of water molecules around a residue
can be approximated by Acci/10, and MaxAcci is the
maximum accessibility for the ith residue, which is given
for ambiguous (B, Z) or undetermined (X) residue, as well
as 20 normal amino acids.10

We used two kinds of class definitions: (1) buried (B) and
exposed (E); (2) buried (B), intermediate (I), and exposed
(E). For the two-state definition, we chose various thresh-
olds of the relative solvent accessibility such as 25%, 16%,
5%, and 0%. For the three-state (B, I, E) description of
relative accessibility, one set of thresholds that we selected
is the same as those in Rost and Sander10:

Buried (B): RelAcc " 9%

Intermediate (I): 9% # RelAcc " 36%

Exposed (E): RelAcc $ 36%.

Various other thresholds for and three-state definition
were chosen in addition to compare our results with the
previously published results and to find the dependency of
thresholds on the prediction accuracy of the relative
solvent accessibility.

3D Local Descriptor Coding Scheme

A local descriptor that represents the local environment
of sequences by sliding window coding scheme2–18 can be
enhanced by embedding the long-range interaction in
order to reflect the 3D local environment. The 3D local
descriptor represents the environment of a specific residue
not only in the sequence but also in the 3D space.

There are essentially four significant driving forces that
cause remote residues to contact. The first is a disulfide
covalent bond, which makes the nearest neighbors contact.
The most predominant linkage by disulfide bonds among
the secondary structural elements is the coil–coil link-
age.19 The structure of coil region is relatively important,
since functionally important residues which are involved
in a key protein–protein interaction, usually lie in the coil
regions. The second is a salt bridge. The oppositely charged
residues between (Asp, Glu) and (Lys, Arg) tend to form a
salt bridge. The third is hydrophobic interactions among
(Phe, Ile, Leu, Val). Especially, homopairs between them-
selves give the most favorable hydrophobic interactions.
The fourth is remote hydrogen bonds that frequently
appear, since this is a major force that forms a beta sheet.

The most probable remote contact sequence block in an
entire sequence with respect to the current local environ-
ment can be found by the long-range interaction matrix.20

The matrix represents relative frequencies of long-range
interaction for each amino acid pair. It was obtained from
statistical analysis of the accumulation of long-range
interactions, where 2 residues are separated by at least 10
residues in the sequence, and at least one of their atomic
distances is less than the sum of the van der Waals radii of
the two atoms plus 1.0 Å.20 The remote contact expectation
score between a given fragment o and the expected remote
contact fragment e is

Er ! !
i ! 1

w

P!o"i#, e"i#$, (2)

where o(i) is the ith amino acid in the window fragment,
e(i) is the ith amino acid in the candidate fragment, w is
the window size, and P(a, b) is the matrix component of the
relative frequency of long-range interactions between two
amino acids a and b. The fragments that stabilize proteins
by building remote contacts tend to be more buried than
the average accessibility of the rest of the sequences.
However, rather high accessibility can also be found in the
stabilization sequences, since the remote contact can be
driven by a salt bridge between high polar residues. In a
folded protein structure, hydrophilic side-chains tend to
contact polar solvent, but the hydrophobic side-chains
tend to minimize the contact with the polar solvent.21 A
weighted hydrophobicity for the current window can be
expressed as

Hc ! !
i ! 1

w

h"i# exp[%"i % "w & 1#/2)"2/100], (3)

where h(i) is the hydrophobicity of the ith amino acid in the
current window. After identifying the most probable re-
mote contact sequence block of w residues that has the
highest remote contact expectation score Er with the
current window, we can also calculate a weighted hydropho-
bicity for remote contact Hr using a similar equation as for
Hc, where h(i) is the hydrophobicity of the ith amino acid in
the remote contact sequence block.

The final position-specific scoring matrix (PSSM) from
PSI-BLAST22 against SWISS-PROT database23 (after three
iterations) is used as an input to support vector machines
(SVMs). The matrix has 20 & m elements, where m is the
length of the target sequence and each element represents
the log-likelihood of that particular residue substitution at
that position in the template. The final PSSM from PSI-
BLAST against the SWALL23 nonredundant protein se-
quence database is used. We applied PFILT24,25 to mask
out regions of low complexity sequences, the coiled coil
regions, and transmembrane spans. For PSI-BLAST, the
E-value threshold for inclusion of 0.001 and three itera-
tions were applied to search the nonredundant sequence
database. The profile matrix elements in the range [%7,7]
are scaled to the [0,1] range.

Each residue is represented using 20 components in a
vector, based on the PSSM. In order to allow a window to
extend over the N-terminus and the C-terminus, an addi-
tional 21st unit (spacer) was attached to each residue.
Then, each input vector has 21 & w components, where w
is a sliding window size. The values for Hc, Er, and Hr are
appended to the original feature vector to build a 3D local
descriptor. Therefore, each input vector has 21 & w ' 3
components. If the expected remote contact is not found
[i.e., the expectation score is smaller than the threshold (Et

( 1.2 & w)], Er and Hr are filled with zeros. The window is
shifted residue by residue through a protein chain.
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PHDacc10 consists of two different networks with win-
dow sizes of 9 and 13 consecutive residues for jury decision.
In Jnet,6 a neural network with a sliding window of 17
residues for the first input and 19 for the second input was
designed. Both NETASA26 and Naderi-Manesh et al’s
method15 based on information theory used a window size
of 17. We built input vectors considering 15 consecutive
residues for predicting the central 8th residue after finding
the optimal window length (see Table I).

Support Vector Machines

In many classification problems, different classes cannot
be linearly separated in the original input space. An SVM
finds a nonlinear decision function in the input space by
implicitly mapping the data into a linear separable higher
dimensional feature space and separating the data there
by maximizing the geometric margin and minimizing the
training error at the same time. The primal optimization
problem is

min
w,)i

1
2 wtw & C!

i ! 1

n

)i (4)

s.t. yi!wtxi & b$ $ 1 % )i, )i $ 0, i ! 1,. . .,n,

where xi represents an input vector, yi ( *1 according to
whether xi is in the positive or negative class, n is the
number of the training data, and C is a parameter that
controls the trade-off between margin and classification
error represented by slack variable )is. The corresponding
dual quadratic programming problem with an incorpora-
tion of a kernel function can be written as

max
+i

!
i ! 1

n

+i %
1
2 !

i,j ! 1

n

+i+jyiyjK"xi, xj#, (5)

s.t. !
i ! 1

n

+iyi ! 0, 0 # +i # C, i ! 1,. . .,n,

where +i represents the influence of single ith training
example limited by C, and K(xi, xj) is a kernel function to
handle the nonlinear separable case.

SVMs find the unique minimum of a convex function for
training a given data set.27–30 The decision boundary is
represented as a sparse linear combination of the training
set examples.31,32 Recently, SVMs have also been shown to
perform well in multiple areas of biological analysis,
including protein secondary structure prediction,7,8 pro-
tein subcellular localization prediction,33 multiclass pro-
tein fold recognition,34–36 gene function prediction from
microarray expression data,37 cancer tissue classification
from microarray expression data,38,39 gene selection for
cancer classification,40 and protein–protein interaction
problems.41 Also, SVMs are well suited to solve pattern
recognition problems, such as isolated handwritten digit
recognition,42 3D object recognition,43,44 speaker identifi-
cation,45 face detection,46 and text categorization.47–49

Kernel Feature Weight Scheme

The solvent accessibility for a specific amino acid can be
determined by its 3D local environment. We assumed that
the contribution can be different, since the closer amino
acids may have more influence on accessibility in the local
environment. We scaled the feature values and derived a
modified kernel function as

Km"xi, xj# ! K"Wxi, Wxj#, (6)

where W is a diagonal matrix which contains weight
factors. However, we scaled all input vectors by multiply-
ing them with W once, to avoid matrix vector multiplica-
tions whenever the kernel function is calculated. The 20
numerical values that are row elements of the PSSM for an
amino acid were scaled by exp(%z2/100) ' 1.0, where z is
the sequential distance between the specific amino acid
and the amino acid at the window center. The diagonal
elements of W for the appended part for the remote contact
residues were set to 1. The scale function was designed to
cover the range of integers z ![%7, 7] for the optimal
window length 15.

Parameter Optimization for SVMs

When using SVMs, we need to select a kernel function
and the parameter C, and construct tertiary classifiers
based on binary classifiers. After preliminary tests, it was
found that the Gaussian RBF (radial basis function)
kernel

K"xi, xj# ! exp(%,#xi % xj#2) (7)

was appropriate for our classification problems.
The optimal separating hyperplane can be represented

by support vectors of which +i is nonzero. Each support
vector contributes one local Gaussian function centered at
that data point. The parameters , and C can be selected
from the optimization process, and were found to be , (
0.01, C ( 1.0 for our 2-state model, and , ( 0.01, C ( 1.5
for our 3-state model. We also tested linear kernels and
polynomial kernels

K"xi, xj# ! xi ! xj (8)

K"xi, xj# ! !+xi ! xj & b$d (9)

TABLE I. Dependency of Testing Accuracy on the Window
Length for Each Binary Classifier

Classifier l ( 11 l ( 13 l ( 15 l ( 17 l ( 19 l*
E/B1 76.82 76.84 76.75 76.60 76.60 13
B/I2 69.11 69.06 69.08 69.16 69.12 17
E/B2 81.42 81.55 81.69 81.57 81.53 15
I/E2 67.94 68.24 68.08 68.02 68.03 13

Results for E/B1 are obtained with threshold 25 in case of 2-state
model. Results for B/I2, E/B2, and E/I2 are obtained with thresholds
9;36 in case of the 3-state model. The results are on the RS126 with
PSI-BLAST profile and an L1 soft margin SVM with the RBF kernel
function, using the corresponding optimized , and C parameters. The
l* value is the optimal window length for each binary classifier.
Combined results of 7-fold cross validation are shown.

PROTEIN SOLVENT ACCESSIBILITY 559



with various degrees d and a ( b ( 1. Various even and
odd degrees for the polynomial kernels were tested, but no
special difference in prediction accuracies was observed.

Table II shows that the RBF kernel produces the most
accurate prediction results for the solvent accessibility.

Handling Unbalanced Data

In binary classification problems, if the number of
samples of one class is much larger than that of the other
class, the decision boundary tends to be determined to
make a better decision for the larger class for the purpose
of maximizing the total accuracy. For handling the unbal-
anced data, there are three kinds of approaches. The first
method discards training points of the larger size class to
balance the number of training points of both classes.
Though this approach reduces the number of points to gain
balance and lower complexity, it may eliminate points that
contain critical information for classification. The second
approach duplicates the training points of the smaller size
to achieve balance. The third method uses different pen-
alty parameters in the SVM formulation30 such as

max
+i

!
i ! 1

n

+i %
1
2 !

i,j ! 1

n

+i+jyiyjK"xi, xj# (10)

s.t. !
i ! 1

n

+iyi ! 0

0 # +i # C', if yi ! 1

0 # +i # C%, if yi ! %1.

Using different penalty parameters (C' and C%), we can
resolve the situation that the recall value of the smaller
class is too small to produce good prediction accuracy.

We used the third method to treat unbalanced data for
most classifications. The duplicate method was used for
fully buried residue classification, since it was difficult to
choose a good pair of penalty parameters when the differ-
ence in the number of data points in two classes was too
large. The first method was adopted for the KP480 data

set, since there was not enough memory to store the entire
KP480 sliding window data points.

Final Prediction

We obtained one-versus-one classifiers (E/B) for the
2-state (exposed/buried) relative solvent accessibility, and
three one-versus-rest classifiers (B/-B, I/-I, E/-E) and
three one-versus-one classifiers (B/I, E/B, and I/E) for the
3-state relative solvent accessibility from SVMs. We
adopted a (DAG) scheme16 for which prediction results
were as good as the jury results that used all six binary
classifiers. The jury decision scheme suffers from unbal-
anced data in its one-versus-rest classifiers.8

If a residue is predicted to be not buried (-B) from E/B
one-versus-one classifier, I/E classifier is applied, whereas
if the residue is not exposed (-E) from E/B classifier, B/I
classifier is applied to check if it is buried or intermediate.
Three different kinds of DAG schemes can be constructed;
DAG1 (starts with B/I), DAG2 (starts with E/B), DAG3
(starts with I/E). We observed that the prediction results
were almost the same in all cases.

RESULTS AND DISCUSSION

We used three different data sets for our computational
experiments. The first data set (HMK24) consists of 19
training sequences and 5 test sequences. The training set
contains the sequences of 1bp2, 1cpv, 1ctf, 1gcr, 1lz1,
1mbd, 1pcy, 1rn3, 1tpp, 2act, 2alp, 2apr, 2sga, 3dfr, 3tln,
4fxn, 451c, 5cpa, and 9pap. The test set contains the
sequences of 1nxb, 1ubq, 2cpp, 2prk, and 2sns. The second
data set (RS126) contains 126 proteins with less than 25%
pairwise sequence identity. This data set has been used to
study conservation and prediction of solvent accessibility
in protein families.10 The third data set (KP480) was
designed based on CB513 by removing proteins that are
shorter than 30 residues and those from the result of
PSI-BLAST that contained only a few sequences in the
first iteration.8

Three dimensional coordinates of proteins were ob-
tained from the Protein Data Bank (PDB)50 and the
solvent accessibility was calculated with the DSSP pro-
gram of Kalbsch and Sander.17 The relative solvent acces-
sibility was calculated by Eq. (1). The groups [buried (B),
exposed (E); buried (B), intermediate (I), exposed (E)] were
determined by the corresponding thresholds. The second
and third data sets were divided into 7 folds that have
similar number of proteins for cross-validation tests. The
first data set was studied without any cross-validation
test.

Holbrook et al9 achieved 72.0% overall prediction accu-
racy for the test sequences of HMK24 in the binary model
with a window size of 11, and 54.0% prediction accuracy of
solvent accessibility in the ternary model with a window
size of 7 using 10 hidden nodes. To compare our results
with these previously published results9 for the HMK24
data set, we used the same thresholds; that is, i.e. the
buried residues were defined as those with less than 20%
of relative solvent accessibility for the 2-state model, and
buried (0–5%), intermediate (5–40%), or exposed (.40%)

TABLE II. Prediction Accuracy With Different Types
of Kernel Functions in SVMs

Kernel function E/B1 B/I2 E/B2 I/E2

Linear 75.83 68.98 80.38 67.04
Polynomial (d ( 2) 76.68 68.91 81.28 67.88
Polynomial (d ( 3) 76.73 68.98 81.35 67.52
Polynomial (d ( 4) 76.67 68.88 81.40 67.40
RBF 76.84 69.08 81.69 68.08

The sliding window size 13 was used for E/B, 15 for the others. Results
for E/B1 were obtained with the threshold of 25 in case of the 2-state
model. Results for B/I2, E/B2, and E/I2 are obtained with thresholds
9;36 in case of the 3-state model. The results are on the RS126 with
PSI-BLAST profiles and an L1 norm soft margin SVM. With the RBF
kernel function, parameters , and C are optimized based on the data
set. Combined results of 7-fold cross validation are shown.
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for the 3-state model. We obtained 78.7% accuracy for the
2-state model and 62.4% accuracy for the 3-state model
using window size of 15. The improvement was 6.7% for
the 2-state model and 8.4% for the 3-state model.

Manesh et al.15 reported 70.0% prediction accuracy for
the 2-state model with threshold 9%, and 58.1% for the
3-state model with thresholds 9%; 16% using information
theory with a set of 215 protein sequences used by
NETASA.26 We discuss only these values for fair compari-
sons, although they also reported other results by calculat-
ing accessible surface area (ASA) instead of DSSP.
PHDacc10 reported 74.8% accuracy for the 2-state model
with threshold 16%, and it showed that 86% of the
completely buried sites were correctly predicted as having
0% relative accessibility for the RS126 data set. SVMpsi
achieved 77.8% accuracy for the 2-state model, with thresh-
old 16% for the same RS126 data set. Jnet6 reported 75.0%
prediction accuracy when the relative solvent accessibility
threshold is 25% between buried and exposed, and 86.6%
for fully buried residues using PSI-BLAST22 profiles. We
cannot directly compare Jnet and SVMpsi since Jnet used
the CB480 data set, which is slightly different from the
KP480 data set. Recently, Pollastri et al13 achieved 77.2%
for the 2-state model with a threshold of 25% by BRNNs
(bidirectional recurrent neural networks), as well as PSI-
BLAST profiles. They claimed that the improvement is due
both to the larger training sets and the BRNN architec-
tures, which can capture long-range interactions.

Table III shows that the methods using PSI-BLAST (i.e.,
Jnet,6 BRNNs,13 and SVMpsi8) were able to obtain much
better prediction accuracies than other methods. The
SVMpsi method with long-range interaction 3D local de-
scriptor is comparable to or better than the other methods
in predicting protein relative solvent accessibility. Though
a direct comparison of our method with BRNNs is difficult,
due to the fact that different training sets are used in the
tests, both the BRNNs and SVMpsi, as methods that

consider long-range interactions, produce relatively good
prediction results.

We performed some additional experiments to test the
influence of different factors on the prediction accuracy
improvement. There are three factors (i.e., SVMs, long-
range interaction 3D local descriptor, and kernel feature
weight scheme). When we used only SVMs with 21 & w
components for each input vector without Hc, Er, and Hr,
the cross-validated prediction accuracies for KP480 data
set with the 2-state models (25%, 16%, 5%, 0% thresholds)
and the 3-state model (9%; 36% threshold) were 77.5%,
77.7%, 79.8%, 86.3%, and 61.9%, respectively. The results
are lower than the SVMpsi† results in Table III that were
achieved by taking advantage of all three factors. We also
tested using 3D local descriptors and SVMs without a
kernel feature weight scheme to estimate the contribution
of the feature weight scheme. It was found that the
contribution of the feature weight scheme was relatively
small (less than about 0.2%) or sometimes not significant
at all, since the results were almost the same as the
SVMpsi† results. It shows that our prediction accuracy
improvement was mainly due to SVMs and 3D local
descriptor. We expect additional improvement with a more
reliable long-range interaction matrix generated from a
larger number of proteins and more accurate remote
contact prediction methods.

The SVMpsi method has already been shown to achieve
a good performance for protein secondary structure predic-
tion in our previous work.8 In this article, we present the
first application of the SVM approach to predict protein
relative solvent accessibility using a novel long-range
interaction 3D local descriptor that contains hydrophobic-
ity information for the current window, possibility of
remote contact, and hydrophobicity for the expected re-
mote contact window. While the protein secondary struc-
ture tends to be determined by local sequence environ-
ment, the solvent accessibility is much more related to the
tertiary interactions between residues far apart in the
sequence, but close in 3D space.
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