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ABSTRACT

Motivation: Many practical pattern recognition problems require
non-negativity constraints. For example, pixels in digital images
and chemical concentrations in bioinformatics are non-negative.
Sparse non-negative matrix factorizations (NMFs) are useful when
the degree of sparseness in the non-negative basis matrix or the
non-negative coefficient matrix in an NMF needs to be controlled
in approximating high-dimensional data in a lower dimensional
space.

Results: In this article, we introduce a novel formulation of sparse
NMF and show how the new formulation leads to a convergent
sparse NMF algorithm via alternating non-negativity-constrained
least squares. We apply our sparse NMF algorithm to cancer-class
discovery and gene expression data analysis and offer biological
analysis of the results obtained. Our experimental results illustrate
that the proposed sparse NMF algorithm often achieves better
clustering performance with shorter computing time compared to
other existing NMF algorithms.

Availability: The software is available as supplementary material.
Contact: hskim@cc.gatech.edu, hpark@acc.gatech.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

In many data-mining problems, dimension reduction is
imperative for efficient manipulation of massive quantity of
high-dimensional data. The subspace method has demonstrated
its success in numerous pattern recognition tasks including
efficient classification (Kim et al., 2005), clustering (Ding et al.,
2002) and fast search (Berry ez al., 1999) . There are two general
approaches for reducing dimensionality, i.e. feature extraction
and feature selection. Feature extraction is transforming the
existing features into a lower dimensional space, while feature
selection is selecting a subset of the existing features without
a transformation. For feature extraction, principal compo-
nent analysis (PCA), linear discriminant analysis (LDA)
and non-negative matrix factorization (NMF) have been
widely used. Many practical pattern recognition problems

*To whom correspondence should be addressed.

require non-negativity constraints. For example, pixels in
digital images and chemical concentrations in bioinformatics
are non-negative. NMF is a useful technique in approximating
these high-dimensional data.

Given a non-negative matrix A of size m x n, where each
column of A corresponds to a data point in the m-dimensional
space, and a positive integer k < min{m,n}, NMF finds two
non-negative matrices W € R"** and H € R*" so that

A~ WH. (1)

A solution to the NMF problem can be obtained by solving the
following optimization problem:

o 1 5
min f(W. H) =3 |4 = WHI} s... WoH=0, ()

where W e R”*F is a basis matrix, H € R™" is a coefficient
matrix, || - ||z is the Frobenius norm and W, H > 0 means that
all elements of W and H are non-negative. Due to k < m,
dimension reduction is achieved and a lower dimensional
representation of A in a k-dimensional space is given by H.
Since NMF may give us direct interpretation due to
non-subtractive combinations of non-negative basis vectors,
it has recently received much attention and it has been applied
to many interesting problems including text data mining
(Chagoyen et al., 2006; Lee and Seung, 1999; Pauca et al.,
2004) gene expression data analysis (Brunet ez al., 2004;
Carmona-Saez et al., 2006; Gao and Church, 2005; Kim and
Tidor, 2003; Maher et al., 2006), microarray comparative
genomic hybridization (aCGH) data (Carrasco et al., 2006) and
functional characterization of gene lists (Pehkonen et al., 2005).
One of the interesting properties of NMF is that it often
generates sparse basis vectors that allow us to discover parts-
based basis vectors. NMF generated holistic basis images
instead of parts-based basis images for a facial image dataset in
the results presented in Li et al. (2001) and Hoyer (2004).
Several approaches (Dueck et al., 2005; Hoyer, 2004; Pascual-
Montano et al., 2006; Pauca et al., 2006) have been proposed to
explicitly control the degree of sparseness of W and H.
However, if strong sparsity constraints are imposed on the
basis matrix W, some useful information for gene selection in
microarray data analysis may be lost. Some other approaches
(Gao and Church, 2005; Pauca et al., 2004) imposed sparsity
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constraints on only the coefficient matrix H, but there may be
mathematical difficulties related to convergence.

In this article, we introduce a sparse NMF algorithm that can
control the degree of sparseness in the coefficient matrix H
via alternating non-negativity-constrained least squares, and
apply it to microarray data analysis. The rest of this article
is organized as follows. We give brief overviews on various
NMF algorithms in Section 2.1. In Section 2.2, we introduce
sparse NMF formulations and algorithms based on alternating
non-negativity-constrained least squares and discuss their
convergence properties. In Section 3, we describe stopping
criteria, and present experimental results and biological
analysis illustrating properties of the proposed sparse NMF.
Summary is given in Section 4.

2 METHODS

2.1 Review of NMF algorithms

Lee and Seung (1999, 2000) suggested NMF algorithms based on
multiplicative update rules of W and H. The distance |4 — WH|| is
non-increasing under the following multiplicative update rules:

wra,

Hl[ <« qum,

forl <g<kand1<j<n,

(4H"),

Wig < Wiy 7(W(HHT)),-,[’

for 1<i<m and 1<g¢g<k. The divergence D(A, WH)=
Yoy i (A In(4y/(WH)) — Ay + (WH);) is non-increasing under
the different multiplicative update rules (Lee and Seung, 2000).
Gonzales and Zhang (2005) claimed that these non-increasing proper-
ties of multiplicative update rules may not imply the convergence to
a stationary point within realistic amount of runtime for problems
of meaningful sizes. More detailed review on NMF algorithms can
be found in Berry et al. (2006).

Hoyer (2004) devised a sparse NMF algorithm based on the
projected gradient descent method (SNMF/PGD) in order to constrain
NMEF to find solution with desired sparseness in W and H. To impose
sparseness constraints on only one matrix W or H, this algorithm
uses a multiplicative update rule for updating the counter matrix,
which suffers from slow convergence. Puscual-Montano et al. (2006)
claimed that non-smooth NMF (nsNMF) outperformed previous
sparse NMF variants for their synthetic and real datasets. The
nsNMF (Puscual-Montano et al., 2006) is also based on multiplicative
update rules.

Pauca et al. (2006) proposed a constrained NMF (CNMF)
formulation,

min{||4 — WHI 5+ ol Wi + BIHIZ), s... W, H >0, 3)

where @ and 8 are regularization parameters. A sparse NMF algorithm
using the following least squares,

min{|l4 — WHIZ + BI I} @)

has appeared in Pauca er al. (2004) and Gao and Church (2005).
This algorithm sets negative values in H to zero during iterations.
However, setting negative values to zero for imposing non-negativity is
not recommended, since there is no guarantee that the algorithm
converges (Bro and de jong, 1997). The parameter 8 in Equation (4) has
a scaling effect since a large value of g would suppress || H||z. As ||H| ¢

is suppressed, ||| may grow relatively large, and therefore, the
algorithm needs column normalization of ¥ during iterations. However,
the normalization of W changes the objective function, and this makes
convergence analysis difficult. It is well known that a quadratic penalty
corresponds to Gaussian priors and does not encourage sparsity but
rather scales the result giving non-sparse low values. Thus, L;-norm
based formulations would be more appropriate than L,-norm based
formulations so as to control sparsity (Tibshirani, 1996).

2.2 Sparse NMFs based on alternating
non-negativity-constrained least squares

In order to enforce sparseness on W or H in the NMF presented
in Equation (1), we introduce two formulations and the corresponding
algorithms for sparse NMFs, i.e. SNMF/L for sparse W (where ‘L’
denotes the sparseness imposed on the left factor) and SNMF/R for
sparse H (where ‘R’ denotes the sparseness imposed on the right factor).
Our sparse NMF formulations that impose the sparsity on a factor
of NMF utilize L;-norm minimization and the corresponding
algorithms are based on alternating non-negativity constrained least
squares (ANLS). Each sub-problem is solved by a fast non-negativity
constrained least squares (NLS) algorithm (van Benthem and Keenan,
2004) that is improved upon the active set based NLS method. Bro and
de Jong (1997) made a substantial speed improvement to Lawson and
Hanson’s algorithm (Lawson and Hqnson, 1974) for multiple right-
hand-side cases. van Benthem and Keenan (2004) devised an algorithm
that further improves the performance of NLS.

2.2.1 Formulations for Sparse NMFs SNMF/R: To apply
sparseness constraints on H, we formulate the following SNMF/R
optimization problem:

. 1
min.s 54~ WHIG+nl W

+BY_IHG IR ®)
j=1

s.t.W,H >0,

where H(:, j) is the j-th column vector of H, n > 0 is a parameter to
suppress |||, and 8 > 0 is a regularization parameter to balance the
trade-off between the accuracy of the approximation and the sparseness
of H. The SNMF/R algorithm begins with the initialization of W
with non-negative values. Then, it iterates the following ANLS until

convergence:
w A
H—
(«/Belxk) (len)

where e;,x € R is a row vector with all components equal to one and
01, € R™ is a zero vector, and

()= ()

where 7 is an identity matrix of size k x k and Oy, is a zero matrix of
size k x m. Equation (6) minimizes L;-norm of columns of H € RF>*n
which imposes sparsity on H.

SNMF/L: To impose sparseness constraints on W, we introduce the
SNMF/L formulation:

2
,s.t. H>0, (6)
F

min
H

2
8. W=0, (7

F

min
W

. 1
ming: i {4 = WHIG+ nllHIF

+a Y WG IR ®)
i=1

s.t. W, H >0,
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where W(i, :) is the i-th row vector of W, n > 0 is a parameter to
suppress ||H||%, and « > 0 is a regularization parameter to balance the
trade-off between the accuracy of the approximation and the sparseness
of W. The algorithm for SNMF/L is also based on ANLS.

2.2.2  Convergence properties of sparse NMF algorithms We
show the convergence property of the sparse NMF algorithms. Since
the convergence properties of SNMF/L and SNMF/R are essentially
the same, we will only discuss the case of SNMF/R in more detail.
Under conditions of n >0, >0, and H(i,j) = |H(i,j)| due to
H(i,j) > 0, Equation (5) can rewritten as

. 1
miny, g

{

n k 2
+ ﬁZ(Z H(%/’)) ! ©)
J=1 \g=1

s.t. W,H>0,

|4 — WHI 3+ nll W1

(NS}

which is differentiable with respect to W or H. SNMF/R contains two
sub-problems for two-block minimization scheme. Grippo and
Sciandrone (2000) showed that the two-block coordinate descent
method does not require each sub-problem to have a unique solution
for convergence. The objective function in Equation (9) is coercive
on the feasible set; as the feasible set is closed, the intersection of
any level set of this function with the feasible set is compact. Therefore,
any minimization process that reduces the objective function and
preserves feasibility generates points that remain in a compact set.
The existence of accumulation points and the differentiability of the
objective function in Equation (9) imply that the assumptions of
Grippo and Sciandrone’s Corollary (Grippo and Sciandrone, 2000) are
satisfied, so that we can establish that the two-block minimization
process is convergent, in the sense that every accumulation point is
a critical point of the problem shown in Equation (9). Similarly, it can
be shown that the algorithm SNMF/L converges to a stationary point.

3 RESULTS

3.1 Datasets description

We used the leukemia gene expression dataset (ALLAML)
(Golub et al., 1999) and the central nervous system tumors
dataset (CNS) (Pomeroy et al., 2002). The ALLAML dataset
contains acute lymphoblastic leukemia (ALL) that has B and
T cell subtypes, and acute myelogenous leukemia (AML)
that occurs more commonly in adults than in children. This
gene expression dataset consists of 38 bone marrow samples
(19 ALL-B, 8 ALL-T and 11 AML) with 5000 genes. The central
nervous system dataset is composed of four categories of CNS
tumors with 5597 genes. It consists of 34 samples representing
four distinct morphologies: 10 classic medulloblastomas,
10 malignant gliomas, 10 rhabdoids and 4 normal cerebella.
All datasets used by us contain only non-negative entries. All
algorithms were implemented in Matlab 6.5 (MATLAB, 1992).
The Matlab codes for NMF using divergence-based multi-
plicative update rules were obtained from Brunet et al. (2004)
and modified to implement nsNMF (Puscual-Montano et al.,
2006). All our experiments were performed on a P3 600 MHz
machine with 512 MB memory.

3.2 Biclustering

We applied the non-negative factorization of Equation (1) to
perform clustering analysis of a data matrix. The rows of

a microarray data matrix 4 represent genes and the columns
experiments. We can use the basis matrix 1 to divide the m
genes into k gene-clusters and the coefficient matrix H to divide
the n samples into k& sample-clusters. Typically, gene i is
assigned to gene-cluster ¢ if the W(i, g) is the largest element in
W(i, :) and sample j is assigned to sample-cluster ¢ if the H(g, )
is the largest element in H(: ,j).

3.3 Stopping criteria

NMF using divergence-based multiplicative update rules
(i.e. NMF/DUR (Brunet et al., 2004) and nsNMF (Pascual-
Montano et al., 2006)) in our implementation stops if C has
not changed for more than 40 convergence tests (each made
at 10 iterations), where C = [¢7] € R™" is the connectivity
matrix of which entry is ¢; = 1 if samples i and j belong to
the same sample-cluster, and ¢; = 0 if they belong to different
sample-clusters.

For SNMF/L and SNMF/R, we tested convergence at every
five iterations by the combined convergence criterion using
the Karush-Kuhn-Tucker (KKT) optimality conditions and
the convergence of positions of the largest elements in rows
of W and columns of H. Our sparse NMF algorithms stop
if both the positions of the largest elements in rows of W,
i.e. w=(Wi,...,Wy), and the positions of the largest elements
in columns of H, i.e. h= (};1,...,/;,,), have not changed for
more than or equal to 10 convergence tests, where w; is the
position of the largest element in the i-th row of I and };j is
the positions of the largest element in the j-th column of H,
and the following KKT conditions are satisfied. The KKT
conditions for each objective function f(W,H) with non-
negativity constraints W >0 and H >0 are

(C) W, = 0,

(C2) Hy = 0,

(C3) (oW, H)/oW);y, = 0,

(C4) (ftW, H)/0H),; = 0,

(C5) Wig - (AW, H)/oW);, = 0,

(C6) Hy; - (oftW, H)/0H),; = 0,Vi,q. .

These conditions can be rewritten as

min(W, of(W, H)/oW) = 0,
min(H, ot W, H)/oH) = 0,

where the minimum is taken component wise (Gonzales and
Zhang, 2005). Let A, be the KKT residual measured by the
Ly-vector norm,

(10)

(11)

m k
Ay =) Imin(Wi, (fOV, H)/0W),,)|
i=1 Z:l ) (12)
+ > Imin(Hy, (AW, H)/9H),)-
g=1 j=1

We count the number of the elements in W that did not
converge yet, i.e. 8y =#min(W,af(W, H)/daW) # 0), and the
number of the elements in A that did not converge yet,
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i.e. Sg=#(min(H,0f( W, H)/oH) # 0). We define the following
normalized KKT residual:

A,

A=—"—, 13
3wt on (13)

which reflects the average of convergence errors for elements
in W and H that did not converge. The mathematical
convergence criterion is defined as

A <€A, (14)

where A is the A value in the first iteration and € is a tolerance.
We used € = 10~ for our experiments.

3.4 Clustering performance comparison

To measure the performance of NMFs in clustering, we used
purity and entropy. Suppose we are given / categories (true class
labels), while NMF generates k clusters. Purity is given by

1< :
Purity = — § J
urity ni {Tsl?;(/(n")’

where 7 is the total number of samples and n{l is the number of
samples in the cluster ¢ that belong to original classj (1 <j < /).
The larger the value of purity, the better the clustering
performance. Entropy is defined as follows:

1 k / ) I’l'é
Entropy = — nlo%, /Z Znﬂi logzn—q,
q=1 j=1

where / denotes the number of original class labels and n, is
the size of cluster ¢. The smaller the value of entropy, the better
the clustering quality.

The parameter n in Equation (5) is important in keeping
I W||2F small. We set it to be the square of the maximal element
in 4. For the initialization of W in SNMF/R, the elements
in the initial matrix W were randomly chosen and normalized
so that the columns of the basis matrix W have unit L,-norm,
Le. WG, gl =1for1 =g =<k

Tables 1 and 2 show the results of SNMF/R with various
values of B on the ALLAML dataset with k=3 and on the
CNS tumors dataset with k£ =4, respectively. We compared our
proposed SNMF/R with NMF based on divergence-based

Table 1. Performance dependency of SNMF/R (k=3) on various
values on the leukemia data matrix of size 5000 x 38. We present the
average percentages of zero elements in W and H over five runs with
different random initializations. We also present average purity,
entropy, computing time (in seconds) and the number of iterations

Leukemia NMF/DUR SNMF/R

B - 0.001 0.01 0.1 0.5
#W = 0) (%) 0.10%%* 2.43%  2.17% 1.57% 1.09%
#H = 0) (%) 0.00%* 24.56% 30.70% 44.74% 51.75%
Purity 0.953 0.974 0.974 0.947 0921
Entropy 0.141 0.095 0.095 0.158 0.210
Number of iterations 502.0 328.0 139.0 77.0 95.0
Computing time 53.6 40.1 17.0 9.4 10.9

multiplicative update rules (Brunet ez al., 2004; Lee and Seung,
2000). Average sparseness, purity and entropy were computed
by running each algorithm five times with different random
initializations. By increasing 8 in SNMF/R, we could obtain a
sparser H. SNMEF/R algorithm achieved better clustering
performance (higher purity, lower entropy) than NMF/DUR
within certain range of B with shorter computing time. By
increasing « in SNMF/L, we could enhance the sparsity of W
(results are not shown). SNMF/L can be applied to obtain
parts-based basis vectors.

We compared our methods with other sparse NMF variants
on the ALLAML dataset. We tested Hoyer’s sparse NMF
based on the projected gradient descent method by his Matlab
implementation with the sparseness control parameter sy = 0.4
to impose sparsity constraints on only A (see Hoyer (2004) for
the details). The average percentages of zero elements in W
and H obtained from SNMF/PGD were 0.12 and 21.75%,
respectively. SNMF/R showed significantly better clustering
performance than SNMF/PGD (average purity=0.895 and
average entropy = 0.280). Moreover, SNMF/R required much
shorter computing time and smaller number of iterations than
SNMF/PGD (average computing time=110.1 and average
iteration number = 517.8). We tested nsNMF with the smooth-
ness control parameter 6= 0.5 suggested in Carmona-Saez et al.
(2006) for biclustering of gene expression data due to reason-
able results from numerous empirical tests. nsNMF generated
average purity=0.963 and average entropy=0.108. The
average percentages of elements in the range of [0,107%) in W
and H obtained from nsNMF were 8.94 and 25.26%,
respectively. It took 79.1s with 698 iterations on the average.
It produced the sparsest W among NMF algorithms we
compared. The average percentages of elements in the range
of [0,107%) in W and H obtained from nsNMF were 65.94 and
29.30%, respectively, which are much higher than 0.12
and 0.35% obtained from NMF/DUR. nsNMF enhanced
the sparseness of W as well as H simultaneously. However, the
additional sparsity constraints on W is not always helpful.
For example, some genes are over-expressed in samples that
belong to more than one clusters. NMFs typically generate
W whose rows corresponding to these genes have large values

Table 2. Performance dependency of SNMF/R (k=4) on various 8
values on the CNS tumors data matrix of size 5597 x 34. We present the
average percentages of zero elements in W and H over five runs with
different random initializations. We also present average purity,
entropy, computing time (in seconds) and the number of iterations

CNS tumors NMF/DUR SNMF/R

B - 0.01 0.1 1.0 2.0
#W = 0) (%) 1.65%%* 8.45% 7.45% 5.06% 4.31%
#H = 0) (%) 1.47%*  25.74% 28.68% 36.76% 41.91%
Purity 0.941 0971 0971 0971  0.941
Entropy 0.122 0.071 0.071 0.071 0.144
Number of iterations 566.0 319.0 174.0 134.0 103.0
Computing time 63.4 51.6 29.5 20.9 16.0

*For NMF using divergence-based multiplicative update rules (NMF/DUR)
(Brunet ez al., 2004), the average percentages of the number of very small
non-negative elements that are smaller than 10~ in W and H are presented.
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in more than one factors. One can obtain a sparser W by
imposing strong sparsity constraints on . However, the
sparser W loses the original information and may give us wrong
information that these genes are over-expressed in only one
factor. Consequently, one may inappropriately select these
genes from the sparse W since they are considered as factor-
specific genes. We also tested the probabilistic sparse matrix
factorization (PSMF) (Dueck et al, 2005). PSMF also
produced a sparser W. Moreover, our SNMF/R showed
better performance than PSMF in terms of purity, entropy
and computing speed.

We used the model selection method proposed by Brunet
et al. (2004) to determine the number of factors. We ran NMF
algorithms 30 times to obtain the average connectivity matrix
(i.e. consensus matrix) whose entries reflect the probability that
samples i and j belong to the same cluster. To measure the
dispersion of a consensus matrix C, we defined the dispersion
coefficient (p) as

n

_1
p_n2

n 2
>ax(a-3) ()
1 1

i=l j=

The value of coefficient is p=1 for a perfect consensus matrix
(all entries = 0 or 1) and 0 < p < 1 for a scattered consensus
matrix. After obtaining p, values for various k, we can
determine the number of clusters from the maximal p.
Figure 1 illustrates the determination of the number of clusters
in the CNS tumors dataset. SNMF/R with §=0.01 found
perfect consensus matrices for k£ =2,3,4. In other words,
SNMF/R with B=0.01 generated H matrices that have
the same cluster structure in spite of different random
initializations of W for 2 <k <4. SNMF/R yielded finer
consensus matrices (higher p;) than NMF/DUR for various

k values.
k=2
]
08
06
0.4
02
0 2 2
k=4
q
ik}
06
0.4
02
0 2 3

k=3

10 20 30
k=5

10 20 30

3.5 Biological analysis

Figure 2 presents the matrices W and H obtained from
SNMF/R with §=0.01 on the ALLAML leukemia dataset,
which produced the lowest approximation error |4 — WH|
after five runs with different random initializations of W. A
column vector of the coefficient matrix H has the contributions
of k biological processes to the gene expression of a sample.
From the matrix H, we can recognize that ALL-B is dominated
by the first biological process. ALL-T is almost controlled
by the second biological process. The third biological process is
the major component for AML cluster. The cluster of each
sample was determined by the positions of the largest elements
in columns of H. Only one sample (the 29th sample, AML_13)
was incorrectly assigned to ALL-B.

A row vector of the basis matrix W indicates the contribu-
tions of a gene to the k biological pathways or processes
(i.e. k columns of W). Genes can participate in more than
one biological process. It is beneficial to investigate genes that
have relatively large coefficient in each biological process.
We selected factor-specific genes via the non-negative basis
matrix W e R™* obtained from SNMF/R. We define
gene_score for the ith gene as

1 k

Gene._ score(i) = 1 + ) ; (i, ) log,(p(i, q)),  (16)
where p(i, 2) is a probability that the i-th gene contributes to
cluster €, i.e. p(i, Q) = W(i, Q)/ 25:1 W(i, q). The gene_score is
a real value within the range of [0, 1]. The higher the gene_score
value, the more factor-specific the corresponding gene. By using
the gene_scores obtained from W, we ranked genes and chose
genes whose gene_scores were higher than I + 36, where I and
6 are the median and the median absolute deviation (MAD) of
gene_scores respectively, and the maximal values in the

: '
08
e 0.98p
0.4
0.2 :c: 086¢
s
0 3
S 0mp
]
o
c
13
it
a
0.8 a
0.6 05p
0.4
0.88
0.2

0 2 3 4 5
k

Fig. 1. CNS tumors clustering by SNMF/R with =0.01. (Left) The reordered consensus matrices on the CNS tumors dataset. (Right)
The corresponding dispersion coefficients. The dispersion coefficient drops when k& increases from 4 to 5, indicating a four-cluster split of the data is

more stable than a five-cluster split.
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Fig. 2. W (basis matrix) and H (coefficient matrix) obtained from
SNMF/R with 8=0.01 for the ALLAML leukemia dataset (38 samples:
19 ALL-B, 8 ALL-T and 11 AML) with the 5000 most highly varying
genes.

corresponding rows of W were larger than the median of all
elements in W. Total of 730 genes were selected. The numbers of
genes chosen for three factors were 423 genes for ALL-B cluster,
104 genes for ALL-T cluster and 203 genes for AML cluster.

Some chosen genes dominantly contribute to only single
biological pathway or process. For instance, MB-1 gene
(U05259) is most active in the first process. Transcription
factor 7 (T-cell specific, HMG-box) (TCF7, X59871) is active in
the second process, which is also known as T cell factor-1
(TCF-1). Some genes play a major role in the third process, for
example, Interleukin 8 (IL8, M28130), DF D component of
complement (adipsin) (CFD, M84526), Cystatin C (amyloid
angiopathy and cerebral hemorrhage (CST3, M27891),
Chemokine (C-X-C motif) ligand 2 (CXCL2, M57731), etc.
Chemokine is a type of cytokines that bind to a specific
cell-surface receptor and is critical to the functioning of both
innate and adaptive immune responses. Total of 37 genes
including MB-1, IL8, CFD and CST3 were the same genes as
those found in Golub et al. (1999). Ribosomal protein S3
(RPS3, X57351) simultaneously participates in all three
processes. This is reasonable since RPS3 is a housekeeping
gene and ribosomal protein genes are usually over-expressed
in some cancers. RPS3 encodes a ribosomal protein that is
a component of the 40S subunit, where it forms a part of the
domain where translation is initiated.

We used the Onto-Express (Draghici et al., 2003; Khatri
et al., 2002) to investigate the enrichment of functional
annotations of genes selected in each factor. Onto-Express
starts by reading the input file that contains a list of GenBank
accession numbers, and estimates the statistical significance of
the enrichment of Gene-Ontology (GO) terms in the list with
respect to a reference list. We used a list of all genes in the
dataset as a reference array and hypergeometric distribution.

Table 3. Enrichment of GO categories in genes selected by SNMF/R on
the ALLAML leukemia dataset. We present some significant biological
processes for each factor, whose P-values are less than 0.01

Factor Biological process Number P-value
of genes
Factor 1 Immune response 27 0.0
(423 genes) Transcription (Tr) 47 6.0x107°
Protein biosynthesis 11 3.4x107*
B cell activation 2 6.2x107*
Regulation of transcription (R-Tr) 53 7.6x 1074
R-Tr/RNA polymerase II promoter 13 45%1073
Tr/RNA polymerase II promoter 14 5.6%x107°
Factor 2 T cell activation 2 28x107*
(104 genes) DNA metabolism 2 44x107*
DNA replication 4 1.3x107°
Cell cycle 7 52%x1073
Factor 3 Defense response to bacteria 8 0.0
(203 genes) Inflammatory response 16 0.0
Chemotaxis 12 0.0
Cell-cell signaling 16 0.0
Response to stimulus 11 0.0
Anti-apoptosis 8 1.0x 1073
Cell motility 8 51x107*
Immune response 12 26x%x107°
Apoptosis 8 55%x 1073
G-protein coupled receptor pathway 9 7.5%107°
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Fig. 3. W (basis matrix) and H (coefficient matrix) obtained from
SNMF/R with 8= 1.0 for the CNS tumor dataset (34 samples: 10 classic
medulloblastomas, 10 malignant gliomas, 10 rhabdoids, 4 normal
cerebella) with the 5597 genes.

Table 3 shows the enrichment of GO terms. We presented some
significant biological processes for each factor, whose P-values
were less than 0.01.

Figure 3 illustrates the matrices W and H obtained
from SNMF/R with f=1.0 on the CNS tumors dataset,
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Table 4. Enrichment of GO categories in genes selected by SNMF/R on
the CNS tumors dataset. We present some significant biological
processes for each factor, whose P-values are less than 0.01

Factor Biological process Number of P-value
genes
Factor 1 Serotonin receptor 2 0.0
(42 genes) signaling pathway
Feeding behavior 2 9.0x 1073
Central nervous system 2 22%x1073
development
Factor 2 Potassium ion transport 4 1.8x 1074
(93 genes) Synaptic transmission 5 1.8x107°
Central nervous system 3 3.1x107°
development
Factor 3 Cell adhesion 19 1073
(168 genes) Cell motility 8 9.4x1073
Inflammatory response 8 47%x1073
Factor 4 Potassium ion transport 5 20x 1073
(64 genes) Synaptic transmission 6 1.8x 1074
Central nervous system 3 7.6%x107*
development
Ton transport 6 1.3%107°

which produced the lowest approximation error for five runs
with different random initializations of W. Only one sample
(the 18th sample, Brain_MGlio_8) was incorrectly assigned to
the third cluster (rhabdoids). Our gene selection method
suggested total of 367 genes (clusterl: 42, cluster2: 93, cluster3:
168, cluster4: 64). To more thoroughly characterize sets of
genes dominantly expressed in different factors, we used the
Onto-Express. The number of genes corresponding to each GO
category was compared with the number of genes expected for
the GO category in the Affymetrix HuGeneFL array.
Significant differences from the expected were calculated with
hypergeometric distribution. Table 4 shows biological processes
with a significance of P-value < 0.01. The biological processes
showing significant representations in the first factor were
serotonin receptor signaling pathway, feeding behavior, and
central nervous system development. Serotonin (5-hydroxy-
tryptamine, or 5-HT) is a monoamine neurotransmitter and is
known to regulate human mood, emotion, sleep and appetite in
the central nervous system. Two GenBank accession numbers
(U49516 and M81778) for serotonin receptor signaling pathway
were linked to the same gene: 5-hydroxytryptamine (serotonin)
receptor 2C (HTR2C). The GO category of feeding behavior
seems to be related with childhood brain tumors known as
medulloblastomas. Genes involved in the second factor were
(4 genes: US2155, M81886, M64752, M81181) for potassium
ion transport, (5 genes: X54673, M81886, M64752, M 19650,
L32961) for synaptic transmission, (3 genes: U62801, Z19002,
M93426) for central nervous system development. This second
cluster contains malignant glioma that is a tumor arising from
glial cells. Genes corresponding to cell adhesion, cell motility
and inflammatory response were highly expressed in the third
factor. Genes highly expressed in normal cerebella were
(5 genes: U79245, U33632, U90065, L36069, D79998) for
potassium ion transport, (6 genes: M13577, U92457, L76627,

U18244, M 58583, U79667) for synaptic transmission, (3 genes:
U52969, M 13577, U76421) for central nervous system devel-
opment and (6 genes: S81944, U79245, S95936, U33632,
U90065, L36069) for ion transport. Detailed description of
the clusters of samples and genes selected for each factor via
SNMF/R can be found in supplementary materials. We have
shown that SNMF/R can be used for clustering, cancer class
discovery, gene selection and biological process analysis.

4 CONCLUSION

We present a novel sparse NMF algorithm via alternating
non-negativity-constrained least squares. SNMF/R can be used
for cancer class discovery and gene expression data analysis
since it shows good biclustering performance and provides us
with simple interpretation. This algorithm can be applied to
many practical problems in bioinformatics and computational
biology such as biomedical text mining and gene/protein
microarray data analysis.

ACKNOWLEDGEMENTS

We would like to thank Dr Chris Ding, Dr Jean-Philippe
Brunet, Dr Yuan Gao, Prof. Lars Eldén and Prof. Robert J.
Plemmons for their valuable comments. In particular, we would
also like to thank Prof. Chih-Jen Lin, Prof. Paul Tseng and
Prof. Luigi Grippo for discussions on the convergence
property. This material is based upon work supported in part
by the National Science Foundation Grants ACI-0305543
and CCF-0621889. Any opinions, findings and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

Conflict of Interest: none declared.

REFERENCES

Berry, M.W. et al. (1999) Matrices, vector spaces, and information retrieval.
SIAM Rev., 41, 335-362.

Berry, M.W. et al. (2006) Algorithms and applications for approximate
nonnegative matrix factorization. Comput. Stat. Data Anal., (to appear).
Bro,R. and de Jong,S. (1997) A fast non-negativity-constrained least squares

algorithm. J. Chemometrics, 11, 393-401.

Brunet,J.P. et al. (2004) Metagenes and molecular pattern discovery using matrix
factorization. Proc. Natl Acad. Sci. USA, 101, 4164-4169.

Carmona-Saez,P. et al. (2006) Biclustering of gene expression data by
non-smooth non-negative matrix factorization. BMC Bioinformatics, 7, 78.

Carrasco,D.R. et al. (2006) High-resolution genomic profiles define distinct
clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell, 9,
313-325.

Chagoyen,M. et al. (2006) Discovering semantic features in the literature:
a foundation for building functional associations. BMC Bioinformatics, 7, 41.

Ding,C. et al. (2002) Adaptive dimension reduction for clustering high
dimensional data. In Proceedings of the 2nd IEEE International Conference
on Data Mining. Maebashi, Japan.

Draghici,S. et al. (2003) Onto-tools, the toolkit of the modern biologist:
Onto-Express, Onto-Compare, Onto-Design and Onto-Translate. Nucleic
Acids Res., 31, 3775-3781.

Dueck,D. et al. (2005) Multi-way clustering of microarray data using
probabilistic sparse matrix factorization. Bioinformatics, 21(Suppl. 1),
i144-i151.

1501

210T ‘87 Areniqaq uo 1song £q /310°sjeuInolproyxo’soneurIoyurorq//:dyy woiy popeoumo(


http://bioinformatics.oxfordjournals.org/

H.Kim and H.Park

Gao,Y. and Church,G. (2005) Improving molecular cancer class discovery
through sparse non-negative matrix factorization. Bioinformatics, 21,
3970-3975.

Golub,T.R. et al. (1999) Molecular classification of cancer: class
discovery and class prediction by gene expression monitoring. Science, 286,
531-537.

Gonzales,E.F. and Zhang,Y. (2005) Accelerating the Lee-Seung algorithm for
non-negative matrix factorization. Technical report. Department of
Computational and Applied Mathematics, Rice University.

Grippo,L. and Sciandrone,M. (2000) On the convergence of the block nonlinear
Gauss-Seidel method under convex constraints. Operations Res. Lett., 26,
127-136.

Hoyer,P.O. (2004) Non-negative matrix factorization with sparseness constraints.
J. Machine Learning Res., 5, 1457-1469.

Khatri,P. et al. (2002) Profiling gene expression using onto-express. Genomics, 79,
266-270.

Kim,H. er al. (2005) Dimension reduction in text classification with support
vector machines. J. Machine Learning Res., 6, 37-53.

Kim,P.M. and Tidor,B. (2003) Subsystem identification through dimension-
ality reduction of large-scale gene expression data. Genome Res., 13,
1706-1718.

Lawson,C.L. and Hanson,R.J. (1974) Solving Least Squares Problems,
Prentice-Hall, Englewood Cliffs, NJ.

Lee,D.D. and Seung,H.S. (1999) Learning the parts of objects by non-negative
matrix factorization. Nature, 401, 788-791.

Lee,D.D. and SeungH.S. (2000) Algorithms for non-negative matrix
factorization. In Proceedings of Neural Information Processing Systems,
pp. 556-562.

Li,S.Z. et al. (2001) Learning spatially localized parts-based representations.
In Proceedings IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 207-212.

Maher,E.A. et al. (2006) Marked genomic differences characterize primary and
secondary glioblastoma subtypes and identify two distinct molecular and
clinical secondary glioblastoma entities. Cancer Res., 66, 11502-11513.

MATLAB (1992) User’s Guide, The MathWorks, Inc., Natick, MA 01760.

Pascual-Montano,A. et al. (2006) Nonsmooth nonnegative matrix factorization
(nsNMF). IEEE, Trans. Pattern Anal. Machine Intell., 28, 403-415.

Pauca,V.P. et al. (2004) Text mining using non-negative matrix factorizations.
In Proceedings SIAM International Conference on Data Mining (SDM'04).

Pauca,V.P. er al. (2006) Nonnegative matrix factorization for spectral data
analysis. Linear Algebra and Applications (to appear).

Pehkonen,P. et al. (2005) Theme discovery from gene lists for identification and
viewing of multiple functional groups. BMC Bioinformatics, 6, 162.

Pomeroy,S.L. er al. (2002) Prediction of central nervous system embryonal
tumour outcome based on gene expression. Nature, 415, 436-442.

Tibshirani,R. (1996) Regression shrinkage and selection via LASSO. J. Roy.
Statist. Soc. B, 58, 267-288.

van Benthem,M.H. and Keenan,M.R. (2004) Fast algorithm for the
solution of large-scale non-negativity-constrained least squares problems.
J. Chemometrics, 18, 441-450.

1502

210T ‘87 Areniqaq uo 1song £q /310°sjeuInolproyxo’soneurIoyurorq//:dyy woiy popeoumo(


http://bioinformatics.oxfordjournals.org/

