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Recent reports support a possible future application of gene
expression profiling for the diagnosis of leukemias. However,
the robustness of subtype-specific gene expression signatures
has to be proven on independent patient samples. Here, we
present gene expression data of 34 adult acute lymphoblastic
leukemia (ALL) patients (Affymetrix U133A microarrays). Sup-
port Vector Machines (SVMs) were applied to stratify our
samples based on given gene lists reported to predict MLL,
BCR-ABL, and T-ALL, as well as MLL and non-MLL gene
rearrangement positive pediatric ALL. In addition, seven other
B-precursor ALL cases not bearing t(9;22) or t(11q23)/MLL
chromosomal aberrations were analyzed. Using top differen-
tially expressed genes, hierarchical cluster and principal
component analyses demonstrate that the genetically more
heterogeneous B-precursor ALL samples intercalate with BCR-
ABL-positive cases, but were clearly distinct from T-ALL and
MLL profiles. Similar expression signatures were observed for
both heterogeneous B-precursor ALL and for BCR-ABL-posi-
tive cases. As an unrelated laboratory, we demonstrate that
gene signatures defined for childhood ALL were also capable of
stratifying distinct subtypes in our cohort of adult ALL patients.
As such, previously reported gene expression patterns identi-
fied by microarray technology are validated and confirmed on
truly independent leukemia patient samples.
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Introduction

Acute lymphoblastic leukemias (ALLs) and acute myeloid
leukemias (AMLs) are both heterogeneous diseases.1 Several
subtypes can be discriminated based on cytomorphology,
immunophenotype, and recurrent chromosomal aberrations.
Inspired by the pivotal discrimination of unselected ALL and
AML samples based on their gene expression signatures,2 recent
microarray studies demonstrated the close correlation of
immunophenotypical characteristics and chromosomal aberra-
tions in prognostically important leukemia subtypes to distinct
gene expression patterns.3–7 The specific acute leukemia
subtypes can be classified by gene expression signatures with
exceedingly high accuracies. However, those findings are based
on a limited number of patient samples or training and testing
sets, respectively. More importantly, discriminative genes were
validated based on expression profiles generated in one specific
setting of an individual laboratory. In order to become generally
accepted as an additional diagnostic method, the robustness of
subtype-specific gene expression signatures for leukemia sub-
classification has to be proven on independent patient samples.
We therefore asked the question whether differences in gene

expression identified by other groups can also be used to
differentiate our patient cohort.

Here, we analyzed the gene expression patterns (Affymetrix
U133A microarrays) of our own cohort of 34 adult leukemia
patients comprising precursor B-ALLs with MLL gene rearrange-
ments (n¼ 10), and translocation t(9;22) (n¼ 15) as well as
precursor T-ALLs (n¼ 9). We applied the diagnostic composi-
tions of candidate genes as reported by Yeoh et al7 and
Armstrong et al,3 respectively, to stratify our cases. Thus, the aim
of this study was to validate both the reported differentially
expressed genes and to evaluate the applicability of pediatric
gene expression signatures to predict adult ALL subtypes.

Secondly, we analyzed seven genetically more heterogeneous
adult B-precursor ALL cases not bearing the above-mentioned
chromosomal aberrations. Following a similar strategy, which
was reported by Ferrando et al8 for discovering novel oncogenes
in T-ALL, the more heterogeneous B-precursor ALLs were
projected into an ALL subtype relevant gene space.

Materials and methods

Patient samples

This study included bone marrow samples from n¼ 41 adult
ALL patients at diagnosis representing three distinct ALL
subtypes MLL, BCR-ABL, and T-ALL, as well as heterogeneous
B-precursor ALL cases (supplemental Table 1). All samples were
sent between May 1999 and July 2002 for reference diagnostics
to our laboratory and registered in our leukemia database.9

Samples were received either locally or by overnight mail. Prior
to therapy, all patients gave their informed consent for
participation in the current evaluation after having been advised
about the purpose and investigational nature of the study as well
as of potential risks. The study design adhered to the declaration
of Helsinki and was approved by the ethics committees of the
participating institutions prior to its initiation. The diagnosis was
performed by a combination of cytomorphology, cytogenetics,
fluorescence in situ hybridization (FISH), multiparameter-
immunophenotyping, and molecular genetics. A more detailed
description of patient characteristics and the routine diagnostic
procedures is included as supporting online information.

Microarray experiments and SVM classification

Microarray analyses were performed as previously described.5,6

In order to achieve comparability of differing sets of microarray
expression data, the different Affymetrix U95A chip design and
U133A chip design probeset information was matched. Briefly,
we extracted and combined the significant U95Av2 probesets
specific for MLL, BCR-ABL, and T-ALL subtypes as depicted in
the respective publications. Unique U95Av2 probesets were
then functionally annotated using the November 11, 2002
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NetAffxt Analysis Center descriptions.10 Next, we determined
for those unique U95Av2 probesets their corresponding U133A
counterparts. Genes represented on U95Av2 microarrays are
also represented on U133A microarrays. However, due to the
improvement of oligonucleotide selection for the U133A array
design and the dynamic nature of public databases, probesets of
different array designs are not identical. In order to identify the
names of the probesets that are most closely related to another,
Affymetrix has made comparison spreadsheets available
(www.affymetrix.com). We therefore applied a stringent search
strategy using the ‘Human Genome U95 to Human Genome
U133 Best Match comparison spreadsheet’. This search resulted
in best-match U133A counterparts for the U95Av2 probesets,
which were chosen for the following statistical analyses.

The classification accuracy of a given gene list for a set of
microarray experiments was estimated using Support Vector
Machines (SVMs) as supervised learning technique. In general,
SVMs are trained on a subset of the data, in our study with prior
knowledge using previously reported discriminative gene lists
for the respective leukemia subtypes, and then this trained
model is employed to assign new samples to known groups from
a second and different data set. In our approach, the apparent
accuracy, that is, the overall rate of correct predictions of the
complete data set, was estimated by 10-fold crossvalidation.
This means that the data set was divided into 10 approximately
equally sized subsets; a SVM model was trained for nine subsets
and predictions were generated for the remaining subset. This
training and prediction process was repeated 10 times to include
predictions for each subset.

Subsequently the data set was split into a training set,
consisting of two-thirds of the samples, and a test set with the
remaining one-third. The apparent accuracy for the training set
was estimated by 10-fold crossvalidation (analogous to apparent
accuracy for complete set). A SVM model of the training set was
built to predict diagnosis in the independent test set, thereby
estimating the true accuracy of the prediction model. This
prediction approach was applied both for overall classification
(multiclass) and binary classification (diagnosis X) yes or no).
For the latter, sensitivity and specificity were calculated:

Sensitivity ¼ðnumber of positive samples predictedÞ=
ðnumber of true positivesÞ

Specificity ¼ðnumber of negative samples predictedÞ=
ðnumber of true negativesÞ

More detailed information on U95A–U133A microarray
probeset match strategy, applied statistical methods for data
analysis, and classification, as well as raw gene expression
intensities of diagnostic markers for download is included as
supporting online information.

Supervised identification of differentially expressed
genes

To identify the genes whose expression patterns best distin-
guished among T-ALL, MLL, and BCR-ABL-positive cases in our
data series, we applied the SAM software program.11 Affymetrix
U133A signal intensities were transformed as previously
described and subsequently inputted into the software.5 A
stringent cutoff for significance (tuning parameter delta) for o1
false-positive rated gene was chosen. A complete list of
identified genes including the scaled microarray expression
data is available in the online section.

Data visualization

To assess the similarity of gene expression patterns, we applied
hierarchical cluster analysis and principal component ana-
lyses.12,13 Transformed U133A expression data were analyzed
using the GeneMaths 2.01 software from Applied Maths,
Belgium (cluster algorithm: Ward; selected coefficient: Eucli-
dean distance).

Results and discussion

Genes identified by Yeoh et al and Armstrong et al were
represented on Affymetrix HG-U95 chip design microarrays.
Meanwhile, the newly designed HG-U133A microarray is
available and was utilized for this study. According to the
manufacturer’s information, both oligonucleotide selection (for
further details, see technical note on U133A array design,
www.affymetrix.com) and analysis software (Microarray Suite
5.0) were improved compared to previous GeneChip micro-
arrays.14,15 Additionally, sample assessment, handling and
storage, differing target labeling protocols, microarray scanner
photo multiplier tube settings, and different software algorithms
for analysis of primary expression signal intensities (Microarray
Suite software versions 4.0 vs 5.0) represent parameters that
account for influences comparing the results from different
laboratories. Taking all those pitfalls into account, we chose a
simple strategy to compare different data sets of gene expression
intensities. Briefly, according to Yeoh et al and Armstrong et al,
respectively, all important U95 chip design candidate genes to
discriminate ALL with MLL gene translocation, t(9;22)-positive
ALL (BCR-ABL) and T-ALL were matched to our corresponding
U133A probesets. The raw expression data were transformed as
described (online supplemental material). Then we aimed at
predicting our independent cohort of ALL patients using
common machine learning algorithms (SVM) and a 10-fold
crossvalidation approach.16–18

ALL subtype prediction using St Jude Children’s
Research Hospital childhood ALL predictors

First, we compared our expression data to available expression
profiles (n¼ 78) of St Jude Children’s Research Hospital child-
hood ALL samples (http://www.stjuderesearch.org/data/ALL1).
Yeoh et al had used Affymetrix oligonucleotide microarrays to
analyze the pattern of genes expressed in leukemic blasts from
360 pediatric ALL patients. Distinct expression profiles identi-
fied each of the prognostically important leukemia subtypes,
including T-ALL, E2A-PBX1, BCR-ABL, TEL-AML1, MLL gene
rearrangement, and hyperdiploid 450 chromosomes. They
selected discriminating genes for the various ALL subtypes using
a variety of statistical metrics. We extracted and combined all
significant U95Av2 probesets specific for MLL, BCR-ABL, and
T-ALL subtypes. Next, we determined for those unique U95Av2
probesets their corresponding U133A counterparts.

The data presented here indicate that the genes reported by
Yeoh et al can also separate our cohort of adult ALL patient
samples. Subgroup prediction using SVM learning algorithms
demonstrates the discriminative properties of those candidate
genes specific for T-ALL, BCR-ABL, and MLL subtypes in ALL
(Table 1). A hierarchical cluster analysis of our adult ALL
samples using the preselected subset of genes specific for MLL,
BCR-ABL, or T-ALL confirms the capability of separating three
ALL subtypes based on distinct expression signatures. As
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visualized in Figure 1, samples of each of the three distinct ALL
subtypes cluster together (upper dendrogram). Based on the
given preselected gene expression data, the clustering algorithm
accurately assigns the ALL samples according to their underlying
genetic aberration and immunophenotype, respectively.

ALL subtype prediction using Dana–Farber Cancer
Institute ALL predictors

Secondly, we compared our expression data to available
expression profiles of Dana–Farber Cancer Institute ALL samples
(http://research.dfci.harvard.edu/korsmeyer/MLL.htm). Arm-
strong et al compared the gene expression profiles of leukemic
cells from individuals diagnosed with precursor B-ALL bearing
an MLL gene rearrangement against those from patients
diagnosed with conventional B-precursor ALL that lack this
translocation (n¼ 44 pediatric ALL patients). They had deter-
mined whether there were genes correlated with the presence of
an MLL translocation. Here, we applied that set of published
genes to distinguish between MLL and non-MLL cases in our
cohort of patients. By applying this preselected set of marker
genes, we can robustly distinguish between MLL and non-MLL
leukemias in our cohort of adult patients with high accuracy
(Table 2). As visualized in Figure 2, based on the given
preselected U133A microarray gene expression data, the
clustering algorithm accurately groups our ALL samples into
MLL gene rearrangement positive and MLL gene rearrangement
negative cases.

ALL subtype prediction using overlapping MLL-specific
predictors

Finally, we can identify overlapping genes specific for MLL and
non-MLL in both published data sets and apply this stringent
marker selection to stratify MLL and non-MLL patient samples in
our own cohort. A substantial number of genes characterizing
MLL-positive patient samples are overlapping between Yeoh
et al and Armstrong et al gene lists (see online supplemental
section). In our microarray expression data set, leukemia
classification using SVM learning algorithms demonstrates the
accurate discriminative properties of those MLL-specific candi-
date genes (Table 3). Again, based on the given preselected gene
expression data, the clustering algorithm accurately groups our
adult ALL samples into MLL gene rearrangement positive and
MLL gene rearrangement negative cases (Figure 3). As such, in

both pediatric and adult ALL patient cohorts, MLL gene
rearrangement positive and MLL gene rearrangement negative
cases can be robustly predicted.

Molecular characterization of heterogeneous
B-precursor ALL cases

After obtaining these results, that specific signatures in child-
hood ALLs are also observed in adult ALLs, we were interested
in the expression profiles of heterogeneous B-precursor ALL
cases not positive for t(9;22) or t(11q23)/MLL, respectively.
Therefore, we analyzed in addition seven B-precursor ALL
patients (c-ALL and Pre-B-ALL) to gain new insights into the
molecular features of these cases. This additional cohort
comprised patients who showed a normal karyotype (n¼ 2) or
a variety of different karyotype abnormalities (n¼ 5) (supple-
mental Table 1). A detailed description of respective immuno-
phenotypes and karyotypes is available in the online section.

First an unsupervised analysis, that is hierarchical clustering
and principal component analysis (PCA) of the complete data
set, was performed. However, this analysis did not reveal
informative structures (data not shown).

We therefore applied a supervised analysis using the SAM
(significance analysis of microarrays) software to identify
differentially expressed genes correlated to T-ALL, BCR-ABL,
and MLL cases.11 A selection of the top 510 genes accurately
separated the latter three ALL subtypes in a respective principal
component analysis (Figure 4a). Next, other B-precursor ALL
samples (without BCR-ABL or MLL chromosomal aberrations)
were added to the data set and all cases were projected into the
space of the 510 leukemia subtype relevant genes. As shown in
Figure 4b, the other B-precursor ALL samples (yellow spheres)
intercalate with BCR-ABL-positive samples (red spheres). Thus,
the other B-precursor ALL shares similar characteristics with
BCR-ABL-positive ALLs. This is in line with the definition and
subclassification of B-precursor ALL according to EGIL, which
based on the immunophenotype distinguishes Pro-B-ALL,
common ALL, and Pre-B-ALL.19 Most importantly, both other
ALL cases and BCR-ABL cases belong to the common ALL and
Pre-B-ALL groups, and are thus anticipated to have common
gene expression profiles.

This finding can also be visualized using the hierarchical
clustering technique (Figure 5).12 As shown in Figure 5, due to
inherent similarities in their expression profiles three major
branches of the top dendrogram can be observed. MLL and
T-ALL samples are accurately grouped. The more heterogeneous

Table 1 SVM subtype prediction accuracies using Yeoh et al list of genes

Complete seta Training setb,h Test setc,h

Subgroups Apparent accuracy (%)d Apparent accuracy (%)d True accuracy (%)e Sensitivity (%)f Specificity (%)g

Overall 94 87 100
BCR-ABL 97 87 100 100 100
MLL 97 96 100 100 100
T-ALL 100 91 100 100 100

aThe complete set consisted of 34 samples.
bThe training set consisted of 23 samples.
cThe test set consisted of 11 samples.
dApparent accuracy was determined by 10-fold crossvalidation.
eTrue accuracy was determined by class prediction on the blinded test set.
fSensitivity¼ (the number of positive samples predicted)/(the number of true positives).
gSpecificity¼ (the number of negative samples predicted)/(the number of true negatives).
hThe distribution of cases in the training and test sets are: BCR-ABL (10, 5 cases), MLL (7, 3), T-ALL (6, 3).
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Figure 1 Hierarchical cluster analysis based on U133A microarray expression data of our adult ALL samples (columns) using a subset of genes
(rows) identified to classify pediatric ALL samples (Yeoh et al). A total of 312 unique best-match U133A probesets were identified to represent the
364 unique U95Av2 probesets according to Yeoh et al for the distinction of MLL, BCR-ABL, and T-ALL leukemias. The normalized expression
value for each gene is coded by color, with the scale shown at the lower left (s.d. from mean). Red cells indicate high expression and green cells
indicate low expression. More detailed information on the genes, that is HGNC approved gene symbol and short functional description, is
available as supporting online information.

Table 2 SVM subtype prediction accuracies using Armstrong et al list of genes

Complete seta Training setb,h Test setc,h

Subgroups Apparent accuracy (%)d Apparent accuracy (%)d True accuracy (%)e Sensitivity (%)f Specificity (%)g

Overall 100 100 100
MLL 100 100 100 100 100
non-MLL 100 100 100 100 100

aThe complete set consisted of 34 samples.
bThe training set consisted of 23 samples.
cThe test set consisted of 11 samples.
dApparent accuracy was determined by 10-fold crossvalidation.
eTrue accuracy was determined by class prediction on the blinded test set.
fSensitivity¼ (the number of positive samples predicted)/(the number of true positives).
gSpecificity¼ (the number of negative samples predicted)/(the number of true negatives).
hThe distribution of cases in the training and test sets are: MLL (7, 3 cases), non-MLL (16, 8).
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B-precursor ALL cases are exclusively distributed in the branch
containing all BCR-ABL samples.

Several subtrees in the left dendrogram indicate coexpression
of genes for the distinct ALL subtypes. Subtree 1 contains
genes overexpressed in T-ALL that have also recently
been reported by other microarray studies: TRB, CD3D,
CD3E, CD2, CD6, MAL, LCK, ITM2A, SH2D1A.7,8 A large
number of these genes and additional candidates like

transmembrane adapters (LAT, TRIM), further CD3 complex
signal transducing members (CD3G, CD3Z), CD8A coreceptor,
and ZAP70 tyrosine kinase could be correlated to a functional
role in the class I MHC-restricted T-cell receptor signalosome.20

As such, the identification of these overexpressed T-ALL-
associated candidate genes illustrates the power of gene
expression profiling to elucidate complex pathways in a highly
parallel manner.

Figure 2 Hierarchical cluster analysis based on U133A microarray expression data of our adult ALL samples (columns) using a subset of genes
(rows) identified to classify pediatric ALL with MLL gene rearrangement and non-MLL, respectively (Armstrong et al). A total of 182 unique best-
match U133A probesets corresponded to 217 identified U95A chip design probesets for the distinction of MLL and non-MLL ALL according to
Armstrong et al. The normalized expression value for each gene is coded by color, with the scale shown at the lower left (s.d. from mean). Red cells
indicate high expression and green cells indicate low expression. More detailed information on the genes, that is HGNC-approved gene symbol
and short functional description, is available as supporting online information.

Table 3 SVM subtype prediction accuracies using overlapping MLL-specific genes

Complete seta Training setb,h Test setc,h

Subgroups Apparent accuracy (%)d Apparent accuracy (%)d True accuracy (%)e Sensitivity (%)f Specificity (%)g

Overall 100 100 100
MLL 100 100 100 100 100
non-MLL 100 100 100 100 100

aThe complete set consisted of 34 samples.
bThe training set consisted of 23 samples.
cThe test set consisted of 11 samples.
dApparent accuracy was determined by 10-fold crossvalidation.
eTrue accuracy was determined by class prediction on the blinded test set.
fSensitivity¼ (the number of positive samples predicted)/(the number of true positives).
gSpecificity¼ (the number of negative samples predicted)/(the number of true negatives).
hThe distribution of cases in the training and test sets are: MLL (7, 3 cases), non-MLL (16, 8).
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Subtrees 4 and 5 group genes with a high expression in MLL
gene rearranged positive ALLs. Also, genes that have recently been
reported by other microarray studies were ADAM10, BLK, CD72,
CD79A, CSPG4, HOXA9, HOXA10, IGHM, LGALS1, LMO2,
MBNL, MEF2A, PPP2R5C, PTPRC, and VLDLR.3,7,21 Candidate
genes like IGHM, BLK, and CD79A illustrate the B-lineage
characteristics of these cases, and an observed overexpression of
HOXA cluster members illustrates important components of
leukemogenesis driven by MLL gene translocations.3,22

Subtree 3 mainly contains genes with a functional role in
immune response. BLNK, BRDG1, CD24, MHC2TA, CD74,
HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DRA, HLA-DPB1,
HLA-DQB1, HLA-DRB1, HLA-DRB3, HLA-DRB4, and
TNFRSF14 demonstrate similar patterns for BCR-ABL, MLL-
positive, and the more heterogeneous B-precursor cases. In
detail, major components of the class II MHC-restricted antigen
presentation machinery are consistently overexpressed com-
pared to T-ALL samples: MHC2TA, interacting with MHC class

Figure 3 Hierarchical cluster analysis based on U133A microarray expression data of our adult ALL samples (columns) using an overlapping
subset of genes (rows) identified to classify pediatric ALL with MLL and non-MLL, respectively. A comparison of both Yeoh et al and Armstrong et al
published gene lists resulted in a number of n¼57 overlapping U95A chip design probesets reported to be correlated with pediatric ALL-carrying
MLL gene aberrations. A total of 55 unique best-match U133A probesets corresponded to those 57 identified U95 chip design probesets. The
normalized expression value for each gene is coded by color, with the scale shown at the lower left (s.d. from mean). Red cells indicate high
expression and green cells indicate low expression. More detailed information on the genes, that is HGNC-approved gene symbol and short
functional description, is available as supporting online information.

Figure 4 (a) Principal component analysis of T-ALL (n¼9), MLL (n¼ 10), and BCR-ABL (n¼15) patients. The leukemia samples are plotted in a
three-dimensional space using the three components capturing most of the variance in the data set. Each patient sample is represented by a color-
coded sphere. Adult ALL cases are accurately separated based on 510 differentially expressed genes identified using the SAM software package. (b)
Principal component analysis of T-ALL (n¼9), MLL (n¼ 10), BCR-ABL (n¼ 15), and heterogeneous precursor B-lineage B-ALL (n¼7) patients. The
leukemia samples are plotted in a three-dimensional space using the three components capturing most of the variance in the data set. In all, 510 top
differentially expressed genes have been identified using the SAM software package in a supervised approach considering the three entities T-ALL,
MLL, and BCR-ABL. Each patient sample is represented by a color-coded sphere. Heterogeneous precursor B-lineage ALL samples (yellow spheres)
intercalate with BCR-ABL-positive samples (red spheres) when projected in this ALL subtype-specific gene space.
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II as well as HLA-DM and CD74 promotors, is a highly regulated
transactivator governing all spatial, temporal, and quantitative
aspects of MHC class II expression.23 The chaperone CD74
(invariant chain) blocks the peptide-binding site of newly
synthesized MHC class II molecules by its so-called CLIP
fragment.24 HLA-DM molecules catalyze the exchange of CLIP
for antigenic peptides derived from endosomal compartments.

An interesting cluster of genes is organized in subtree 2,
which is enlarged in Figure 6. A total of 26 probesets
demonstrate similar expression signatures for both BCR-ABL-
positive and the more heterogeneous B-precursor cases. All
candidate genes are consistently overexpressed in these cases
compared to T-ALL and MLL samples. In detail, LGMN
(legumain), also called asparaginyl endopeptidase (AEP), has
been reported to be critically involved in the processing of
antigens for MHC class II presentation.25 More recently, a
prodrug strategy incorporating a legumain-cleavable peptide
substrate onto doxorubicin was developed.26 A receptor tyrosine
kinase activated by collagen, DDR1 (discoidin domain receptor
1), is represented by three probesets. In a recent report, high-

grade primary brain and metastatic brain tumors showed
unequivocal, intense DDR1 expression within the majority of
tumor cells.27 CD52, an excellent target for complement-
mediated lysis and antibody-dependent cellular cytotoxicity,
has been identified by two probesets. Several clinical trials have
already been carried out with Alemtuzumab (CAMPATH-1H), a
humanized monoclonal antibody directed against the CD52
antigen of lymphocytes.28 A cytokine-like protein (C17), retinoic
acid induced gene (RAI14), or hypothetical protein LOC54103
represent further overexpressed genes. However, no functional
gene annotation is available yet.

A similar distribution of the adult ALL samples can be
observed when these cases were projected into the gene
expression space of markers previously reported from Yeoh
et al to discriminate six distinct pediatric ALL subtypes, that is
T-ALL, E2A-PBX1, BCR-ABL, TEL-AML1, MLL, and hyperdiploid
leukemias.7 As anticipated, genetically heterogeneous samples
again cluster together with BCR-ABL cases, confirming our
previous observation. They do not show up as an independent
fourth distinct cluster separated from adult T-ALL, MLL, and

Figure 5 Hierarchical cluster analysis of T-ALL (n¼9), MLL (n¼10), BCR-ABL (n¼15), and heterogeneous precursor B-lineage B-ALL (n¼7)
patients. This analysis is based on 510 differentially expressed genes, which have been identified using the SAM software package in a supervised
approach considering the three entities T-ALL, MLL, and BCR-ABL. The normalized expression value for each gene is coded by color, with the
scale shown at the lower left (s.d. from mean). Red cells indicate high expression and green cells indicate low expression. A more detailed
information on the genes, that is HGNC-approved gene symbol and short functional description, is available as supporting online information.
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BCR-ABL-positive leukemias. The observed dendrogram struc-
ture of a hierarchical cluster analysis, as well as a 3D plot from a
principal component analysis, were added to the supplemental
section (Supplemental Figure 1). Thus, signatures, previously
reported to correlate with E2A-PBX1, TEL-AML1, and hyperdi-
ploid childhood leukemias could not separate these two groups.
This is not unexpected as none of our heterogeneous B-
precursor ALL showed any of these genetic characteristics.

Conclusions

Taken together, our observations provide evidence that genes
suitable for classification and prediction of childhood ALL are
also capable of distinguishing the respective adult ALL
subentities. This is a promising finding, as new molecular
targets in common genetic subtypes of acute leukemias
identified by microarray technology might be common thera-
peutic targets for both age groups of patients. Previously
reported gene expression signatures identified by global genome
expression analysis are validated and confirmed on a truly
independent patient cohort. Despite influencing parameters
such as technical equipment, different sample handling, routine
diagnostic procedure, and target preparation for expression
analysis by unrelated personnel in an independent diagnostic
laboratory, it was demonstrated that ALLs can be classified and
predicted based on microarray technology. A prospective
validation of diagnostic compositions of candidate genes in

clinical trials using less costly, low-density microarrays is
warranted. Alternatively, a more minimalized set of discrimina-
tive genes may be tested in multiplex-PCR-based assays.
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