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The identification of protein—protein interaction sites is
essential for the mutant design and prediction of protein—
protein networks. The interaction sites of residue units
were predicted using support vector machines (SVM) and
the profiles of sequentially/spatially neighboring residues,
plus additional information. When only sequence informa-
tion was used, prediction performance was highest using
the feature vectors, sequentially neighboring profiles and
predicted interaction site ratios, which were calculated by
SVM regression using amino acid compositions. When
structural information was also used, prediction perform-
ance was highest using the feature vectors, spatially neigh-
boring residue profiles, accessible surface areas, and the
with/without protein interaction sites ratios predicted by
SVM regression and amino acid compositions. In the latter
case, the precision at recall = 50% was 54-56% for a
homo-hetero mixed test set and >20% higher than for
random prediction. Approximately 30% of the residues
wrongly predicted as interaction sites were the closest
sequentially/spatially neighboring on the interaction site
residues. The predicted residues covered 86-87% of the
actual interfaces (96-97% of interfaces with over 20
residues). This prediction performance appeared to be
slightly higher than a previously reported study.
Comparing the prediction accuracy of each molecule, it
seems to be easier to predict interaction sites for stable
complexes.

Keywords: accessible surface area/hydrophobicity/interaction
site ratio/protein interaction site/support vector machine

Introduction

Proteins perform a biological function by interacting with other
proteins, compounds, RNA and DNA. Understanding the
characteristics of interfacial sites is a requirement for under-
standing the molecular recognition process. In addition, the
ability to predict interfacial sites is important in mutant design
and drug design. The physical and chemical aspects of the
protein interface have been investigated in a number of studies.
As a result, general interfacial sites are widely recognized as
being more hydrophobic, flat and protruding than outer
surfaces (Chothia and Janin, 1975; Argos, 1988; Jones and
Thornton, 1995; Tsai et al., 1997). Analysis of a number of
complexes also showed that small interfaces contained abun-
dant polar residues (Glaser et al., 2001). However, since these

characteristics differ between families and/or biological func-
tions, Jones and Thornton (1996) proposed two kinds of
complexes: ‘permanent’ and ‘transient’. A ‘permanent com-
plex’ describes multi-chain proteins, and a ‘transient complex’
describes molecules that form a complex only while perform-
ing a biological task, such as signal transduction molecules. It
was found that ‘permanent complexes’ are more hydrophobic
and closely packed in interfaces but less planar, while
‘transient complexes’ are polar and rich in charged groups
(Jones and Thornton, 1996, 1997a; Conte et al., 1999). More
specifically, a ‘strong transient complex’ is characterized as
being larger, less planar, and sometimes more hydrophobic
than a ‘weak transient complex’ (Nooren and Thornton, 2003).
It is also reported that the conformation of a ‘strong transient
complex’ often changes considerably with association/dis-
sociation (Nooren and Thornton, 2003). In addition, different
ratios for the amino acid composition of whole sequences were
found between homo oligomer (homo permanent complexes),
hetero oligomer (hetero permanent complexes), homo com-
plexes (homo transient complexes) and hetero complexes
(hetero transient complexes). This suggests that predicting
interfacial type on the basis of amino acid composition is
possible to some extent (Ofan and Rost, 2003a).

Several methods of predicting interaction sites have been
reported including non-automated (Korn and Burnett, 1991)
and automated methods (Young et al., 1994) based on the
hydropathy of the structural surface. The surface is divided
into patches and the chemical and physical characteristics of
the patches, such as hydrophobicity, flatness, protrusion index,
and accessible surface area, are calculated. The interfacial
patch is predicted using the sum of these values (Jones and
Thornton, 1997b). A prediction method using sequence
profiles, with/without the accessible surface area, and neural
networks for machine learning has also been reported
(Zhou and Shan, 2001; Fariselli et al., 2002; Ofran and Rost,
2003b). Another study reported that interfacial sites can be
predicted using the hydrophobic moment and averaged
hydrophobicity, although the application of this method is
limited (Gallet er al., 2002). Interfacial prediction has been
found to be possible to some extent. However, many of the
results reported have been obtained using limited, manually
selected data or preliminary predictions without recall and
precision or without consideration of unpredictable protein
types. It is therefore unclear which types of protein are
predictable or unpredictable and how precisely their interaction
sites can be predicted.

In this study, interfacial sites were predicted using the
profiles of spatially/sequentially neighboring sequences and/or
surface patches, plus additional information in both hetero and
homo complexes. Support vector machines (SVMs) were used
in this prediction because they are known to be a powerful
technique for making binary decisions. We also discuss
predictable and unpredictable interaction sites.
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Materials and methods

Each residue was predicted to belong to a particular interaction
site on the basis of the profiles of sequentially/spatially
neighboring residues and/or surface patch characteristics.
SVMs were used as a learning system for these parameters.
Interaction site residues and non-interaction residues were used
as positive and negative data, respectively.

Collection of data sets

Complexes consisting of multiple protein sequences in the
Protein Data Bank (PDB, December 2001) were extracted and
those with a resolution of <3.5 A were selected. Proteins that
contact (the distance between any heavy atoms of contacting
proteins was within 0.5 nm) other, dissimilar proteins (the
threshold of E-value of BLAST = 0.01), were extracted as
hetero complex proteins and other contacting proteins were
collected as homo complex proteins. Small molecules with
<100 residues were removed. From these data, sequence/
structure redundancy for all sequence pairs was removed by
BLAST using a 25% similarity cut-off of >100 amino acid
residue regions iteratively. These values correspond to the
‘gray zone’ of structure preservation (Rost, 1999).

As a result, 324 protein sequences of hetero complexes and
674 protein sequences of homo complexes were obtained.
Although all interaction sites were considered, as described
below, not all the proteins that comprised the complexes were
included in this set to remove sequence redundancy. For the
training/testing set for those complexes, hetero complexes with
<20 interfacial residues and homo complexes with <30
interfacial residues were not used to exclude, as far as possible,
complexes that did not form complexes in vivo (that is, false
positive). Although this threshold/method may not be enough
to remove false-positive complexes, the automatic complete
removal of them is quite difficult. As a result, 271 proteins were
used as hetero complex validation data and 292 proteins were
used as homo complex validation data. Changing these residue
cut-off numbers does not significantly affect the prediction
performance. The data set used is available as supplementary
data at PEDS online.

Definition of protein interaction sites

Surface residues, interaction site residues and inside residues
were defined as follows. The solvent accessible surface area
(ASA) of each residue was calculated using the DSSP program
(Rost and Sander, 1993). The maximum area of each amino
acid (X) was calculated using the oligomer GGGXGGG. When
the ratio of the surface area of each residue to the maximum
area exceeded 10%, it was defined as a surface residue and the
remainder was defined as an inside residue. Surface residues
were defined as interaction site residues when the distance
between any heavy atoms of the interacting proteins was within
0.5 nm. This definition is similar to that of Zhou and Shan
(2001). By this definition, ~20% of all residues were defined as
interaction sites.

Sequence profiles

Sequence profiles were calculated using PSI-BLAST (Altschul
et al., 1997). The third iteration alignment, or the converged
alignment with the condition E-value <0.001 and 2 < 0.001 (h
is the E-value which was used to create a position-specific
matrix) was converted into a sequence profile. A profile
consisted of amino acid + insertion + deletion + unknown (X) =
23 dimensions for a position. To include the environment of the
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residue, the profiles of sequentially neighboring residues with n
windows were also included in the vector. Equation (1) is an
example of a vector with 11 windows. Instead of using the
profiles of sequentially neighboring residues, we also used the
profiles of spatially neighboring residues. In this case, the
vector components were arranged in ascending order according
to the distance between the spatially neighboring residues. (We
called the former, sequentially neighboring residue profiles,
and the latter, spatially neighboring residue profiles.)

Vnz(pn7519~-'7pn75239'~~9pnl’--"p7123’--"pn+51,"~7
Pn +523) (1)
and
Py =
Y ZNnj
J

where N,; is the number of amino acids j in position 7.

Support vector machines

SVMs are supervised learning algorithms proposed by Vapnick
(1995). Data examples labeled as positive or negative are
projected into a high-dimensional feature space using a kernel,
and the hyper-plane in the feature space is optimized to
maximize the margin between the positive and negative
examples.

We used SVMTorch II (http://old-www.idiap.ch/learning/
SVMTorch.html). Only user-defined kernel subroutines were
implemented. In this application, linear, polynomial, sigmoid
and Gaussian kernels and their sum and product kernels are
used. The Gaussian kernel [exp(-la — bl?%/std?)] (std is a
parameter) gave the best performance and we therefore report
only the results for the Gaussian kernel and its sum and product
kernel. In the following discussion, the regularization factor C
was fixed at 100 and only the parameter ‘std’ was changed.

Since the SVM optimizes the success ratio for whole
sequences but does not optimize the recall and precision
(defined below) of interaction sites, prediction performance
depends on the ratio of negative and positive data in the
learning process. According to the definition, only ~20% of a
whole sequence is interaction site residues. If all data are used
as learning samples, the prediction result at the default
discriminant value (= zero) shows high precision and low
recall. Accordingly, half the negative data (non-interaction site
residues) were randomly removed from the learning sets when
whole sequence residues were used as feature vectors, while a
third of the negative data was randomly removed when only
surface residues were used as feature vectors in Table I
(discussed later). Basically, when the recall-false positive/
(false positive + true positive) [recall-FP/(FP + TP)] curves
were generated, all the data were used.

Since there were sufficient data for homo-hetero mixed
validation (if 3-fold cross-validation was used, the learning
time is too long), leave 375 (= 2/3X563) cross-validation was
used. For homo and hetero complex validation, 5- and 3-fold
cross-validation were used, respectively. In predicting inter-
action site ratios, 10-fold cross-validation was used for mixed
homo and hetero validation data. When no explicit statement is
made, ‘homo-hetero mixed data’ were used.

For homo-hetero mixed validation data, ‘filtering by boost-
ing’ (Schapire, 1990), which converts a weak learning
algorithm into a stronger learning machine, was also applied.
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Table I. The recall and precision of each feature vector

Data-type: feature vector?

Recall® (%) Success rate at

surface® (%)

Success rate
at whole
sequenced (%)

Precision® (%)

Mix: whole sequenceg (window 11)

Mix: whole sequence + boosting by filtering (window 5)

Mix: whole sequence + actual interaction site ratio (window 5)

Mix: whole sequence + predicted interaction site ratio (window 5)

Mix: sequence at surface (window 11)

Mix: sequence + ASA (window 9)

Mix: spatially neighboring' + ASA (15 residues)

Mix: spatially neighboring + ASA + actual interaction site ratio (9 residues)

Mix: spatially neighboring + ASA + predicted interaction site ratio (9 residues)

Mix: sequence + ASA + flatness (window 11)
Hetero: sequence + ASA (window 9)i

Homo: sequence + ASA (window 9)
Hetero-mixed: sequence + ASA (window 9)!
Homo-mixed: sequence + ASA (window 9)™

28.8 (22.3)h 26.4 (20.0) 69.1 (66.6) 63.5 (60.9)
28.8 (21.9) 27.0 (20.0) 69.9 (66.9) 63.7 (61.0)
35.2 (20.0) 35.8 (20.0) 74.0 (68.0) 68.0 (61.8)
28.3 (18.3) 30.7 (20.0) 72.4 (69.0) 65.6 (62.7)
39.6 (30.4) 40.2 (30.4) - 63.2 (57.6)
41.5 (23.3) 54.9 (30.4) - 71.4 (60.5)
44.6 (24.5) 56.1 (30.4) - 71.0 (60.0)
50.4 (26.8) 58.1 (30.4) - 73.5 (59.1)
42.8 (22.3) 57.8(30.4) - 73.3 (60.9)
432 (24.3) 55.8 (30.4) - 70.1 (60.1)
45.0 (26.9) 55.9 (32.8) - 69.7 (57.9)
40.3 (21.0) 55.8 (28.9) - 73.4 (62.2)
42.4 (24.1) 54.9 (32.8) 71.2 (58.9)
38.4 (21.2) 55.0 (28.9) 72.0 (62.1)

“Feature vector = input feature vector of SVM.
PRecall = True_Positive/(True_Positive + False_Negative).
Precision = True_Positive/(True_Positive + False_Positive).

d‘Success rate at whole sequence’ and ©‘success rate at surface’ mean the average per residue prediction (interaction site or non-interaction site) accuracy
[= True_Positive + True_Negative)/(the total number of residues)] of whole sequence and sequence at surface, respectively.
fMix = hetero complex + homo complex, the mixed data set was learned and tested.

&Sequence = sequentially neighboring residue profiles.

hValues in parentheses are randomly predicted ones. The recall of random prediction is calculated as the total predicted residue rate (the total number of
predicted residues as interaction sites by SVM/the total number of residues) and the precision of random prediction is calculated as the interaction site ratio of
test sets (the total number of interaction site residues/the total number of residues). The random success rate is calculated as [1 —
random_precision(whole_sequence or surface)]X (1 — random_recall) + random_precision Xrandom_recall.

iSpatially neighboring = spatially neighboring residue profiles.

iHetero and *homo: hetero and homo data sets were learned and tested, separately.

Hetero-mixed and ™homo-mixed: the mixed data set was learned and tested. The precision and recall in each complex type were calculated separately.

This consisted of the following steps. First, the SVM learned
using N samples (abbreviated as SVM-1). Using SVM-1 and a
random number, N/2: wrongly predicted (false negative or
false positive) samples and N/2: correctly predicted (true
positive or true negative) samples were gathered. They became
the learning set for SVM-2 (for details see Schapire, 1990).
Next, the N samples that were predicted differently by SVM-1
and SVM-2 were collected and these became the learning set
for SVM-3. The predictions were decided according to the
majority of SVM-1, SVM-2 and SVM-3 predictions. Using this
method, 10-fold cross-validation was carried out. The number
of learning samples for each SVM with boosting (10-fold
cross-validation) was set to be the almost the same as that for
SVMs without boosting (leave 1/3 data set cross-validation).

Results and discussion

Predicting interaction sites from sequences

In this section, we discuss how accurately interaction sites can
be predicted using only sequence information.

Sequence profiles of sequentially neighboring residues. First,
we investigated the performance of the method for predicting
interaction sites using the sequence profiles and the profiles of
sequentially neighboring residues as feature vectors. In each n-
window length, the feature vectors were 23 Xn dimensions. A
Gaussian kernel was used and the parameter ‘std’” was set to be
sqrt(n/13) X5 to account for the dimensions of the vector.
Although 3—-15 window length profiles were tried, the effect of
this window length was quite small. This trend was also

observed in other vectors combined with other features. The
results for the optimum window length are discussed below.

The results for the recall and precision of window length 11
are summarized in Table I as the feature vector, ‘whole
sequence’. Here, a true positive means that a residue was
correctly recognized as an interaction site, while a false
negative means it was erroneously recognized as a non-
interaction site. As is discussed in previous reports (Jones and
Thornton, 1997b; Zhou and Shan, 2001), there is a possibility
of the additional interaction surface existence even if high-
resolution data are used. However, it is quite difficult to find
them. The actual false-positive rate is probably lower than our
evaluation. The numbers in parentheses show the results of
random prediction. The recall of random prediction is the total
predicted residue rate (the total number of predicted residues as
interaction sites by SVM/the total number of residues) and the
precision of random prediction is the interaction site ratio of
test sets (the total number of interaction site residues/the total
number of residues). Although the predicted accuracy was >6%
higher than that of random prediction, this level of accuracy
still seems too low for practical application.

Although SVMs are known to require small learning sets,
there are a wide variety of interaction sites. A shortage of
learning samples is likely to reduce prediction performance. To
shorten CPU time and ensure effective learning, ‘boosting by
filtering’ was also applied. Figure 1 shows the recall-FP/
(FP+TP) curves for sequentially neighboring profiles with a
window length of 5 for a whole sequence and their ‘boosting by
filtering’. (To reduce CPU time, we used a window length of 5
instead of 11.) As shown in Figure 1, prediction performance
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Fig. |. The recall-FP/(FP+TP) curves of ‘sequentially neighboring profiles
(window length 5)” and with boosting. The data set is a mix of hetero—homo.

was slightly improved by ‘boosting by filtering’, especially at a
low FP rate. Although the same performance could be achieved
using just a single SVM with more learning samples, from the
viewpoint of CPU time, ‘boosting by filtering’ seems useful.
The precision of window length 5 + boosting is summarized in
Table 1 (‘whole sequence + boosting by filtering’).
Unfortunately, since the data set was relatively small, its
application to feature vectors with structural information was
not carried out in the work described below.

The effect of interaction site ratio. Previous studies showed the
different characteristics of interaction sites depending on the
interaction surface area (Conte et al., 1999; Glaser et al., 2001).
In the small interaction surface area, the hydrophobicity of the
interaction sites become closer to or lower than that of the non-
interacting surfaces. This is likely to be the reason for the
difficulty in predicting interaction sites. In order to consider
this trend, interaction site ratio (= ‘number of interaction site
residues’/‘protein sequence length’) was added to the sequen-
tially neighboring sequence profiles feature vectors. (As a
reference, the relationship between the hydrophobicity of
interaction/non-interaction and the interaction site ratio is
shown in Supplementary figure 1S available at PEDS online.)
The results are summarized in Table I as ‘whole sequence +
actual interaction site ratio’. The kernel was set as K [feature
vector = sequentially neighboring profiles + interaction site
ratio; Gaussian kernel with std = 5Xsqrt(n/13)]. As shown in
Table I, this improved the prediction performance. This
indicates that taking the interaction ratio into account helps
to explain whether or not the residue in focus is on the
interaction site. However, in most cases, the interaction site
ratio is not known in advance. Accordingly, the prediction of
interaction sites using the sequence information is discussed in
the next section.

Prediction of the interaction site ratio. To predict the
interaction site ratio, whole sequence amino acid distributions
(numbers of each amino acid residues) were used as feature
vectors and a Gaussian kernel with std = 40 and C = 200 was
used. Figure 2 shows the relationship between the predicted
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Fig. 2. Relationship between actual interaction site ratio and predicted
interaction site ratio.

and actual interaction site ratios. The standard deviation
between the predicted and actual interaction site ratio was 0.15,
0.13 and 0.15 for the mixed, hetero and homo data, respect-
ively. The Pearson product-moment correlation coefficient
between actual interaction site ratio and predicted interaction
ratio was 0.52, 0.51 and 0.56 for the mixed, hetero and homo
data, respectively. Although the accuracy was not high, it was
possible to predict the interaction site ratios to some extent
using only the amino acid slant. When continuous amino acid
usage (400 dimensions) was used, prediction accuracy did not
improve (data not shown). This prediction method may be
useful for detecting protein—protein interaction slants due to
experimental features.

The effect of predicted interaction site ratios. Since the data set
was quite small, 9/10 of the data set was used for the prediction
of the interaction site ratio; 1/3 of the data set (included in the
9/10 of the data set) was used for SVM learning for interaction
site prediction using the actual interaction site ratio and
sequentially neighboring profiles. The remaining 1/10 of the
data was used for the test set, i.e. the interaction site ratio for
1/10 of the data was predicted by SVM regression first, and this
information was then used to predict the interaction sites.
These steps were repeated 10 times. The recall and precision
are summarized in Table I as ‘whole sequence + predicted
interaction site ratio’. The recall-FP/(FP+TP) curves of
‘sequentially neighboring profiles’, ‘sequentially neighboring
profiles + actual interaction site ratio’ and ‘sequentially
neighboring profiles + predicted interaction site ratio’ are
plotted in Figure 3. Although the recall-FP/(FP+TP) curve for
the predicted interaction site ratio is lower than that for the
actual interaction site ratio, it is higher than that for only
sequence profiles. Since the data set was small, the learning for
interaction site prediction was carried out using the actual
interaction site ratio and the test was carried out using the
predicted interaction site ratio. If the predicted interaction site
ratios are used for the learning steps, the performance may be
improved.

Prediction of interaction sites from structural information
Sequence profiles of sequentially neighboring residues and

ASA.  Since the accessible surface area is useful for
understanding the environmental state of an amino acid
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Fig. 3. The recall-FP/(FP+TP) curves of ‘sequentially neighboring profiles +
actual interaction site’ (diamonds), ‘sequentially neighboring profiles +
predicted interaction site’ (—) and ‘sequentially neighboring profiles’ (X). All
feature vectors were calculated by window length 5.

residue, the sequence profile of sequentially neighboring
residues and the relative accessible surface areas [ratio of
surface area of each residue to maximum area (%); see
Materials and methods, henceforward abbreviated to ASA] as
calculated by the DSSP (Rost and Sander, 1993) were used as
feature vectors. In each n-window length test set, the dimen-
sions of the feature vectors were 23 Xn+n. The kernel was set at
K [feature vector = sequence profiles; Gaussian kernel with std
= 5Xsqrt(n/13)] XK [feature vector = ASA; Gaussian kernel
with std = 5Xsqrt(n/13)]. The recall and precision are given in
Table I (‘sequence + ASA’). Since the total success rate for
molecular surfaces was optimized by machine learning, the
recall was low in Table I. When the discriminant value (default
was zero) of the SVM was changed, the recall rose and the
precision fell. For example, when the recall was 50.0%, the
precision became 49.0% for homo—hetero mixed types. Many
of the residues wrongly predicted as interaction sites were
located at sites neighboring interaction sites; 32.1% of wrongly
predicted residues at recall = 50% for mixed types were the
closest spatially/sequentially neighboring residues of inter-
action site residues.

The effect of ASA was remarkable compared with the results
obtained using the feature vector of sequence profiles for
surfaces in Table I (‘sequence at surface’). When only ASAs
were used as feature vector components, recall and precision
were lower than random predictions. This indicates that a
combination of sequence profiles and ASA is required. In
Table I, ‘hetero’ and ‘homo’ show separate training results,
while ‘hetero-mixed’ and ‘homo-mixed’ show mixed training
results. The prediction accuracy changes only slightly, even if
hetero and homo complexes are learned individually. The trend
is also observed in other feature vectors. This indicates that the
interaction site characteristics for hetero and complex are
almost the same.

If the ASA is predicted by regression of the SVM using
sequence profiles, the prediction of interaction sites using
‘predicted ASA + sequence profiles’ is also possible using only
sequence information. However, since the ASA prediction
performance is quite low (if std = 40 and window length 5

Prediction of protein interaction sites
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Fig. 4. The recall-FP/(FP+TP) curves of ‘spatially neighboring profiles +
ASA + actual interaction site ratios’ (X), ‘spatially neighboring profiles +
ASA + predicted interaction site ratios’ (—) and ‘spatially neighboring
profiles +ASA’ (triangles). All feature vectors were calculated by spatially
neighboring 9 residues.

profiles are used, the mean absolute error is 22.3, and the
squared standard deviation is 1416 in percent units), the
improvement in prediction performance is similar to the effect
of ‘boosting by filtering’, as shown in Figure 1 (data not
shown).

Sequence profiles of spatially neighboring residues and ASA.
When the sequence profiles of spatially neighboring residues
are used instead of those of sequentially neighboring residues,
the prediction performance is slightly improved. The recall and
precision are summarized in Table I as ‘spatially neighboring +
ASA’. When recall was 50.0%, precision was 54.2% for mixed
types. The corresponding recall and precision given by
randomly predicted values for mixed types were 28.0 and
30.4%, respectively. Of the wrongly predicted residues for
mixed types, 28.1 and 37.1% were located within the closest or
next closest sequentially/spatially neighboring residues of the
interaction sites, respectively. These predicted interaction sites
comprised 86.0% of the actual interfaces (1169 interfaces). If
interfaces consisting of <20 residues were ignored, the
predicted interaction sites comprised 96.5% of the actual
interfaces (626 interfaces). Given these values, this method
seems to be useful for actual prediction.

The effect of interaction site ratio. As discussed above, the
interaction site characteristics depend on the interaction site
ratios and the addition of interaction site ratios to feature
vectors improves prediction performance. Also in the case of
feature vectors with spatially neighboring profiles + ASA, the
prediction performance is increased by the addition of the
actual interaction site ratio. The results are summarized in
Table I as ‘spatially neighboring + ASA + actual interaction
site ratios’ (hereafter abbreviated as ‘actual interaction site
ratio’). However, in most cases, the interaction site ratio is not
known in advance, and the interaction site ratios were also
predicted by SVM regression and amino acid compositions as
described above. The 10-fold cross-validation using predicted
interaction site ratio was carried out similarly to previous

169



A.Koike and T.Takagi

100
20 Inlteractlion
site ratio
Lt 0-0.1
g 60 0.1-0.2
'E
o *0.2-0.3
w
£ 40 = * 0.3-0.4
* 4=
20 e e
0 i 1 i
0 20 40 (1] &0 100
Recall

Fig. 5. The precision and recall of each complex (feature vector: spatially
neighboring profiles + ASA of 15 residues).

section (see section ‘The effect of predicted interaction site
ratios’). The results are summarized in Table I as ‘spatially
neighboring + ASA + predicted interaction site ratios’ (here-
after abbreviated as ‘predicted interaction site ratio’). Their
recall-FP/(FP+TP) curves are plotted in Figure 4. When
feature vectors, including actual interaction site ratios, were
taken into account, the increase in recall was notable,
especially at a low FP rate. When predicted interaction site
ratios were used, the prediction performance worsened com-
pared with using the ‘actual interaction site ratios’, but was
slightly higher than using the ‘predicted interaction site ratio’
at a low FP rate (~30-40%). Unfortunately, the effect of the
predicted interaction site ratio was smaller than that of
‘sequentially neighboring profiles’, as discussed above. The
precision of the ‘actual interaction site’ at recall = 50%
(random 26.1%) was 58.3% (30.4%), while that of the
‘predicted interaction site’ at recall = 50% (random 25.5%)
was 56.0% (30.4%). They made up 85.5% (93.5% of interfaces
with over 20 residues) (actual interaction site) and 86.7%
(97.4%) (predicted interaction site) of the actual interfaces
(1169 interfaces), respectively. The 32.7 and 28.7% of wrongly
predicted residues for ‘actual interaction sites” and ‘predicted
interaction sites’ were the closest spatially/sequentially neigh-
boring residues, respectively.

If there are sufficient data, it may be better to use the
predicted interaction site ratio for the learning steps. The larger
data set will probably improve the prediction performance for
interaction site ratios and interaction sites.

Other characteristics

To improve prediction performance, we examined the influ-
ence of various parameters. To use information about neigh-
boring residues, a patch consisting of a residue and the 10
closest residues was considered. Patch flatness, as defined by
Jones and Thornton (1997a) (i.e. the root-mean-square devi-
ation of 11 residues from the least squares plane of 11 residues)
was added to the feature vectors of the sequentially neighbor-
ing residue profiles + ASA. The results are summarized in
Table I (‘sequence + ASA + flatness’). The least squares
method of finding the surface, which minimizes the sum of the
squared distance, from 11 residues in the patch was resolved
using Octave (http://www.octave.org). The results were
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Fig. 6. (a) Relationship between interaction site ratio and precision—
random_precision of each protein (feature vector: spatially neighboring
profiles + ASA of 15 residues). The dark color shows higher hydrophobic
interfaces and the light color shows less hydrophobic (hydrophilic)
interfaces. The possible range of precision-random_precision (i.e. 1, random
precision; 0, random precision) is indicated by the dotted line.
(b) Relationship between interaction site ratio and recall-random_recall of
each protein sequence. The possible range of recall-random_recall is
indicated by the dotted line.

slightly higher than those for ‘sequentially neighboring residue
profiles + ASA’ (Table I, ‘sequence + ASA’).

Although the total amino acid ratio/length of the target
sequence, the conservation score for the residues (Valdar and
Thornton, 2001), amino acid ratio in patches and the
hydrophobicity of the sequences were added to the feature
vectors of sequentially/spatially neighboring residue profiles,
there was no increase in prediction accuracy. These values may
not be important in interaction site prediction or the kernel used
may not be appropriate for this combination of vectors.

To summarize, two feature vectors, ‘spatially neighboring
residue profiles + ASA + with/without predicted interaction
site ratios’ and ‘sequentially neighboring residue profiles +
ASA + patch flatness’, were useful in predicting interaction
sites and the former was better. When ‘actual interaction site
ratios’ were known in advance, the prediction performance of
‘spatially neighboring residue profiles + ASA + actual
interaction site ratios’ was best.

The relationship between prediction accuracy and protein
characteristics

Although the averaged prediction performance is discussed
above, the prediction accuracy was quite different among
proteins. In this section, we discuss the predictable and



unpredictable interaction sites. Figure 5 shows the distribution
of the recall and precision of each complex for ‘spatially
neighboring + ASA’. The light color in Figure 5 indicates
complexes with low interaction site ratios. The precision and
recall are higher for molecules with higher interaction site
ratios. With regard to random predictions, Figure 6a and b
shows the relationship between precision—random_precision,
recall-random_recall, interaction site ratio and hydrophobi-
city. The hydrophobicity of interaction sites was calculated
using the amino acid index as in the following equation:

Zpa : ha (2)

where p,, is the ratio of amino acid ‘a’ in the interaction sites
and £, is the hydrophobic value of amino acid ‘a’ as defined by
Sweet and Eisenberg (1983). The light color in Figure 6
indicates low hydrophobic interaction sites. Overall, the
prediction of hydrophobic interaction seems relatively easy
except for some kinds of proteins. (For example, the averaged
recall-random_recall and precision—random_precision for
proteins with hydrophobicity >0 are 0.21 and 0.35, respect-
ively. These are larger than the averaged values of the whole
data, 0.20 and 0.26.) Strictly speaking, comparisons between
the prediction performance for different interaction site ratios
are difficult, considering the possible range of recall/precision—
random values. There was a trend for proteins with hydrophilic
(low hydrophobic) interaction sites and low interaction site
ratios to have lower recall-random_recall and precision—
random_precision (e.g. the averaged recall-random_recall
and precision—random_precision for proteins with hydropho-
bicity <—0.3 and interaction ratio <0.2, were 0.04 and 0.15,
respectively. These are considerably less than the averaged
values of the whole data, i.e. 0.20 and 0.26). As this suggests, it
seems difficult to locate interaction sites in proteins with
hydrophilic interaction and low interaction site ratios with this
method. Proteins with low hydrophobic (hydrophilic) inter-
faces and low interaction site ratios are considered ‘transient
complexes’ based on the previous study (Jones and Thornton,
1996). However, when the automatic method developed by
Ofran and Rost (2003a) to distinguish transient and permanent
complexes is used, they are not recognized as mainly ‘transient
complexes’. When the biological functions for the lowest 10
recall-random_recall proteins with an interaction site ratio of
<0.3 were investigated manually from references and their
single molecule (not complexes) existence was investigated by
searching a similar structure according to the FSSP server
[http://www.ebi.ac.uk/dari/fssp/, the checked residues are
indicated by (-) in the Appendix protein lists], they all seemed
to be transient complex. In contrast, when 10 highly (recall-
random_recall + precision—-random_precision) predicted
proteins with high hydrophobic (>0.0) and low interaction
site ratio (<0.2) residues were selected and investigated, nine
proteins consisted of homo-dimers and at least eight proteins
seemed to be permanent complexes in vivo [checked residues
are indicated by (+) in the Appendix protein lists, available as
supplementary material at PEDS online]. Furthermore, when
10 highly (recall-random_recall + precision—random_preci-
sion) predicted proteins with an interaction site ratio of >0.5
and hydrophobicity of >0.0 were selected and investigated, at
least seven proteins were permanent complexes [checked
residues are indicated by (++) in the Appendix protein lists].
The prediction of permanent/stable complexes tends to be

Prediction of protein interaction sites

easier. The experimental reproduction of some complexes,
especially in signal transduction, is known to be difficult. The
easiness of prediction may be related to the interaction
strength.

The typical predicted interaction sites are shown in Figure 7a
and b. Most of the false positives (yellow) are close to
interaction sites. With manual investigation, even for perman-
ent complexes with hydrophobic interfaces and high inter-
action site ratios, interaction site prediction is difficult when the
complex consists of multiple entangled molecules. For
example, red parts of 20CC-C in Figure 7c were wrongly
predicted as interaction sites. The characteristics of the inside
interfaces (domain interfaces) in single molecules may be
sometimes similar to that of interaction sites.

Comparison with other studies

There have been several studies on the prediction of interfacial
sites (Korn and Burnett, 1991; Young et al., 1994; Jones and
Thornton, 1997b; Zhou and Shan, 2001; Fariselli et al., 2002;
Gallet et al., 2002; Ofran and Rost, 2003b). This method is
similar to the use of neural networks to make predictions (Zhou
and Shan, 2001; Fariselli et al., 2002; Ofran and Rost, 2003b).
Fariselli et al. (2002) show that the recall and precision of
interaction sites on the surface are 72 and 56%, respectively,
using sequence profiles. When we used the same test set using
only sequentially neighboring residue profiles for the feature
vectors for the SVM, and when other conditions such as the
definition of the interaction site residues were the same, the
recall and precision for the residue units were 75.9 and 78.3%,
respectively. These values were higher than theirs. They
excluded the protease complex to eliminate a strong peculiar
signal in the data set. Whether the protease complex was
eliminated or not did not affect the prediction performance of
our method.

Zhou and Shan (2001) predicted interfacial interaction sites
using neural networks in a two-step process. The input values
are sequence profiles and ASA of the residue in focus and are
the same for the 19 spatially closest surface residues. The recall
and precision for the residue units are 50.0 and 51.0%,
respectively. (When the four nearest neighbor differences are
added to the correct, the modified precision becomes 70%, and
using the same evaluation, 76.4% in our results. The corres-
ponding recall may become lower than 50%. With the feature
vector, spatially neighboring profiles + ASA, their randomly
predicted values are similar to our data.) They removed
sequence similarity with a threshold of matched regions of
>40%. However, this threshold seems slightly permissive.
They counted only one interface, even if the complex consisted
of more than two proteins. Their actual recall may be lower
than 50% and the precision may be higher than 51%. Although
their accuracy cannot be compared directly with our data, our
prediction method seemed to perform slightly more accurately
than theirs.

Recently, Ofran and Rost (2003b) predicted interaction sites
using sequentially neighboring profiles and neural networks.
By considering neighboring predicted information (i.e. the
contacting residues are sequentially continuous in most cases)
and using strongly predicted residues, a high precision (>75%)
was achieved at a low recall range (<0.2%). In our methods,
when ‘spatially neighboring + ASA’ and the sum of the
positively predicted values within *3 residues were sorted in
descending order, the precision reached 80-85% at a recall
<0.2% (in this process of using positively predicted residues as
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interaction sites, only residues that had more than two
positively predicted residues in =3 sequentially neighboring
residues were used). However, a high precision was not
obtained using only sequence information. Various studies of
the performance of SVM and neural networks may suggest that
this might be caused by differences in the definition of
interaction sites (their random precision is ~0.4, while our
random precision is ~0.2) and/or the size of the data set. By
adding the predicted interaction site ratio, the average of our
prediction performance (~10% higher than random) seems to
be higher than theirs (~4-8% higher than random).

Interfacial site prediction using the hydrophobic moment
and averaged hydrophobicity has also been reported (Gallet
et al., 2002). However, this study did not consider false
positives and was applied to a limited number of families.
When the hydrophobic moment and averaged hydrophobicity
at window lengths 5-11 were used as the input vectors for the
SVM, the recall and precision were lower than for random
prediction (data not shown). Accordingly, the use of the
hydrophobic moment and averaged hydrophobicity does not
appear to be useful for general interfacial prediction.

Conclusion

Methods of predicting interaction sites using a SVM were
developed. When sequence profiles, sequentially neighboring
residue profiles and actual interaction site ratios were used as
feature vectors for the SVM, the recall and precision of the
interaction sites were >15% higher than randomly predicted
values. When predicted interaction site ratios, calculated using
SVM regression and amino acid compositions, were used
instead of actual interaction site ratios, the recall and precision
of the interaction sites were ~10% higher than randomly
predicted values and ~4% higher than those calculated using
only sequence profiles. Although prediction performance using
only sequence information may not be high enough for
practical use, it is interesting that the effect of interaction site
ratios on prediction performance is remarkable. The perform-
ance of this method could be improved if the target families
were limited.

When structural information was used, prediction perform-
ance was improved. In particular, when ‘spatially neighboring
residue profiles + ASA + with/without predicted interactions
site ratios by SVM regression and amino acid compositions’ or
‘sequentially neighboring residue profiles + ASA + patch
flatness’ were used as feature vectors, prediction performance
was high; the former was better. When actual interaction site
ratios were used instead of predicted interaction site ratios,
prediction performance was further improved. Other sequence
characteristics, such as the conservation score and amino acid
ratio in patches, did not improve prediction performance.
When the feature vector ‘spatially neighboring residue profiles
+ ASA + with/without predicted interaction site ratios’ was

Fig. 7. Overall view of complexes with predicted interaction sites. The
protein with predicted interaction sites is shown as a ribbon (green, true
positive; white, true negative; yellow, false negative; red, false positive) and
their binding proteins are shown as strands. (A) 1GDO (human macrophage
migration inhibitory factor): the predicted protein (A), the binding proteins
(B and C). (B) 1APY (human aspartylglucosaminidase): the predicted protein
(A), the binding proteins (B, C and D). (C) 20CC (bovine heart cytochrome
¢ oxidase): the predicted protein (C), the binding/non-binding proteins (A-B,
D-Z, mol IDs not shown). These figures were prepared by using the program
RasMol.
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used, the precision was 54—56% for homo-hetero mixed types
at recall = 50%, whereas the corresponding recall and precision
given by randomly predicted values were 25-28 and 30%,
respectively. Approximately 30% of sites wrongly predicted as
interaction sites were the closest spatially/sequentially neigh-
boring residues on interaction sites. These predicted interaction
sites covered 86-87% (96-97% when interfaces of <20
residues were ignored) of the actual interfaces (1169 inter-
faces). The prediction performance for this method was slightly
better than that of previously reported prediction methods
(Zhou and Shan, 2001; Fariselli et al., 2002). Considering that
only ~30% of protein surfaces consist of interaction sites, this
prediction performance seems reasonable. The data set in this
study may have been too small for two-step learning of
interaction site ratios and interaction sites. The performance of
the method using predicted interaction site ratios will probably
be improved by increasing the size of the data set.

Prediction accuracy is low for complexes with low inter-
action site ratios (probably with small interaction surfaces) and
hydrophilic (low hydrophobic) interaction sites, and high for
complexes with high hydrophobic interaction sites. With
manual investigation, permanent complexes tend to be easy
to predict and transient complexes difficult. The ease of
prediction may be in proportion to the stability of the complex.
In relation to this point, elucidation of the relationships
between the prediction ease and binding stability such as
binding energy will be the subject of future research.
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