
Multidimensional Support Vector Machines for Visualization of

Gene Expression Data

D. Komura∗

Research Center for Advanced Science and Technology,
The University of Tokyo, Tokyo 153-8904, Japan

H. Nakamura
Research Center for Advanced Science and Technology,

The University of Tokyo, Tokyo 153-8904, Japan

S. Tsutsumi
Research Center for Advanced Science and Technology,

The University of Tokyo, Tokyo 153-8904, Japan

H. Aburatani
Genome Science Div., Center for Collaborative Research,

The University of Tokyo, Tokyo 153-8904, Japan

S. Ihara
Research Center for Advanced Science and Technology,

The University of Tokyo, Tokyo 153-8904, Japan

Abstract

Motivation: Since DNA microarray experiments
provide us with huge amount of gene expression data,
they should be analyzed with statistical methods to
extract the meanings of experimental results. Some
dimensionality reduction methods such as Principal
Component Analysis (PCA) are used to roughly vi-
sualize the distribution of high dimensional gene ex-
pression data. However, in the case of binary classifi-
cation of gene expression data, PCA does not utilize
class information when choosing axes. Thus clearly
separable data in the original space may not be so in
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the reduced space used in PCA.
Results: For visualization and class prediction of
gene expression data, we have developed a new SVM-
based method called multidimensional SVMs, that
generate multiple orthogonal axes. This method
projects high dimensional data into lower dimen-
sional space to exhibit properties of the data clearly
and to visualize a distribution of the data roughly.
Furthermore, the multiple axes can be used for class
prediction. The basic properties of conventional
SVMs are retained in our method: solutions of math-
ematical programming are sparse, and nonlinear clas-
sification is implemented implicitly through the use
of kernel functions. The application of our method to
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the experimentally obtained gene expression datasets
for patients’ samples indicates that our algorithm is
efficient and useful for visualization and class predic-
tion.
Contact: komura@hal.rcast.u-tokyo.ac.jp
Keyword: Multidimensional Support Vecotor Ma-
chines, visualization, gene expression data, binary
classification

1 Introduction

DNA microarray has been the key technology in mod-
ern biology and helped us to decipher the biologi-
cal system because of its ability to monitor the ex-
pression levels of thousands of genes simultaneously.
Since DNA microarray experiments provide us with
huge amount of gene expression data, they should
be analyzed with statistical methods to extract the
meanings of experimental results.

A great number of supervised learning algorithms
have been proposed and applied to classification of
gene expression data(Golub et al., 1999)(Tibshirani
et al., 2002)(Khan et al., 2001). Support Vector Ma-
chines (SVMs) have been paid attention in recent
years because of their good performance in various
fields, especially in the area of bioinformatics includ-
ing classification of gene expression data(Furey et al.,
2000). However, SVMs predict a class of test samples
by projecting the data into one-dimensional space
based on a decision function. As a result, information
loss of the original data is enormous.

Some methods are used for projecting high dimen-
sional data into lower dimensional space to clearly ex-
hibit the properties of the data and to roughly visual-
ize the distribution of the data. Principal Component
Analysis (PCA)(Fukunaga, 1990) and its derivatives,
e.g. Nonlinear PCA(Diamantaras & Kung, 1996) and
Kernel PCA(Schölkopf et al., 1998), are most widely
used for this purpose(Huang et al., 2003). One draw-
back of PCA analysis is, however, that class informa-
tion is not utilized for class prediction because PCA
chooses axes based on the variance of overall data.
Thus clearly separable data in the original space may
not be so in the reduced space used in PCA. Another
method for visualization and reducing dimension of

data is discriminant analysis. It chooses axes based
on class information in terms of within- and between-
class variance. However, it is reported that SVMs
often outperform discriminant analysis(Brown et al.,
2000).

The main purpose of this paper is to cover the
shortcoming of SVMs by introducing multiple orthog-
onal axes for reducing dimensions and visualization
of gene expression data. To this end, we have de-
veloped multidimensional SVMs (MD-SVMs), a new
SVM-based method that generates multiple orthog-
onal axes based on margin between two classes to
minimize generalization errors. The axes generated
by this method reduce dimensions of original data
to extract information useful in estimating the dis-
criminability of two classes. This method fulfills the
requirement of both visualization and class predic-
tion. The basic properties of SVMs are retained in
our method: solutions of mathematical programming
are sparse, and nonlinear classification of data is im-
plemented implicitly through the use of kernel func-
tions.

This paper is organized as follows. In Section 2,
we introduce the fundamental of SVMs. In Section
3, we describe the algorithm of MD-SVMs. In Section
4 and 5, we show numerical experiments on real gene
expression datasets and reveal that our algorithm is
effective for data visualization and class prediction.

1.1 Notation

R is defined as the set of real numbers. Each compo-
nent of a vector x ∈ R

n, i = 1, · · · , m will be denoted
by xj, j = 1, · · · , n. The inner product of two vectors
x ∈ R

n and y ∈ R
n will be denoted by x · y. For a

vector x ∈ R
n and a scalar a ∈ R , a ≤ x is defined as

a ≤ xi for all i = 1, · · · , n. For an arbitrary variable
x, xk is just a name of the variable with upper suffix
, not defined as k-th power of x.

2 Support Vector Machines

Since details of SVMs are fully described in the
articles(Vapnik, 1998)(Cristianini & Shawe-Taylor,
2000), we briefly introduce the fundamental principle
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of SVMs in this section. We consider a binary clas-
sification problem, where a linear decision function
is employed to separate two classes of data based on
m training samples xi ∈ R

n, i = 1, · · · , m with corre-
sponding class values yi ∈ {±1}, i = 1, · · · , m. SVMs
map a data x ∈ R

n into a higher, probably infinite,
dimensional space R

N than the original space with an
appropriate nonlinear mapping φ : R

n → R
N , n < N .

They generate the linear decision function of the form
f(x) = sign(w · φ(x) + b) in the high dimensional
space, where w ∈ R

N is a weight vector which de-
fines a direction perpendicular to the hyperplane of
the decision function, while b ∈ R is a bias which
moves the hyperplane parallel to itself. The optimal
decision function given by SVMs is a solution of an
optimization problem

min
w,ξ

1
2
‖w‖2 + C

m∑
i=1

ξi,

s.t. yi(w · φ(xi) + b) ≥ 1 − ξi, i = 1, · · · , m,

ξ ≥ 0,

(1)

with C > 0. Here, ξ ∈ R
m is a vector whose el-

ements are slack variables and C ∈ R is a regu-
larization parameter for penalizing training errors.
When C → ∞, no training errors are allowed, and
thus this is called hard margin classification. When
0 < C < ∞, this is called soft margin classification
because it allows some training errors. Note that a
geometric margin γ between two classes is defined
as 1

‖w‖2 . The optimization problem formalizes the
tradeoff between maximizing margin and minimizing
training errors. The problem is transformed into its
corresponding dual problem by introducing lagrange
multiplier α ∈ R

m and replacing φ(xi) ·φ(xj) by ker-
nel function K(xi, xj) = φ(xi) · φ(xj) to be solved
in an elegant way of dealing with a high dimensional
vector space. The dual problem is

max
α

− 1
2

m∑
i=1

m∑
j=1

αiαjyiyjK(xi, xj) +
m∑

i=1

αi,

s.t. 0 ≤ α ≤ C,

m∑
i=1

αiyi = 0.

(2)

By virtue of the kernel function, the value of the inner
product φ(xi)·φ(xj) can be obtained without explicit

calculation of φ(xi) and φ(xj). Finally, the decision
function becomes f(x) = sign

(∑m
i=1 αiyiK(xi, x) +

b
)
. by using kernel functions between training sam-

ples xi, i = 1, · · · , m and a test sample x.

3 Multidimensional Support

Vector Machines

In order to overcome the drawback that SVMs can-
not generate more than one decision function, we pro-
pose a SVM-based method that can be used for both
data visualization and class prediction in this section.
We call this method multidimensional SVMs (MD-
SVMs). We deal with the same problem as mentioned
in Section 2. Conventional SVMs give an optimal so-
lution set (w, b, ξ) which corresponds to a decision
function, while our MD-SVMs give the multiple sets
(wk, bk, ξk),k = 1, 2, · · · , l with l ≤ n, so that all the
directions wk are orthogonal to one another. The
orthogonal axes can be used for reducing the dimen-
sion of original data and data visualization in three
dimensional space by means of projection. Here the
first set (w1, b1, ξ1) is equivalent to that obtained by
conventional SVMs. Now we only refer to the steps
of obtaining (wk, bk, ξk), k = 2, 3, · · · , l. In practice,
the k-th set (wk, bk, ξk) k = 2, 3, · · · , l are found with
iterative computations of the optimization problem

min
wk,ξk

1
2
‖wk‖2 + C

m∑
i=1

ξk
i ,

s.t. yi(wk · φ(xi) + bk) ≥ 1 − ξk
i , i = 1, · · · , m,

ξk ≥ 0, wk · wj = 0, j = 1, · · · , k − 1.

(3)

This problem differs from that of conventional SVMs
in the last constraint wk ·wj = 0. The weight vector
wj, j = 1, · · · , k − 1 should be computed in advance
by solving other optimization problems(3). The opti-
mization problem is modified by introducing lagrange
multipliers αk, γk ∈ R

m, βk ∈ R
k−1 and kernel func-
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tions. The primal Lagrangian is

L(wk, bk, ξk) =
1
2
‖wk‖2 + C

m∑
i=1

ξk
i

+
m∑

i=1

αk
i (1 − ξk

i − yi(wk · φ(xi) + bk))

+
k−1∑
j=1

βk
j (wk · wj) −

m∑
i=1

γk
i ξi. (4)

Consequently, the optimization problem is

max
αk,βk

− 1
2

m∑
i=1

m∑
j=1

αk
i αk

j yiyjK(xi, xj)

+
1
2

k−1∑
i=1

βk
i βk

i (wi · wi) +
m∑

i=1

αk
i ,

s.t. 0 ≤ αk ≤ C,

m∑
i=1

αk
i yi = 0,

m∑
i=1

αk
i yi

(
φ(xi) · wj

)
= 0, j = 1, · · · , k − 1

(5)

Here φ(xp) ·wq and wp ·wp are calculated recursively
as follows:

φ(xp) ·wq =
m∑

i=1

αq
i yiK(xp, xi)

−
q−1∑
i=1

βq
i

(
φ(xp) · wi

)
, (6)

wp · wp =
m∑

i=1

m∑
j=1

αp
i α

p
jyiyjK(xi, xj)

−
m∑

i=1

p−1∑
j=1

αp
i yiβ

p
j

(
φ(xi) · wj

)
+

p−1∑
i=1

βp
i βp

i (wi · wi)

−
m∑

i=1

p−1∑
j=1

αp
i yiβ

p
j

(
φ(xi) · wj

)
, (7)

(8)

where φ(xp) · w1 =
∑m

i=1 α1
i yiK(xp, xi) and w1 ·

w1 =
∑m

i=1 α1
i yi

(
φ(xi), w1

)
. As can be seen, there

is no need to calculate nonlinear map of data φ(x)
in problem(5) because all nonlinear mappings can be
replaced with kernel functions.

Note that this optimization problem is a noncon-
vex quadratic problem when k is more than 1. As
a consequence, the optimal solutions are not easy to
be obtained. In Section 4, we use local optimum for
numerical experiments when k is 2 or 3. We note the
experimental results are still encouraging.

The corresponding Karush-Kuhn-Tucker condi-
tions are

αk
i {1 − ξk

i − yi(wk · φ(xi) + bk)} = 0, (9)
ξk
i (αk

i − C) = 0, i = 1, · · · , m. (10)

These are exactly the same as conventional SVMs.
We highlight the other properties conserved from con-
ventional SVMs:

• Projecting data into high dimensional space is
implicit, using kernel functions to replace inner
products.

• The solutions αk of the optimization problem is
sparse. Then the corresponding decision func-
tion depends only on few ”Support Vectors”.

Since each decision function is normalized indepen-
dently to hold wk · φ(xi) + bk = yi for i = 1, · · · , m,
data scales of the axes should be aligned with first
axis (k=1) for visualization. The margin γk, the L2-
distance between support vectors of each class of k-th
axis, is

(
m∑

i=1

m∑
j=1

αk
i αk

j yiyjK(xi, xj) −
k−1∑
i=1

βk
i βk

i (wi ·wi)

)− 1
2

.

(11)

So a scaling factor sk = γ1/γk is√√√√√√√√√√

m∑
i=1

m∑
j=1

α1
i α

1
jyiyjK(xi, xj)

m∑
i=1

m∑
j=1

αk
i αk

j yiyjK(xi, xj)−
k−1∑
i=1

βk
i βk

i (wi · wi)

.

(12)
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The decision function of k-th step has the form
fk(x) = sign

(∑m
i=1 αk

i yiK(xi, x) + bk
)
. Since the

right hand side of the equation has the function of
projecting original data into one dimensional space,
the data can be plot in up to three dimensional space
for visualization . The coordinate of data x ∈ R

m in
three dimensional space is

(sk1gk1(x), sk2gk2(x), sk3gk3(x)), (13)

where gk(x) =
∑m

i=1 αk
i yiK(xi, x) + bk. The space

represents a distribution of data clearly based on the
margin between two classes.

4 Numerical Experiments

4.1 Method

In order to confirm the effectiveness of our algorithm,
we have performed numerical experiments. MD-
SVMs can generate multiple axes, up to the number
of features. Here we choose three axes, k = 1, 2, 3, to
simplify the experiments. When k is 2 or 3, we use
local optimum in problem (5) since it is difficult to
obtain the global solutions. In our experiments, we
carry out hold-out validation because cross-validation
changes decision functions every time the dataset is
split. Then we compare the results obtained by MD-
SVMs with those obtained by PCA.

In the experiments, the expression values for each
of the genes are normalized such that the distri-
bution over the samples has a zero mean and unit
variance. Before normalization, we discard genes
in the dataset with the overall average value less
than 0.35. Then we calculate a score F (x(j)) =∣∣∣∣(µ+(j)−µ−(j))/(σ+(j)+σ−(j))

∣∣∣∣, for the remaining

genes. Here µ+(j)(µ−(j)) and σ+(j)(σ−(j)) denote
the mean and standard deviation of the j-th gene of
the samples labeled +1(-1), respectively. This score
becomes the highest when the corresponding expres-
sion levels of the gene differ most in the two classes
and have small deviations in each class. We select 100
genes with the highest scores and use them for hold-
out validation. These procedures for gene selection
are done only for training data for fair experiments.

The regularization parameter C in problem (5)
is set to 1000. This value is rather large but fi-
nite because we would like to avoid ill-posed prob-
lems in a hard margin classification. We choose
linear kernel K(xi, xj) = xi · xj and RBF kernel
K(xi, xj) = exp−γ‖xi − xj‖2 with γ = 0.001 in the
experiments of MD-SVMs.

4.2 Materials

Leukemia dataset(Golub et al., 1999). This gene
expression dataset consists of 72 leukemia samples,
including 25 acute myeloid leukemia (AML) samples
and 47 acute lymphoblastic leukemia (ALL) sam-
ples. They are obtained by hybridization on the
Affymetrix GeneChip containing probe sets for 7070
genes. Training set contains 20 AML samples and 42
ALL samples. Test set contains 5 AML samples and
5 ALL samples. AML samples are labeled +1 and
ALL samples are labeled -1.
Lung tissue dataset(Bhattacharjee et al., 2001).
This dataset consists of 203 samples from lung tis-
sue, including 16 samples from normal tissue and
187 samples from cancerous tissue, and is obtained
by hybridization on the Affymetrix U95A Genechip
containing probe sets for 12558 genes. Training set
includes 13 samples from normal tissue and 157 sam-
ples from cancerous tissue. Test set includes 3 sam-
ples from normal tissue and 30 samples from cancer-
ous tissue. Samples from normal tissue are labeled
+1 and samples from cancerous tissue are labeled -1.

5 Results and Discussion

The results of numerical experiments are shown in
Figure 1, and Table 1 and 2. The distributions ob-
tained by MD-SVMs on the leukemia dataset and the
lung tissues dataset are given in Figure 1-(1) and 1-
(3), respectively. Those obtained by PCA are given
in Figure 1-(2) and 1-(4), respectively. The number
of misclassified samples by MD-SVMs are summa-
rized in Table 1 and 2. In these tables, the class of
the samples is predicted based on decision functions
fk(x), k = 1, 2, 3, corresponding to each of the three
axes.
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Figure 1-(1) and 1-(3) illustrate that MD-SVMs are
likely to separate the samples of each class in all the
three directions. However, as shown in Figure 1-(2)
and 1-(4), PCA does not separate the samples in the
directions of the 2nd or the 3rd axis. These axes by
PCA are dispensable with the objective of visualiza-
tion for class prediction. In other words, MD-SVMs
gather the plots of the samples into the appropri-
ate clusters of each class, while PCA rather scatters
them. Furthermore, in the distribution by MD-SVMs
for the lung tissues dataset, one sample outlies from
correct clusters (indicated by arrows in Figure 1-(3)).
Though this sample also seems to be an outlier in the
distribution by PCA (also indicated in Figure 1-(4)),
the outlier significantly deviates in MD-SVMs. This
may arise from the fact that MD-SVMs can separate
the samples in all the directions. These observations
indicate that MD-SVMs are well suited for visualiz-
ing in binary classification problems.

The significant advantage of MD-SVMs over PCA
is the ability to predict the classes. MD-SVMs can
predict the classes of samples based on the decision
functions fk(x) without extra computation, while
PCA cannot. The predicted class of a sample should
be matched by the all the decision functions in an
ideal case. However that does not always occur as
seen in Table 1 and 2. In such cases, the simplest
method for prediction is to use only the 1st axis,
which corresponds to the decision function generated
by conventional SVMs. The idea is supported by the
fact that the 1st decision function classifies the sam-
ples most correctly in almost all cases in Table 1 and
2. The more advanced method is weighted voting.
Scaling factor or normalized objective values in prob-
lem (5) are the candidate of the weight.

Multiple decision functions generated by MD-
SVMs are useful for outlier detection. Samples mis-
classified by multiple decision functions may be mis-
labeled or categorized into unknown classes. For ex-
ample, see the column ”3 axes” of test sample of the
lung tissues dataset with RBF kernel in Table 2. This
sample is misclassified by all decision functions, so we
can say that this data contains some experimental er-
ror. The hierarchical clustering method also supports
our result. These results indicate that MD-SVMs can
be used for finding candidates of outliers.

6 Conclusion

For both visualization and class prediction of gene ex-
pression data, we propose a new method called Multi-
dimensional Support Vector Machines. We formulate
the method as a quadratic program and implement
the algorithm. This is motivated by the following
facts: 1)SVMs perform better than the other classifi-
cation algorithms, but they generate only one axis for
class prediction. 2)PCA chooses multiple orthogonal
axes, but it cannot predict classes of samples with-
out other classification algorithms. We have tried to
cover the shortcomings of both methods. MD-SVMs
choose multiple orthogonal axes, which correspond
to decision functions, from high dimensional space
based on a margin between two classes. These multi-
ple axes can be used for both visualization and class
prediction.

Numerical experiments on real gene expression
data indicate the effectiveness of MD-SVMs. All axes
generated by MD-SVMs are taken into account for
separating class of samples, while the 2nd and the 3rd
axes by PCA are not. The samples in the distribu-
tions by MD-SVMs gather into appropriate clusters
more vividly than those by PCA. MD-SVMs can pre-
dict the classes of the samples with multiple decision
functions. We also indicate that MD-SVMs are useful
for outlier detection with multiple decision functions.

There are several future works to be done on MD-
SVMs: (1) application of our method to wider vari-
ety of gene expression datasets, (2) investigation of
gene selection for preprocess of analysis, and (3) in-
vestigation on class prediction method with multi-
ple decision functions. Firstly, the use of more suit-
able samples may show that the axes chosen by MD-
SVMs separate samples more clearly than those by
PCA. Secondly, since the conventional SVMs show
good generalization performance especially with large
number of features, it is expected that MD-SVMs
show much better performance than PCA with in-
creasing the number of genes used in the numerical
experiments. Since the element of weight vector gen-
erated by SVMs is one of the measures of discrimina-
tion power of the corresponding genes(Guyon et al.,
2002), that generated by MD-SVMs can be used for
gene selection. Thirdly, the classification with prob-
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(a) (b) (c) (d) (1)Distribution ob-
tained by MD-SVMs
for the leukemia
dataset with linear
kernel.

(a) (b) (c) (d)

(2)Distribution ob-
tained by PCA on the
leukemia dataset.

(a ) (b) (c) (d)

(3) Distribution ob-
tained by MD-SVMs
for the lung tissues
dataset with linear
kernel. The sample
indicated by arrows
appears to be an
outlier.

(a) (b) (c) (d)

(4) Distribution ob-
tained by PCA for the
lung tissues dataset.
The sample indicated
by arrows is the same
on in (3) but less
deviates.

Figure 1: (a)Cross shot, (b)1st axis (x axis) and 2nd axis (y axis), (c)2nd axis (x axis) and 3rd axis (y axis),
(d)3rd axis (x axis) and 1st axis (y axis). Black objects and white objects indicate AML samples (or normal
tissues) ALL samples (or cancerous tissues), respectively. Training data and test data are expressed as a
sphere and a cube, respectively.

ability as well as the weighted voting mentioned in
Section 4 may be achieved in our scheme since the
conventional SVMs have been already expanded for
the purpose with sigmoid functions(Platt, 1999). We
hope that our method sheds some lights on the future
study of gene expression experiments.
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