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Abstract
The application of kernel-based learning algo-
rithms has, so far, largely been confined to real-
valued data and a few special data types, such
as strings. In this paper we propose a general
method of constructing natural families of ker-
nels over discrete structures, based on the matrix
exponentiation idea. In particular, we focus on
generating kernels on graphs, for which we pro-
pose a special class of exponential kernels called
diffusion kernels, which are based on the heat
equation and can be regarded as the discretiza-
tion of the familiar Gaussian kernel of Euclidean
space.

1. Introduction
Kernel-based algorithms, such as Gaussian processes
(Mackay, 1997), support vector machines (Burges, 1998),
and kernel PCA (Mika et al., 1998), are enjoying great pop-
ularity in the statistical learning community. The common
idea behind these methods is to express our prior beliefs
about the correlations, or more generally, the similarities,
between pairs of points in data space in terms of a ker-
nel function , and thereby to implicitly
construct a mapping to a Hilbert space ,
in which the kernel appears as the inner product,

(1)

(Schölkopf& Smola, 2001). With respect to a basis of ,
each datapoint then splits into (a possibly infinite number
of) independent features, a propertywhich can be exploited
to great effect.

Graph-like structures occur in data in many guises, and in
order to apply machine learning techniques to such dis-
crete data it is desirable to use a kernel to capture the long-
range relationships between data points induced by the lo-
cal structure of the graph. One obvious example of such
data is a graph of documents related to one another by
links, such as the hyperlink structure of the World Wide
Web. Other examples include social networks, citations be-
tween scientific articles, and networks in linguistics (Albert
& Barabási, 2002).

Graphs are also sometimes used to model complicated or
only partially understood structures in a first approxima-
tion. In chemistry or molecular biology, for example, it
might be anticipated that molecules with similar chemical
structures will have broadly similar properties. While for
two arbitrary molecules it might be very difficult to quan-
tify exactly how similar they are, it is not so difficult to
propose rules for when two molecules can be considered
“neighbors,” for example, when they only differ in the pres-
ence or absence of a single functional group, movement of
a bond to a neigboring atom, etc. Representing such rela-
tionships by edges gives rise to a graph, each vertex corre-
sponding to one of our original objects. Finally, adjacency
graphs are sometimes used when data is expected to be con-
fined to a manifold of lower dimensionality than the orig-
inal space (Saul & Roweis, 2001; Belkin & Niyogi, 2001)
and (Szummer & Jaakkola, 2002). In all of these cases, the
challenge is to capture in the kernel the local and global
structure of the graph.

In addition to adequately expressing the known or hypoth-
esized structure of the data space, the function must sat-
isfy two mathematical requirements to be able to serve as a
kernel: it must be symmetric ( ) and
positive semi-definite. Constructing appropriate positive
definite kernels is not a simple task, and this has largely
been the reason why, with a few exceptions, kernel methods
have mostly been confined to Euclidean spaces ,
where several families of provably positive semi-definite
and easily interpretable kernels are known. When dealing
with intrinsically discrete data spaces, the usual approach
has been either to map the data to Euclidean space first
(as is commonly done in text classification, treating in-
teger word counts as real numbers (Joachims, 1998)) or,
when no such simple mapping is forthcoming, to forgo us-
ing kernel methods altogether. A notable exception to this
is the line of work stemming from the convolution kernel
idea introduced in (Haussler, 1999) and related but inde-
pendently conceived ideas on string kernels first presented
in (Watkins, 1999). Despite the promise of these ideas, rel-
atively little work has been done on discrete kernels since
the publication of these articles.

In this paper we use ideas from spectral graph theory to
propose a natural class of kernels on graphs, which we re-
fer to as diffusion kernels. We start out by presenting in the



following section a more general class of kernels, called ex-
ponential kernels, applicable to a wide variety of discrete
objects. In Section 3 we discuss the interpretation of dif-
fusion kernels on graphs. In Section 4 we show how diffu-
sion kernels can be computed for some special families of
graphs. Experiments using diffusion kernels for classifica-
tion of categorical data are presented in Section 5, and we
conclude and summarize our results in Section 6.

2. Exponential Kernels and Diffusion Kernels
This section shows that the exponentiation operation on
matrices naturally yields the crucial positive-definite cri-
terion of kernels, describes how to build kernels on the di-
rect product of graphs, and introduces diffusion kernels on
graphs as a distinguished example of exponential kernels.

2.1 Exponential kernels

Recall that in the discrete case, positive semi-definiteness
amounts to

(2)

for all sets of real coefficients , and in the continuous
case,

for all square integrable real functions ; the
latter is sometimes referred to as Mercer’s condition.

In the discrete case, for finite , the kernel can be uniquely
represented by an matrix (which we shall denote
by the same letter ) with rows and columns indexed by
the elements of , and related to the kernel by

. Since this matrix, called the Gram matrix, and
the function are essentially equivalent (in
particular, the matrix inherits the properties of symmetry
and positive semi-definiteness), we can refer to one or the
other as the “kernel” without risk of confusion.

The exponential of a square matrix is defined as

(3)

where the limit always exists and is equivalent to

(4)

It is well known that any even power of a symmetric ma-
trix is positive semi-definite, and that the set of positive
semi-definite matrices is complete with respect to limits of
sequences under the Frobenius norm. Taking to be sym-
metric and replacing by shows that the exponential

of any symmetric matrix is symmetric and positive semi-
definite, hence it is a candidate for a kernel.

Conversely, it is easy to show that any infinitely divisible
kernel can be expressed in the exponential form (3). In-
finite divisibility means that can be written as an -fold
convolution

for any (Haussler, 1999). Such kernels form con-
tinuous families , indexed by a real pa-
rameter , and are related to infinitely divisible probabil-
ity distributions, which are the limits of sums of inde-
pendent random variables (Feller, 1971). The tautology

becomes, as goes to infinity,

which is equivalent to (3) for .

The above already suggests looking for kernels over finite
sets in the form

(5)

guaranteeing positive definiteness without seriously re-
stricting our choice of kernel. Furthermore, differentiating

with respect to and examining the resulting differen-
tial equation

(6)

with the accompanying initial conditions , lends
itself naturally to the interpretation that is the product
of a continuous process, expressed by , gradually trans-
forming it from the identity matrix ( ) to a kernel with
stronger and stronger off-diagonal effects as increases.
We shall see in the examples below that by virtue of this
relationship, choosing to express the local structure of
will result in the global structure of naturally emerg-

ing in . We call an exponential family of kernels,
with generator and bandwidth parameter .

Note that the exponential kernel construction is not related
to the result described in (Berg et al., 1984; Haussler, 1999)
and (Schölkopf & Smola, 2001), based on Schoenberg’s
pioneering work in the late 1930’s in the theory of positive
definite functions (Schoenberg, 1938). This work shows
that any positive semi-definite can be written as

(7)

where is a conditionally positive semi-definite kernel;
that is, it satisfies (2) under the additional constraint that



.1 Whereas (5) involves matrix exponen-
tiation via (3), formula (7) prescribes the more straight-
forward componentwise exponentiation. On the other
hand, conditionally positive definite matrices are some-
what elusive mathematical objects, and it is not clear where
Schoenberg’s beautiful result will find application in statis-
tical learning theory. The advantage of our relatively brute-
force approach to constructing positive definite objects is
that it only requires that the generator be symmetric
(more generally, self-adjoint) and guarantees the positive
semi-definiteness of the resulting kernel .

2.2 Tensor products and conjugacy

There is a canonical way of building exponential kernels
over direct products of sets, which will prove useful in what
follows. Let be a family of kernels over the set
with generator , and let be a family of kernels
over with generator . To construct an exponential
kernels over the pairs , with and ,
it is natural to use the generator

where if and otherwise. In other words,
we take the generator over the product set
to be , where and are the

and dimensional diagonal kernels, respectively.
Plugging into (6) shows that the corresponding kernels will
be given simply by

that is, . In particular, we can lift
any exponential kernel on to an exponential kernel

over length sequences
by

(8)

or, using the tensor product notation, .

Finally, we note that another method for creating kernels is
to conjugate the Gram matrix by a not necessarily square
matrix

(9)

which yields a new positive semi-definite kernel
of the form

(10)

1Instead of using the term “conditionally positive definite,”
this type of object is sometimes referred to by saying that
is “negative definite.” Confusingly, a negative definite kernel is
then not the same as the negative of a positive definite kernel, so
we shall avoid using this terminology.

2.3 Diffusion kernels on graphs

An undirected, unweighted graph is defined by a vertex
set and an edge set , the latter being the set of un-
ordered pairs , where whenever the
vertices and are joined by an edge (denoted ).
Equation (6) suggests using an exponential kernel with
generator

for
for
otherwise

(11)

where is the degree of vertex (number of edges ema-
nating from vertex ).

The negative of this matrix (sometimes up to normaliza-
tion) is called the Laplacian of , and it plays a central role
in spectral graph theory (Chung, 1997). It is instructive to
note that for any vector ,

showing that is, in fact, negative semi-definite. Act-
ing on functions by

, can also be regarded as an operator.
In fact, it is easy to show that on a square grid in -
dimensional Euclidean space with grid spacing ,
is just the finite difference approximation to the familiar
continuous Laplacian

and that in the limit this approximation becomes
exact. In analogy with classical physics, where equations
of the form

are used to describe the diffusion of heat and other sub-
stances through continuous media, our equation

(12)

with as defined in (11) is called the heat equation on
, and the resulting kernels are called diffusion kernels or

heat kernels. In the context of learning theory, the princi-
pal components of the diffusion kernel were used in Belkin
and Niyogi (2001) to find optimal embeddings of data man-
ifolds. To the best of our knowledge, diffusion kernels have
not been proposed previously for direct use in kernel-based
learning algorithms.

We remark that diffusion kernels are not restricted to simple
unweighted graphs. For multigraphs or weighted symmet-
ric graphs, all we need to do is to set to be the
total weight of all edges between and and reweight the
diagonal terms accordingly. The rest of the analysis carries
through as before.



3. Interpretation
To motivate the use of diffusion kernels as a natural way of
quantifying the structure of discrete input spaces in learn-
ing algorithms, in this section we discuss some of the many
interpretations of diffusion kernels on graphs.

3.1 A stochastic and a physical model

There is a natural class of stochastic processes on graphs
whose covariance structure yields diffusion kernels. Con-
sider the random field obtained by attaching independent,
zero mean, variance randomvariables to each ver-
tex . Now let each of these random variables “send”
a fraction of their value to each of their respective
neighbors at discrete time steps ; that is, let

Introducing the time evolution operator

can be written as

(13)

The covariance of the random field at time is

Cov

which simplifies to

Cov

(14)

by independence at time zero, . Note
that ( holds regardless of the particular distribution of
the , as long as their mean is zero and their variance
is .

Now we can decrease the time step from to by replac-
ing by and by in (13) 2, giving

which, in the limit , is exactly of the form (3).
In particular, the covariance becomes the diffusion kernel
Cov . Since kernels are in some sense noth-
ing but “generalized” covariances (in fact, in the case of

2Note that is here used to denote infinitesimals and not the
Laplacian.

Gaussian Processes, they are the covariance), this example
supports the contention that diffusion kernels are a natural
choice on graphs.

Closely related to the above is an electrical model. Differ-
entiating (13) with respect to yields the differential equa-
tions

These equations are the same as those describing the re-
laxation of a network of capacitors of unit capacitance,
where one plate of each capacitor is grounded, and the
other plates are connected according to the graph structure,
each edge corresponding to a connection of resistance .
The then measure the potential at each capacitor at
time . In particular, is the potential
at capacitor , time after having initialized the system by
decharging every capacitor, except for capacitor , which
starts out at unit potential.

3.2 The continuous limit

As a special case, it is instructive to again consider the in-
finitely fine square grid on . Introducing the similarity
function , the heat equation (12) gives

Since the Laplacian is a local operator in the sense that
is only affected by the behavior of in the neigh-

borhood of , as long as is continuous in , the
above can be rewritten as simply

It is easy to verify that the solution of this equation with
Dirac spike initial conditions is just the
Gaussian

showing that similarity to any given point , as expressed
by the kernel, really does behave as some substance diffus-
ing in space, and also that the familiar Gaussian kernel on

,

is just a diffusion kernel with . In this sense, dif-
fusion kernels can be regarded as a generalization of Gaus-
sian kernels to graphs.



3.3 Relationship to random walks

It is well known that diffusion is closely related to ran-
dom walks. A random walk on an unweighted graph
is a stochastic process generating sequences
where in such a way that

if and zero otherwise.

A lazy randomwalk on with parameter
is very similar, except that when at vertex , the process will
take each of the edges emanating from with fixed proba-
bility , i.e. for , and
will remain in place with probability . Consider-
ing the distribution in the limit with

and leads exactly to (3) showing
that diffusion kernels are the continuous time limit of lazy
random walks.

This analogy also shows that can be regarded as a
sum over paths from to , namely the sum of the probabili-
ties that the lazy walk takes each path. For graphs in which
every vertex is of the same degree , mapping each
vertex to every path starting at weighted by the square
root of the probability of a lazy random walk starting at
taking that path,

where
is the set of all paths on , gives a representation of the
kernel in the space of linear combinations of paths
of the form

for loops, i.e.,
otherwise

where is the reverse of . In the
basis of loops and linear combinations

for all pairs of non-loops, this does give a diagonal
representation of , but not a representation satisfying (1),
because there are alternating ’s and ’s on the diago-
nal.

4. Some Special Graphs
In general, computing exponential kernels involves diago-
nalizing the generator

which is always possible because is symmetric, and then
computing

which is easy, because will be diagonal with
. The diagonalization process is computation-

ally expensive, however, and the kernel matrix must be
stored in memory during the whole time the learning al-
gorithm operates. Hence there is interest in the few special
cases for which the kernel matrix can be computed directly.

4.1 -regular trees

An infinite -regular tree is an undirected, unweighted
graph with no cycles, in which every vertex has exactly
neighbors. Note that this differs from the notion of a

rooted -ary tree in that no special node is designated the
root. Any vertex can function as the root of the tree, but
that too must have exactly neighbors. Hence a 3-regular
tree looks much like a rooted binary tree, except that at the
root it splits into three branches and not two.

Because of the graph’s symmetry, can
only depend on the relative positions of and , namely the
length of the unique path between them, . Chung and
Yau (1999) show that

R (15)

for , and

R (16)

for the diagonal elements.

4.2 Complete graphs

In the unweighted complete graph with vertices, any pair
of vertices is joined by an edge, hence .
It is easy to verify that the corresponding solution to (12) is

for

for

(17)

showing that with increasing , the kernel relaxes expo-
nentially to . The asymptotically exponen-
tial character of this solution, and the convergence to the
uniform kernel for finite , are direct consequences of the
fact that is a linear operator, and we shall see this type
of behavior recur in other examples.



4.3 Closed chains

When is a single closed chain of length , will
clearly only depend on the distance along the chain
between and . Labeling the vertices consecutively from
to , the similarity function at a particular vertex

(without loss of generality, vertex zero) can be expressed
in terms of its discrete Fourier transform

The heat equation implies

which after some trigonometry translates into

showing that the Fourier coefficients decay independently
of one another. Using the inverse Fourier transform, the so-
lution corresponding to the initial condition
at will be

where , and the kernel itself will be

4.4 The hypercube and tensor products of complete
graphs

Kernels on the special graphs considered above can serve
as building blocks for tensor product kernels, as in (8).
For example, it is natural to identify binary strings

of length with the vertices
of the -dimensional hypercube. Con-

structing a diffusion kernel on the hypercube regarded as a
graph amounts to asserting that two sequences are neigh-
bors if they only differ in a single digit. From (17) and (8),
the diffusion kernel on the hypercube will be

which only depends on the Hamming distance be-
tween and , and is extremely easy to compute. Simi-
larly, the diffusion kernel on strings over an alphabet of

p

p’

q

q’

Figure 1. The three-regular tree (left), which extends to infinity in
all directions. A little bending of the branches shows that it is iso-
morphic to two rooted binary trees joined at the root (right). The
method of images enables us to compute the diffusion kernel be-
tween vertices of the binary tree by mapping each to a pair of ver-
tices and on the three-regular tree and summing the
contributions from , , and .

size will be

where is the number of character places at which
and differ.

4.5 Rooted trees

We have noted above that the distinction between -regular
trees and infinite -ary rooted trees is that arbitrarily
designating a vertex in the former as the root, we find that
it has an extra branch emanating from it (Figure 1). Taking
for simplicity , the analytical formulæ (15) and (16)
are hence not directly applicable to binary rooted trees, be-
cause if we simply try to ignore this branch by not mapping
any data points to it, in the language of the electrical anal-
ogy of Section 3.1, we find that some current will “seep
away” through it. The kernel can be obtained, however,
using the method of conjugation.

The crucial observation is that the graph possesses mirror
symmetry about the edge connecting this errant branch to
the rest of the graph. Mapping each vertex of the binary
tree to the analogous vertex on one side of this plane of
symmetry in the -regular tree and its mirror im-
age on the other side solves the problem, because,
by symmetry, in the electrical analogy, the flow of current
across the critical edge connecting the two halves of the
graph will be zero. This construction, called the method of
images, corresponds to a transformation matrix of the form

...
. . .



Hamming kernel Diffusion kernel Improvement
Data Set #Attr error error error

9 10 7.44 1.70% 206.0 3.70 0.83% 43.3 0.30 50% 80%
13 2 19.50 3.90% 420.0 18.80 4.13% 192.0 1.80 4% 57%
11 42 19.19 1.20% 1149.5 18.50 1.27% 1033.4 0.40 4% 8%
22 10 1.40 0.44% 117.7 0.007 0.018% 27.2 0.40 99% 77%
16 2 4.79 1.16% 176.5 4.53 1.44% 60.6 1.5 6% 66%

Table 1. Results on five UCI data sets. For each data set, only the categorical features are used. The column marked indicates
the maximum number of values for an attribute; thus the data set has binary attributes. Results are reported for the setting of the
diffusion coefficient achieving the best cross-validated error rate.

and yields in analytical form the diffusion kernel for infinite
binary trees

R R

where designates the root and measures distances on
the binary tree.

4.6 String kernels

Another application of conjugated diffusion kernels is in
the construction of string kernels sensitive to matching non-
contiguous substrings. The usual approach to this is to in-
troduce “blank” characters into the strings and to be
compared, so that the characters of the common substring
are aligned..

Using the tensor product of complete graphs approach de-
veloped above, it is easy to add an extra character to the
alphabet to represent . We can then map and to a
generalized hypercube of dimensionality
by mapping each string to the vertices corresponding to
all its posssible extensions by ’s. Let us represent an
alignment between and by the vector of matches

where
, ,

and let be the set of all alignments
between and . Assuming that all virtual strings are
weighted equally, the resulting kernel will be

(18)

for some combinatorial factor and

In the special case that , the combinatorial fac-
tor becomes constant for all pairs of strings and (18) be-
comes computable by dynamic programming by the recur-
sion , where

when and otherwise. For the
derivation of recursive formulæ such as this, and compar-
ison to other measures of similarity between strings, see
(Durbin et al., 1998).

5. Experiments on UCI Datasets
In this section we describe preliminary experiments with
diffusion kernels, focusing on the use of kernel-based
methods for classifying categorical data. For such prob-
lems, it is often quite unnatural to encode the data as vec-
tors in Euclidean space to allow the use of standard kernels.
However as our experiments show, even simple diffusion
kernels on the hypercube, as described in Section 4.4, can
result in good performance for such data.

For ease of experimentation we use a large margin classi-
fier based on the voted perceptron, as described in (Fre-
und & Schapire, 1999). In each set of experiments we
compare models trained using a diffusion kernel and a ker-
nel based on the Hamming distance,

.

Data sets having a majority of categorical variables were
chosen; any continuous features were ignored. The diffu-
sion kernels used are given by the natural extension of the
hypercube kernels given in Section 4.4, namely

where is the number of values in the alphabet of the
-th attribute.

Table 1 shows sample results of experiments carried out
on five UCI data sets having a majority of categorical fea-
tures. In each experiment, a voted perceptron was trained
using 10 rounds for each kernel. Results are reported for
the setting of the diffusion coefficient achieving the best
cross-validated error rate. The results are averaged across
40 random 80%/20% splits of the training/test data. In ad-
dition to the error rates, also shown is the average number
of support vectors (or perceptrons) used. We see that even
when the difference between the two kernels is not statis-
tically significant, as for the dataset, the diffu-
sion kernel results in a significantly sparser representation.
The reduction in error rate varies, but the simple diffusion
kernel generally performs well.

The performance over a range of values of on the
data set is shown in Figure 2. We note that this is a
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Figure 2. The average error rate (left) and number of support vec-
tors (right) as a function of the diffusion coefficient on the

data set. The horizontal line is the baseline perfor-
mance using the Hamming kernel.

very easy data set for a symbolic learning algorithm, since
it can be learned to a high accuracy with a few simple log-
ical rules. However, standard kernels perform poorly on
this data set, and the Hamming kernel has an error rate of
1.40%. The simple diffusion kernel reduces the error to
0.007%.

6. Conclusions
We have presented a natural approach to constructing ker-
nels on graphs and related discrete objects by using the ana-
logue on graphs of the heat equation on Riemannian mani-
folds. The resulting kernels are easily shown to satisfy the
crucial positive semi-definiteness criterion, and they come
with intuitive interpretations in terms of random walks,
electrical circuits, and other aspects of spectral graph the-
ory. We showed how the explicit calculation of diffusion
kernels is possible for specific families of graphs, and how
the kernels correspond to standard Gaussian kernels in a
continuous limit. Preliminary experiments on categorical
data, where the standard kernel methods of Euclidean space
were previously not applicable, indicate that diffusion ker-
nels can be effectively used with standard margin-based
classification schemes. While the tensor product construc-
tion allows one to incrementally build up more powerful
kernels from simple components, explicit formulas will be
difficult to come by in general. Yet the use of diffusion ker-
nels may still be practical when the underlying graph struc-
ture is sparse by using standard sparse matrix techniques.

It is often said that the key to the success of kernel-based al-
gorithms is the implicit mapping from a data space to some,
usually much higher dimensional, feature space which bet-
ter captures the structure inherent in the data. The motiva-
tion behind the approach to building kernels presented in
this paper is the realization that the kernel is a general rep-
resentation of this inherent structure, independent of how
we represent individual data points. Hence, by construct-
ing a kernel directly on whatever object the data points nat-
urally lie on (e.g. a graph), we can avoid the arduous pro-
cess of forcing the data through any Euclidean space alto-
gether. In effect, the kernel trick is a method for unfolding
structures in Hilbert space. It can be used to unfold non-

trivial correlation structures between points in Euclidean
space, but it is equally valuable for unfolding other types
of structures which intrinsically have nothing to do with
linear spaces at all.
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