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ABSTRACT
Purpose: The impact of the presence of a germ-line

BRCA1 mutation on gene expression in normal breast fibro-
blasts after radiation-induced DNA damage has been inves-
tigated.

Experimental Design: High-density cDNA microarray
technology was used to identify differential responses to
DNA damage in fibroblasts from nine heterozygous BRCA1
mutation carriers compared with five control samples with-
out personal or family history of any cancer. Fibroblast
cultures were irradiated, and their expression profile was
compared using intensity ratios of the cDNA microarrays
representing 5603 IMAGE clones.

Results: Class comparison and class prediction analysis
has shown that BRCA1 mutation carriers can be distin-
guished from controls with high probability (�85%). Sig-
nificance analysis of microarrays and the support vector
machine classifier identified gene sets that discriminate the
samples according to their mutation status. These include
genes already known to interact with BRCA1 such as
CDKN1B, ATR, and RAD51.

Conclusions: The results of this initial study suggest
that normal cells from heterozygous BRCA1 mutation car-

riers display a different gene expression profile from con-
trols in response to DNA damage. Adaptations of this pilot
result to other cell types could result in the development of
a functional assay for BRCA1 mutation status.

INTRODUCTION
It is estimated that 5–10% of breast cancer patients develop

the disease because of the presence of a mutation in a breast
cancer predisposition gene (1). A significant proportion of this
population (just under a half) has a mutation in one of the known
breast cancer predisposition genes, BRCA1 or BRCA2. Besides
the obviously disease-causing deleterious mutations, very often
small alterations caused by a single base change (missense
mutations) are found in these genes. Their functional effects are
usually unknown and so they are termed variants of uncertain
significance. Some of these variants of uncertain significance
could also have a role in breast cancer predisposition, but it is
not currently possible to establish their disease-causing effect.
The available diagnostic tests for mutation analysis of BRCA1/2
are time and labor intensive, expensive, and none of them allow
the identification of all types of mutation. Our aim in this
preliminary study was to investigate if gene expression profiling
could be used to distinguish between heterozygous BRCA1
mutation carriers and control samples from reduction mammo-
plasties with a very low chance of the presence of a BRCA1
mutation. If this were possible, then this would have the poten-
tial to develop a method to identify the presence of a BRCA1
defect.

The BRCA1 gene encodes a large nuclear protein (220
kDa) that has multiple possible functions, including DNA dam-
age signaling, DNA repair, growth inhibition, and transcription
regulation (2, 3). The involvement of BRCA1 in transcriptional
regulation has been revealed in several studies showing direct
interaction with other transcriptional activators and repressors
such as STAT1, MYC, TP53, ZBRK1, and CDKN1B (4) It
appears that BRCA1 is phosphorylated as a response to various
DNA damaging agents by kinases such as CHEK2, ATM, and
ATR, and this phosphorylation results in changes in its protein-
protein interactions, which then can lead to regulatory changes
in the expression of various target genes (5).

Microarray studies have been shown to be of great value in
understanding the molecular biology of many diseases, and they
have been successfully used to classify various tumors based on
their clinical phenotype or genetic background (reviewed in Ref.
6). This approach has enabled classification of tumors and
division into prognostic groups on the basis of their global
patterns of gene expression. One of the first of these studies
classified myeloid and lymphoblastic leukemias using a class
discovery procedure (7) demonstrating the feasibility of this
technique. Similarly, it has been shown that breast epithelial cell
lines have an expression profile that is distinct from breast
tumors and that breast tumor samples can be divided into
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different clinical outcome groups based on clustering algorithms
using cDNA microarray data (8). Tumor classification using
gene expression profiling has also been successfully used to
distinguish breast cancer subclasses with important clinical im-
plications (9) and to discriminate breast tumors on the basis of
estrogen receptor status and lymph node status (10). BRCA1 and
BRCA2 mutation status have also been shown to influence the
gene expression profile of breast tumors (11). Various studies
provide evidence that microarray analysis can be used to iden-
tify gene expression changes induced by drug treatments and
radiation (12). Our aim in the present study was to assess the
potential of gene expression profiling in discriminating between
normal cells with BRCA1 mutations and controls after induced
DNA damage.

MATERIALS AND METHODS
Samples and cDNA Microarrays. Individuals who are

heterozygous for BRCA1 germ-line mutations were identified
from the BRCA1 and BRCA2 predictive testing program in the
Royal Marsden Hospital NHS Trust/The Institute of Cancer
Research, Cancer Genetics Carrier Clinic. Prophylactic mastec-
tomy specimens were collected from nine individuals with a
germ-line BRCA1 mutation, and short-term breast fibroblast cell
lines were established. The mutation status of these samples is
listed in Table 1. For our five control samples, we used similar
cell lines established from reduction mammoplasty specimens.
The healthy women undergoing reduction mammoplastic sur-
gery had no family or personal history of any cancer. From the
tissue specimens, short-term primary fibroblast cultures were
established by standard methods. Confluent cells were irradiated
with 15 Gy at a high dose rate (1 Gy/min) using a 60Co source.
Cells were maintained at 37 °C during irradiation. Total RNA
was extracted from the cells 1 h after the treatment using an
RNeasy kit (Qiagen, Valencia, CA). Reference RNA was pooled
from three cancer cell lines (MDA-MB-231, A549, and DLD-1).
RNA samples were reverse transcribed into cDNA fluorescently
labeled with Cy3 and Cy5. Equal amounts (20 �g) of sample
and reference cDNA were mixed and hybridized onto the mi-
croarrays. We used high density cDNA microarrays manufac-
tured by the Section of Molecular Carcinogenesis, The Institute
of Cancer Research, representing 5603 IMAGE cDNA clones.
Details of the clone set and hybridization conditions are avail-

able online.9 Image acquisition and analysis were performed
using GenePix 4000B scanner and GenePix Pro 4 (Axon Instru-
ments, Inc., Union City, CA), respectively. Signal intensities for
Cy3 and Cy5 channels were normalized based on the assump-
tion that on average the genes have the same overall expression
level in the experimental and the reference sample.

Data Analysis. Of the 5603 cDNA clones represented on
the arrays, 1967 clones were filtered out and used in the con-
sequent analysis by the criteria that these data points showed
signal intensity in at least one of the channels (red or green)
2-fold above background in a minimum of 12 of our 14 samples.

We analyzed our data first using supervised methods of
class comparison and class prediction (13). For class compari-
son, we have used a recently described statistical method, sig-
nificance analysis of microarrays (SAM; Ref. 14), to identify
genes in which the levels of expression significantly correlate
with the presence of a BRCA1 mutation. SAM uses t test
statistics to compare the expression level of each gene in cells
from BRCA1 mutation carriers and control individuals. Our aim
was to find if there is a statistically significant difference be-
tween carriers and noncarriers in the expression level of a
number of genes and to identify the genes that are most likely to
show consistent differences. SAM, using repeated permutation,
computes a score for each gene that measures the strength of its
correlation with the presence of a mutation. A threshold value
can be chosen, which will determine the false positive rate (false
discovery rate) as estimated by repeated permutation and count-
ing the number of genes selected as significant.

In an independent analysis to evaluate the predictive accu-
racy, we have used a support vector machine (SVM) classifier
(15) with a linear kernel and feature ranking using the Fisher
score. Predictive accuracy was determined across a range start-
ing with all features (data from 1967 cDNA clones as mentioned
above) followed by successive removal of the least discrimina-
tive feature (according to the Fisher score) through to the top
two discriminative features. The test accuracy was evaluated
using leave-one-out (LOO) cross-validation (15). To provide a
baseline for comparison (for null prediction), we used a permu-
tation test, i.e., the class labels were randomly shuffled 100
times, and the LOO test error was evaluated.

For hierarchical cluster analysis and principal component
analysis, the Genesis software package (16) was used with the
expression data of the significant genes identified by SAM and
the discriminatory features identified by SVM as input.

RESULTS AND DISCUSSION
We have analyzed the expression profiles of nine normal

heterozygous BRCA1 mutation carrier breast fibroblast samples
and compared these to the profiles of five reduction mammo-
plasty fibroblast samples with a very low probability of the
presence of a BRCA1 mutation (the controls). All these samples
were short-term primary cultures, and they were irradiated (15
Gy) to induce sublethal DNA damage. In a preliminary study,
we also included nonirradiated samples; however, the analysis

9 Internet address: http://www.icr.ac.uk/array/array.html.

Table 1 The range of mutations in the BRCA1 gene in the mutation
carrier samples

Mutation

185delAG
185delAG
546 T�G nonsense
1294del40
1623del5
2371delTG
2732insT
4184del4
5382insC
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of this set showed no significant gene expression differences
(data not shown), and we have therefore concluded to focus on
the comparison of irradiated samples only. RNA samples were
collected 1 h after the treatment for expression profiling. We
also investigated the time course of expression profile changes
on a smaller sample size at 15 min, 1 h, and 3 h after irradiation
and found the most robust changes occurred at the 1-h time
point and therefore chose this time point for the analysis of all
samples. On the microarrays, 6503 cDNA clones were repre-
sented. Image analysis filtered the data as specified in “Methods
and Materials,” and expression ratios of 1967 genes were in-

cluded in the final data processing. We then carried out a class
comparison analysis using SAM. This statistical method showed
that there are significant differences between the two classes,
BRCA1 mutation carriers and controls, and ranked the genes
according to their contribution to the separation of the two
classes.

Choosing a 20% false discovery rate, SAM called 113
genes significant; with a more stringent 10 or 5% false discov-
ery rate, 47 and 22 genes, respectively, were selected as signif-
icant discriminatory features (supplementary data: Table A).
Sometimes a smaller expression level change is more signifi-
cant, as is shown in Table A, because the more consistent small
changes mean a more persistent difference between the classes.

We then used these gene sets for unsupervised hierarchical
clustering. The clustering dendogram based on 47 significant
genes (10% false discovery rate) is shown in Fig. 1. Using the
larger or smaller (SAM-113 or SAM-22) gene sets showed a
very similar result (data not shown). This illustrates the clear
separation of the two classes with the exception of one sample,
which although from a mutation carrier, clusters with the con-
trols at the extreme right hand site of the dendrogram. This
individual has a substantial family history of breast cancer, so in
this case, this is very likely to be a breast cancer causing
mutation. However, there could be some other explanations for
the clustering of this sample with the noncarriers such as an
effect on gene expression levels by modifier genes in this
particular family or the fact that this mutation leads to a trun-
cation at the extreme COOH-terminal of the BRCA1 protein,
which still maintains its transcription regulation function. This
hypothesis, however, has to be tested with additional samples
with this particular mutation.

Principal component analysis also separated the two
classes with the input data of the gene sets as above. The plot
shown in Fig. 2 is the result of this analysis using 47 significant
genes (very similar results were obtained by the larger or
smaller sets of 113 and 22 genes). This shows that samples from
BRCA1 mutation carriers and controls are well separated with
the exception of the same sample mentioned above (5328insC).

Fig. 1 Hierarchical cluster analysis of 14 normal breast fibroblast
samples, 9 with BRCA1 mutation (2), and 5 control reduction mammo-
plasty specimens (1). Here, we show the clustering dendogram based on
expression data of the 47 significant genes identified by significance
analysis of microarray with a 10% false discovery rate (see “Results”).
One BRCA1 mutation carrier sample clusters with the controls on the
right hand side and this sample has the 5382insC mutation.

Fig. 2 Principal component analysis by experiment. The red dots rep-
resent the BRCA1 mutation carrier samples, and the blue dots are the
controls. For this analysis, we have used the data from the 47 significant
genes identified by significance analysis of microarray. The outlier
mutation carrier sample (arrow) has the 5382insC mutation.
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Table 2 List of the 79 significant genes that distinguish between BRCA1 mutation carriers and controls found by both SAM (significance
analysis of microarrays) and supervised vector machine learning

Gene ID Gene name Gene symbol Cytoband SAM score Fischer score Fold change

823819 Small acidic protein SMAP 11p15.1 4.7852 5.8424 1.6983
843133 Mitochondrial ribosomal protein S27 MRPS27 5q13.1 3.9985 3.7419 1.4057
827144 Mitochondrial ribosomal protein L19 MRPL19 2q11.1–q11.2 3.8322 3.3732 1.7955
814095 Leukotriene A4 hydrolase 3.7927 3.4539 1.9715
1469230 Cytochrome c oxidase subunit VIII 3.6587 3.1063 1.5867
773332 Integrin, � E 3.6425 2.2973 1.4971
795738 Guanine nucleotide binding protein 10 GNG10 9q32 3.4786 2.5591 1.6732
307933 NADH dehydrogenase (ubiquinone) 1 � subcomplex, NDUFB5 3q27.1 3.3704 2.4379 1.5740
784319 Homosapiens cDNA FLJ11904 fis, 3.2585 2.7129 1.6436
73381 General transcription factor IIA, 2 (12kD subunit) GTF2A2 15q21.3 3.2423 2.2717 1.3606
486607 Ubiquitin-conjugating enzyme E2E 1 3.2349 2.3016 1.7839
950489 Superoxide dismutase 1, soluble (amyotrophic lateral

sclerosis 1
SOD1 21q22.11 3.2187 2.0813 1.4477

83363 Protein-L-isoaspartate (D-aspartate) O-methyltransferase PCMT1 6q24–q25 3.1101 2.1273 1.5285
647946 Cyclin-dependent kinase inhibitor 1B (p27, Kip1) CDKN1B 12p13.1–p12 3.0815 2.2875 1.6931
399318 Casein kinase 2, � polypeptide CSNK2B 6p21.3 3.0208 2.1933 1.3881
825312 ATP synthase, H� transporting, mitochondrial F0

complex,
ATP5J 21q21.1 3.0144 2.1999 1.4922

813712 ATP synthase, H� transporting, ATP5F1 1p13.1 2.9841 2.4326 1.9074
843094 Ubiquitin-like 1 (sentrin) UBL1 2q33 2.9766 2.0640 1.3704
487425 Centrin, EF-hand protein, 3 (CDC31 homologue, yeast) CETN3 5q14.3 2.9655 1.4333 2.0350
1071516 Endothelin 2 EDN2 1p34 2.9196 1.9463 1.6805
853938 Dynein, cytoplasmic, light polypeptide DNCL1 12q24.23 2.9080 1.9238 1.8573
273435 V-yes-1 Yamaguchi sarcoma viral oncogene homologue 1 YES1 18p11.31–p11.21 2.9002 1.6008 1.5459
44255 Mitochondrial ribosomal protein L3 MRPL3 3q21–q23 2.8751 2.1402 1.2560
74566 Exportin 1 (CRM1 homologue, yeast) XPO1 2p16 2.8219 1.7335 1.8171
842836 Serine (or cysteine) proteinase inhibitor, clade B

(ovalbumin),
SERPINB1 6p25 2.7929 1.4809 1.5577

782439 ATP synthase, H� transporting, mitochondrial F0
complex, subunit e

ATP5I 4p16.3 2.7881 2.1030 1.6593

796759 Voltage-dependent anion channel 3 2.7497 2.1154 1.7171
772261 Mitogen-activated protein kinase 14 MAPK14 6p21.3–p21.2 2.7265 1.0913 1.2858
199403 Lectin, galactoside-binding, soluble, 8 (galectin 8) LGALS8 1q42–q43 2.7249 1.6844 1.6818
433666 Ring-box 1 RBX1 22q13.2 2.7234 1.7511 1.3774
781366 RNA binding motif protein 8A 2.6812 1.6614 1.4856
768377 Activity-dependent neuroprotector ADNP 20q13.13–q13.2 2.6720 1.5629 1.4684
725454 CDC28 protein kinase 2 CKS2 9q22 2.6713 1.6524 2.4104
295137 Aspartoacylase (aminoacylase 2, Canavan disease) ASPA 17pter-p13 2.6579 1.5413 1.4266
825470 Topoisomerase (DNA) II � (170kD) TOP2A 17q21–q22 2.6457 1.4840 1.6589
824352 RAD23 homologue B (S. cerevisiae) RAD23B 9q31.2 2.6148 1.5752 1.9017
665774 ESTs, Weakly similar to translation initiation factor

eIF4E
EIF4E 4q21–q25 2.5891 1.5695 1.8769

210887 Suppression of tumorigenicity 13 (colon carcinoma) ST13 22q13.2 2.5795 1.6472 1.4489
773511 Hook2 protein HOOK2 19p13.12 2.5617 1.5728 1.7035
41940 Chromosome X open reading frame 1 CXorf1 Xq27.3 2.5111 1.3006 1.3378
878130 SMT3 suppressor of mif two 3 homologue 2 (yeast) SMT3H2 17q25.2 2.5086 1.2273 1.5061
757144 Heterogeneous nuclear ribonucleoprotein A3 2.4734 1.3023 1.5109
767277 Peptidyl prolyl isomerase H (cyclophilin H) PPIH 1p34.1 2.4453 1.4105 1.5530
739993 Brain and reproductive organ-expressed (TNFRSF1A

modulator)
BRE 2p23.3 2.3907 1.4007 1.4335

80374 Pyruvate dehydrogenase (lipoamide) � 1 2.3775 1.6878 1.2103
788109 Ataxia telangiectasia and Rad3 related ATR 2.3700 1.3132 1.3205
795936 Translin TSN 2q21.1 2.3625 1.4549 1.5836
75415 Histidine triad nucleotide binding protein 1 HINT1 5q31.2 2.3432 1.1386 1.3855
327350 Heterogeneous nuclear ribonucleoprotein A2/B1 HNRPA2B1 7p15 2.3366 1.3176 1.6091
133637 Protein kinase, DNA-activated, catalytic polypeptide PRKDC 8q11 2.3353 1.3240 1.4405
489489 Lamin B receptor LBR 1q42.1 2.3202 1.0545 1.8520
1012799 Histone deacetylase 1 HDAC1 1p34 2.3098 1.9998 1.3305
130242 Cyclin-dependent kinase 7 CDK7 5q12.1 2.3097 1.1261 1.4370
150314 Lysophospholipase I LYPLA1 8q11.23 2.3052 1.2361 1.5082
838744 Eukaryotic translation initiation factor 4 �, 3 EIF4G3 1p36.12 2.3041 1.2753 3.2958
79688 Small nuclear ribonucleoprotein D2 polypeptide 16.5kDa SNRPD2 19q13.2 2.2848 1.4725 1.2482
260303 V-ets erythroblastosis virus E26 oncogene homologue 2

(avian)
2.2813 1.2861 1.9798

897177 ESTs, Weakly similar to expressed protein 2.2637 1.5324 1.3195
785967 Erythrocyte membrane protein band 4.1-like 2 EPB41L2 6q23 2.2470 1.1712 1.5460
843426 WW45 protein WW45 14q13–q23 2.2434 1.2059 1.5137
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For supervised class prediction, we used a SVM classifier
and LOO cross-validation to evaluate the test error. With the use
of feature selection, the top 100 discriminatory genes were
selected (supplementary data: Table B). We found that class
prediction was most accurate if we used only 15 of the top
ranked discriminatory features (ranked by the Fisher score). In
this regime, the SVM learned with zero training error and
achieved a minimum of two LOO test errors from 14 for a soft
margin SVM and three errors from 14 for a hard margin SVM
(15). To evaluate the significance of this result, we performed a
permutation test in which the class labels were randomly shuf-
fled 100 times, and the LOO test error was evaluated. This gave
a test error of 7.00 � 2.31 for the null hypothesis (no prediction
ability) that is given along with the observed test error curve
(supplementary data: Fig. 1.). Therefore, finding two or three
test errors from 14 samples means that this is significant, rather
than occurring by chance (P 	 0.02–0.05). Because our dataset
is small, a confirmation of this effect will require more samples
for an independent test set. However, the consistent drop in the
test error curve below that expected from the null hypothesis
does indicate that this is a real effect. When we compared the
discriminatory features from SVM (100 genes) and the signifi-
cant genes from SAM (113 genes), we found that �80% of the
genes (79 clones) were present in both lists, confirming their
significant role in separating the two classes. In Table 2, the list
of the 79 clones is presented with the SAM scores and Fischer
scores (see “Methods and Materials”); the fold changes are also
shown from the SAM analysis. These changes are mostly very
subtle and often a smaller expression level change corresponds

to a higher score if it is consistent because a more persistent
small change can translate to a more significant value in this
analysis.

Of these 79 cDNA clones, 5 are unknown expressed se-
quence tags, the remaining clones are known genes. Among
them, several have a function in cell cycle regulation, DNA
repair, and gene expression regulation. RAD51 and RAD23 were
found to be significantly down-regulated in BRCA1 mutation
carriers compared with controls after radiation-induced DNA
damage. Because both genes have an important role in DNA
damage repair, their down-regulation in BRCA1 mutation car-
riers could affect the DNA damage response in these cells.
Interestingly, the CDKN1B/p27Kip gene, which is a member of
the cyclin-dependent kinase inhibitor family, was also signifi-
cantly down-regulated in BRCA1 mutation carriers compared
with controls. This gene has been previously shown to be
transactivated by BRCA1 (17), and the CDKN1B protein level
has been shown to be decreased during breast and ovarian tumor
development (18, 19). We have found that ATR was similarly
down-regulated in mutation carriers compared with the controls.
This gene has been also linked with BRCA1 in the damage
signaling pathway; there is evidence that ATR phosphorylates
BRCA1 (20), but it is also possible that BRCA1 has an effect on
the regulation of ATR as has been suggested in a recent study
(21). It has been shown that BRCA1 facilitates the activity of
ATR in its phosphorylation of various downstream elements.
We propose that this scaffolding function of BRCA1 could be
because of transcription activation.

In summary, we have shown that heterozygous BRCA1

Table 2 Continued

Gene ID Gene name Gene symbol Cytoband SAM score Fischer score Fold change

813983 COP9 constitutive photomorphogenic homologue
subunit 3

COPS3 17p11.2 2.2398 1.3274 1.4113

193106 ATP synthase, H� transporting, mitochondrial F0
complex, subunit c

ATP5G3 2q31.1 2.2346 1.2695 1.4008

299388 Nuclear transport factor 2 NUTF2 16q22.1 2.2343 1.1758 1.3239
322914 Acid phosphatase 1, soluble ACP1 2p25 2.2260 1.1579 1.4693
80410 Farnesyl diphosphate synthase (farnesyl pyrophosphate

synthetase, d
FDPS 1q21.3 2.2189 1.1400 1.4935

487373 ATP synthase, H� transporting, mitochondrial F0
complex, subunit c

ATP5G1 17q21.32 2.2181 1.2127 1.4795

1472753 Homosapiens cDNA FLJ34869 fis, clone
NT2NE2014650,

2.2073 1.1529 1.9695

1476053 RAD51 homolog (RecA homologue, E. coli) (S.
cerevisiae)

RAD51 15q15.1 2.2069 1.1858 1.9954

781704 High mobility group nucleosomal binding domain 3 HMGN3 6q14.2 2.1907 1.1293 1.5213
812167 Golgi associated, � adaptin ear containing, ARF

binding protein
GGA3 17q25.2 2.1775 1.1907 1.3577

795847 COP9 constitutive photomorphogenic homologue
subunit 5

COPS5 8q12.3 2.1550 1.0630 1.4744

796096 Replication protein A1 (70kD) RPA1 17p13.3 2.1511 1.2004 1.3024
342640 KIAA0101 gene product 2.1287 1.1810 3.8000
127925 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 18

(Myc-regulated)
DDX18 2q14.1 2.1050 1.0639 1.3671

47542 Small nuclear ribonucleoprotein D1 polypeptide
(16kD)

SNRPD1 18q11.1 2.1029 1.0874 1.5059

814701 MAD2 mitotic arrest deficient-like 1 (yeast) MAD2L1 4q27 2.0966 1.9901 1.6559
271744 Epiregulin EREG 4q21.1 2.0869 1.0876 1.3443
773554 Spindlin SPIN 9q22.1–q22.3 2.0744 1.0876 1.3261
52629 Calcium/calmodulin-dependent protein kinase 1 CAMK1 3p25.3 2.0674 1.0879 1.3139
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mutation carrier fibroblasts have a distinctive gene expression
phenotype after radiation-induced DNA damage. Our class pre-
diction model was able to discriminate with 85% accuracy
between normal breast fibroblasts from BRCA1 mutation carri-
ers and fibroblasts from reduction mammoplasty specimens
from women with no family history. Furthermore, the genes that
exhibit significant changes in their expression level after radi-
ation-induced DNA damage have been shown in other studies to
be part of the functional pathways through which BRCA1
operates. This supports the use of this preliminary result as the
basis for the development of a functional assay to assess the
downstream effects of germ-line changes in the BRCA1 gene.
Clearly, this initial study needs additional validation experi-
ments, a larger sample set needs to be analyzed, and the pre-
diction model will be tested on an independent sample set.
However, our results provide evidence that expression profiling
is a valuable approach in BRCA1 mutation testing, which could
also be applied to BRCA2 testing. The use of fibroblasts is not
the most practical as a routine screening test; however, the
adaptation of these results to other cells types, e.g., lympho-
cytes, could lead to the development of a functional assay for
BRCA1 germ-line mutation status. This would facilitate the
diagnostic service in cancer genetics. Because the mutation test
is expensive, samples could be prescreened by expression pro-
filing to determine whom should be offered full mutation
screening. Furthermore, it may be possible to distinguish those
missense variants with functional significance from neutral
polymorphisms, and it may be applicable to those families that
harbor a regulatory mutation. This preliminary study has pro-
vided initial data that demonstrate that this approach is worth
pursuing for clinical adaptation to functional genetic testing.
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