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Background: Comparative genomic hybridization (CGH)
is a relatively new molecular cytogenetic method for de-
tecting chromosomal imbalance. Karyotyping of human
metaphases is an important step to assign each chromo-
some to one of 23 or 24 classes (22 autosomes and two
sex chromosomes). Automatic karyotyping in CGH analy-
sis is needed. However, conventional karyotyping ap-
proaches based on DAPI images require complex image
enhancement procedures.
Methods: This paper proposes a simple feature extrac-
tion method, one that generates density profiles from
original true color CGH images and uses normalized pro-
files as feature vectors without quantization. A classifier is
developed by using support vector machine (SVM). It has
good generalization ability and needs only limited training
samples.

Results: Experiment results show that the feature extrac-
tion method of using color information in CGH images can
improve greatly the classification success rate. The SVM
classifier is able to acquire knowledge about human chro-
mosomes from relatively few samples and has good gen-
eralization ability. A success rate of moe than 90% has
been achieved and the time for training and testing is very
short.
Conclusions: The feature extraction method proposed
here and the SVM-based classifier offer a promising com-
puterized intelligent system for automatic karyotyping of
CGH human chromosomes. Cytometry 47:17–23, 2002.
© 2001 Wiley-Liss, Inc.
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Chromosome analysis is an essential procedure for de-
tecting genetic abnormalities or damages due to environ-
mental factors and for diagnosing cancer. Karyotyping, as
a part of the task, is an important step to assign each
chromosome to one of 23 or 24 classes (22 autosomes and
a pair of sex chromosomes). Because manual karyotyping
is tedious and time-consuming, great efforts have been
made to develop computer-aided classifiers during the
past years (1). So far as classification is concerned, com-
mercial computerized chromosome analysis systems are
far inferior to analysis done by human experts.

Most routine karyotyping is carried out on Giemsa-
stained metaphase images, which appear as dark images
on a light background and have a characteristic pattern of
light and dark bands unique to each type of chromosome.
Usually, a human chromosome is characterized by its size,
banding pattern, and centromere position (1,2). Density
profiles and width profiles are generated to represent
these characteristics (1). Various approaches, such as Fou-
rier decomposition, mixture of several Gaussian distribu-
tions, band transition (BT), 2D Laplace filtering, and
Markov networks have been proposed for extracting fea-
tures from profiles. Carothers and Piper (1) provided a
thorough review of the approaches presented before the
early 1990s. The “knock-out” algorithm (3), principal com-

ponent analysis (3,4), the Kohonen network (5), and
wavelet packets (6) were also used for chromosome fea-
ture extraction. These procedures of feature extraction
are relatively complex and sometimes time-consuming.

Comparative genomic hybridization (CGH; 7) is a mo-
lecular cytogenetic method developed in the 1990s to
detect chromosomal imbalances. It has great potential for
a broad range of applications to basic research and clinical
practice, such as detecting chromosome aberrations in
cancer and mapping their locations on normal chromo-
somes. Unlike G-banded gray-scale chromosome images,
the CGH images of human metaphases are darkfield im-
ages, with true colors (red, green, and blue images with an
intensity of 0–255 or higher).

Conventionally, the banding patterns obtained from the
DAPI image are used for chromosome identification,
which can be facilitated by using the DAPI-inverse image
resembling a Giemsa banding pattern (8–11). However,
this approach requires a complex image enhancement
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algorithm before satisfactory results can be achieved be-
cause the resolution and contrast of DAPI images are
much lower than those of G-banded metaphase images.
To date, few studies about color karyotyping have been
published (12,13). Although some studies on karyotyping
have investigated spectral karyotyping (SKY; 12) and mul-
ticolor fluorescence in situ hybridization (M-FISH; 13), the
approaches proposed are not suitable for CGH analysis.

In this paper, we propose a feature extraction approach
that uses red and blue signals in original true color CGH
images to generate integrated density profiles without
image enhancement. After normalization, profiles are used
directly as feature vectors without further treatment such
as quantization and dimension reduction. Errington and
Graham (14) used profiles as feature vectors. Unfortu-
nately, due to the limitation of neural networks on the size
of input vectors, the profiles had to be coarsely quantized
to get small feature vectors. This would surely lose some
useful information when applied to DAPI images. In con-
trast, the approach investigated here uses normalized pro-
files directly as features without quantization and the
resolution of the R, B scale of the profiles is maintained. In
this way, the complex procedure of further feature ex-
traction is avoided. This method has been proven to be
more straightforward and effective.

Various classification methods, such as the linear dis-
criminant function, fuzzy subset theory, Bayesian theo-
rem, and nearest-neighbor rule were applied for chromo-
some classification in the early years (1). Since the early
1990s, neural networks have been applied to chromo-
some classification (3–5,14–17). However, the input vec-
tors to neural networks should not be too large and this
requires a complex feature extraction or dimension reduc-
tion procedure. Rutovitz et al. (18) used a kernel-density
method to estimate the likelihood function for each class,
but this is computationally feasible only for small feature
vectors.

A new learning algorithm has been proposed by Vapnik
(19,20), which is based on statistical learning theory. This
algorithm, called support vector machine (SVM), provides
the largest margin between the optimal separation hyper-
plane (OHP) and the closest training vectors, which re-
sults in good generalization ability with limited training
samples. SVM has shown excellent performance in a num-
ber of difficult learning tasks, such as handwritten digit
recognition (21) and face detection (22). Because SVM has
effectively solved the curse of dimensionality (19,20),
there is little limitation of the dimensionality imposed on
input vectors. This may circumvent the complex feature
extraction and dimension reduction procedure.

Because SVM has little limitation on the size of input
vectors and can achieve good generalization ability with
limited training samples, effective feature vectors can be
obtained easily from the original red and blue images in
CGH human metaphases without complex further treat-
ment such as quantization or dimension reduction. We
present our approach for karyotyping CGH human met-
aphases, using R, B color signals for feature extraction and
SVM for the design of the classifier.

MATERIALS AND METHODS
CGH and Image Acquisition

All the CGH images were kindly provided by Dr.
Tommy Gerdes (University of Copenhagen, Denmark).
The images are of the size 748 ! 573 and are in true colors
(red, green, and blue images with intensity of 0–2562).
Details about the CGH slide preparation and image acqui-
sition were described in a study by Kirchhoff et al. (9).
There are 71 metaphase images with 23 classes (22 auto-
somes and a pair of X chromosomes) because the refer-
ence DNA was obtained from a karyotypically normal
female (9). The original classification of the chromosomes
was determined by Dr. Mingrong Wang and Ms. Xin Xu,
biologists from the Chinese Academy of Medical Science.

Chromosome Feature Selection and Extraction

Feature selection. Conventional chromosome classi-
fication is based on complex feature extraction proce-
dures (1,2). However, the features of CGH images are
quite different from those of G-banded images. For exam-
ple, the banding patterns of DAPI images are not as clear
as those of normal G-banded images and the banding
patterns are not exactly the same in the three channels of
R, G, B (Fig. 1). There is notable difference among profile
R, profile G, and profile B. DAPI-inverse images are used
for chromosome classification in CGH analysis (8–11).
Unfortunately, a complex image enhancement algorithm
is required to get clear banding patterns before achieving
satisfactory results and color information from R, G signals
is neglected. In CGH images, the reference hybridization
(usually red) shows “hybridization banding,” which is not
fully correlated with DAPI banding and is useful for chro-
mosome classification. For the test DNA image (usually
green), the pattern of test hybridization will vary from one
CGH analysis to another because of the variety of chro-
mosome imbalance. The information contained in green
images might be unrelated to the chromosome class. In
this study, the integrated density profiles generated from
channel R, B are selected as features. The main reason is
that the integrated density profiles can provide informa-
tion on banding patterns, chromosome length, and cen-

FIG. 1. A chromosome and its integrated density profiles of channels R,
G, B.
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tromere position. Another reason is that this feature ex-
traction approach is relatively simple. To present the
profile information consistently, all profiles are calculated
from the end of the short arm to the end of the long arm.
Figure 1 shows a chromosome in CGH images at the left,
with its corresponding integrated density profiles at the
right.

Digital Image Preprocessing

The preprocessing of CGH images aims at getting the
boundary and the medial axis of each chromosome and
calculating the profiles as depicted in Figure 2. CGH im-
ages are analyzed using the software developed by Liang Ji
and Jiang Ni, namely, a CGH analyzer implemented on
an IBM-compatible PC, manufactured by Legend Grove,
Beijing, P.R. China, with the AMD Athlon 500-Mhz proces-
sor and 128 MB RAM. Some critical steps concerning
karyotyping are listed below.

The RGB image is transformed into a gray image by
calculating the average of the three components. The
chromosomes are segmented according to the method
described in Ji (23). The segmented chromosomes are
then used as masks to obtain chromosomes from the
original color image. The medial axis of each segmented
chromosome is then determined by using the Hilditch
skeleton (24). Along each normal of the medial axis, the
red and blue signals are measured to get integrated density
profiles.

The short arm of a chromosome is defined as the begin-
ning part of its profiles. The following method is used to
locate the centromere of a chromosome. In CGH images, the
centromeric region appears blue because it is blocked by
Cot-1 DNA during CGH experiments. This feature of CGH
images is used to determine the position of the centromere.
A gray image is obtained by the following formula

Gray ! ! B "
R # G

2
if B "

R # G

2
$ 0,

0 otherwise

where Gray is the gray value for the new image and R, G,
B are the three color components of the corresponding
CGH image. The average gray value is then measured
along each normal of the medial axis. The centromere of

a chromosome is determined as the position on the medial
axis with the largest average gray value. If the largest value
is zero, the centromere is found using the method de-
scribed by Piper and Granum (2). Then, the end of the
short arm is determined and the profiles are arranged in
the same order.

The density profiles generated from channel R, B are
labeled with dr, db, respectively, and presented in the
following vectors:

dr ! "d1
r, d2

r, . . . , dN
r # db ! "d1

b, d2
b, . . . , dN

b#,

where N is the length of the chromosome medial axis.
Normalization and feature vector. There are large

variations in the appearance of metaphases due to various
contractions and intensities of staining. In addition, some
chromosomes may be missing from, or added to, a normal
metaphase. Because such differences are not directly rel-
evant to chromosome classification, their effects must be
removed from feature measurements by appropriate nor-
malization (1).

For length measurements, a simple approach of normal-
ization is adopted by setting the length of the medial
chromosome in each metaphase to a fixed length. The
lengths of other chromosomes in the same metaphase can
then be standardized by applying a linear transform:

N̂ !
N ! N̂med

Nmed
,

where N̂ is the length of a chromosome after normaliza-
tion, N is the original length of the chromosome, Nmed is
the length of the medial chromosome in the metaphase,
and N̂med is a constant.

This method is chosen because the length of the medial
chromosome in a metaphase is relatively steady and reli-
able in spite of missing chromosomes in some met-
aphases. The normalized length is chosen to be longer
than any of the original ones of the same class. Interpola-
tion is needed to obtain the normalized profile. Linear
interpolation, Lagrange interpolation, and spline interpo-
lation were tested and the best result was obtained by
using the spline interpolation method. Therefore, the
spline interpolation was chosen. After the spline interpo-
lation, two normalized feature vectors d̂r, d̂b are obtained.

Because input vectors of SVM should have the same
dimension while the lengths of chromosomes are differ-
ent, a standard length of profiles is needed. All lengths of
profiles are extended to a maximum length, Nmax, and
finally standard profiles are obtained as the following:

d! r ! "d! 1
r, d! 2

r, . . . , d! k
r , . . . , d! Nmax

r #

d! k
r ! ! d̂k

r 1 % k % N̂
0 N̂ & k % Nmax

FIG. 2. The boundary and the medial axis of a chromosome and profile
calculation.

19KARYOTYPING OF CGH IMAGES USING SVM



d! b ! "d! 1
b, d! 2

b, . . . , d! k
b, . . . , d! Nmax

b #

d! k
b ! ! d̂ k

b 1 % k % N̂
0 N̂ & k % Nmax

,

where N̂ is the normalized length of a chromosome and
Nmax is a constant.

This approach of normalization, expansion, and pad-
ding zeros also provides the information on the chromo-
some length, so that other features about chromosome
length are unnecessary. The variations between met-
aphases are reduced after normalization.

Density profile. The normalized integrated density
profiles dr, db of each chromosome are calculated using
the algorithm presented above.

Feature vector. The density profiles of a chromosome
can be joined to get a feature vector of 2* Nmax dimension.
Because the use of kernels in SVM overcomes the curse of
dimensionality and the fast algorithm of SVM (25) has
been well developed, the training time of the SVM classi-
fier is relatively short. The selection of such 2* Nmax

dimension vectors as features without any dimension re-
duction or quantization does not decrease much the effi-
ciency of the classifier. This approach avoids loss of useful
information during feature extraction and is simple and
straightforward. Consequently, a chromosome can be
characterized by the following feature vector:

X ! "d! r, d! b#.

SVM for Classification

The role of a classifier is to learn the classification rule
from training samples and then to apply the rule to new
samples to make decisions or predictions. Thus, for a
classifier, one of the most important properties is its gen-
eralization ability or its ability to make correct predictions
not only on the training data, but also on test data previ-
ously unseen in the training phase. The SVM algorithm
contains a term to control the generalization ability so that
optimal generalization can be obtained based on only
limited training samples.

For linearly separable two-class cases, it could be un-
derstood intuitively that the separation hyperplane that
provides the largest margin from the plane to the closest
training vectors would be optimal (Fig. 3). The basic idea
of SVM is to seek the goal that not only all training samples
are classified correctly, but that the separation margin is
maximized. It has been proven that this will result in the
best generalization ability (19,20,26).

For linearly nonseparable cases or cases where not all
the training samples can be correctly classified simulta-
neously, SVM seeks a balance between minimal training
errors and maximal separation margin. This goal can be
realized by the following mathematical problem.

Solving for a linear separation function y $ sgn[w ! x %
b] that minimizes

"w, &# !
1

2
"w"2 # C#$

i$1

n

&i% (1)

subject to

yi'"w ! xi# # b( " 1 # &i $ 0, i ! 1, . . . , n (2)

where (w&) is the optimization goal, x ! Rm is the feature

vector, y $ {)1,%1} is the label of the two classes,
2

"w"2 is

equal to the margin (minimizing "w" corresponds to max-
imizing the separation margin), &i $ 0, i $ 1, . . . ,n are
slack variables that control the training errors, and param-
eter C quantifies the trade-off between training error and
system generalization ability (19,20,26).

The solution of this problem can be obtained by using
the Lagrangian multipliers. This leads to the following
quadratic programming (QP) problem. The detailed dem-
onstration can be found in studies by Vapnik (19,20) and
Zhnag (26). Maximize

Q"*# ! $
i$1

n

*i "
1

2 $
i, j$1

n

*i*jyiyj"xi ! xj# (3)

subject to

0 % *i % C, i ! 1, . . . , n (4)

where *i are the Lagrangian multipliers. The solution of
original problem is then

f"x# ! y ! sgn+"w ! x# # b, ! sgn!$
i$1

n

*iyi"xi ! x# # b&
(5)

where f(x) represents the decision rule. There are several
approaches to solve this QP problem. In Collobert and
Bengio (25), a fast algorithm was proposed to solve large-
scale problems.

FIG. 3. The OHP and the margin. The dots and circles represent sam-
ples of class 1 and class 2, respectively.
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Linear SVM can be generalized to nonlinear SVM. The
basic idea is to transform the original input space {x}onto
a high-dimensional space by some nonlinear mapping
-(x), and then find the optimal hyperplane in this feature
space. Usually this kind of mapping would cause the
problem known as the curse of the dimensionality. How-
ever, it has been discovered that in SVM, this kind of
mapping need not be computed explicitly (19,20,26).
Because only inner products are calculated in the high-
dimensional feature space, provided certain conditions
hold, these inner products can be calculated equivalently
in the input space by some kernel K(x1,x2) $ -(x1) !
-(x2). The mathematical problem of linear SVM (de-
scribed by formulae 3,4,5) can be modified to that of the
nonlinear SVM:

maximizing Q"*# ! $
i$1

n

*i "
1

2 $
i, j$1

n

*i*j yiyjK"xi, xj# (6)

subject to 0 % *i % C (7)

and the obtained separation function is

f"x# ! sgn#$ yi*iK"xi, x# " b% (8)

Different nonlinear classifiers can be realized by differ-
ent kernels. In our experiments, the Gaussian kernel

K"x1, x2# ! exp!)
"x1 " x2"2

2.2 & is chosen. Here, . is the

parameter of the Gaussian kernel.
Because of the limitations of this study, the theoretical

research results on SVM are not included. Further details
of the SVM algorithm and its implementations are available
in other studies (19,20,25,26).

Design of the Classifier

Multiclass classifier. As described in the previous
section, the standard SVM was originally proposed for
binary classification. Typically, a multiclass classifier is
constructed by combining several binary classifiers, for
example, the strategy of “one versus the other“ and “pair-
wise” (27). How to effectively extend SVM to multiclass
classification in one step is still an ongoing research issue.
For the methods that consider all classes of data at once,
a much larger optimization problem is required. Until
now, experiments have been limited to small data sets
(19). Experimental comparison between the one versus
the other and pairwise strategies shows that the two
approaches achieved approximate classification accuracy.
However, the one versus the other strategy is much sim-
pler and faster. Finally, we adopt the one versus the other
scheme to build the n-class classifier based on two-class
SVM (19). This is done by (1) constructing n two-class
SVM classifiers fk(x), k $ 1,2,. . .,n, where rule fk(x)
separates the data of class k from those of all other classes,
i.e., sgn[ fk(xi

)] $ 1 if data xi belongs to class k, and

sgn[ fk(xi)] $ )1 otherwise and (2) constructing the
n-class classifier by choosing the class m corresponding to
the maximal value of functions fk(x), k $ 1,2,. . .,n:

m ! arg max+ f1"xi#, . . . , fn"xi#,

Context-dependent classifier. It seems intuitively
obvious that misclassification error rates could be reduced
by taking into account the fact that the normal human
karyotype consists of 22 pairs of autosomes and a pair of
sex chromosomes (1). Therefore, a simple context-depen-
dent classifier is developed based on the number con-
straint of the homologue chromosomes in a metaphase. In
the karyotyping results of a metaphase, each class con-
tains at most two chromosomes.

The constraint can be enforced as follows. First, chro-
mosomes in a metaphase are classified using the multiclass
classifier based on SVM. The karyotyping results are
checked to find whether there exists any class containing
more than two chromosomes. If such a class is found, it
should be labeled. All the chromosomes having been clas-
sified into the labeled class are rearranged according to
their decision function values on the classifier for the
labeled class. Then, the two chromosomes with the first
and second largest decision function values are finally
classified to the labeled class. The rest of the chromo-
somes in the class are relabeled as rejected samples. If
there exist some classes that contain more than two chro-
mosomes, there must exist some classes that contain zero
or one chromosome, and these are labeled as nonfull
classes. All rejected samples are redistributed into the
nonfull classes using the same scheme as used in the
multiclass classifier described above. The check and redis-
tribution procedures are carried out iteratively until there
is no rejected sample.

RESULTS
In this study, the total experiment data set consists of 71

CGH images of human metaphases. It is a small set. All the
metaphases are from females. Therefore, samples of only
23 classes (22 autosomes and the X sex chromosome) can
be offered. Among all metaphases, 51 were selected ran-
domly as the training set and the remaining ones were
used as the test set.

Experiment 1: Using Integrated Density
Profiles of B Signals as Features

Conventionally, DAPI images are used for chromosome
identification in CGH analysis (8–11). Table 1 lists the
experiment results by selecting the integrated density
profiles of original DAPI signals in CGH images as feature

Table 1
Classification Results by Using Density Profiles

of DAPI Signal as Features

Train data Test data Total errors Success rate

2,273 893 217 75.70%
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vectors. Choosing the optimal parameter (the one used
when achieving the highest success rate) for the Gaussian
kernel and using a context-free multiclass SVM classifier, a
success rate above 75% was obtained.

Experiment 2: Using Integrated Density
Profiles of R, B Signals as Features

To make use of the color information of CGH images,
we chose normalized integrated density profiles generated
from original R, B signals as feature vectors and used a
context-free multiclass SVM classifier. The experiment re-
sults are listed in Table 2. A success rate above 90% was
achieved. These results show that the color information
from the R signal improves greatly the success rate.

Experiment 3: Using the
Context-Dependent Classifier

A higher success rate was achieved by considering the
number constraint of the homologue chromosomes in a
metaphase. A higher success rate can also be obtained
with the simple context-dependent classifier developed
on the scheme described above. The experiment results
of using density profiles from the two channels of R, B as
feature vectors and the context-dependent multiclass SVM
classifier are shown in Table 3. The whole algorithm is a
time saver: at most, it takes 5 min to train 51 metaphases
and 3 min to test 20 metaphases on an IBM PC as de-
scribed previously.

CONCLUSIONS AND DISCUSSION
This study proposes a simple, fast, straightforward, and

effective feature extraction method for CGH karyotyping.
Different from the chromosome classification approaches
that use enhanced DAPI-inverse images for classification,
the method presented here uses the R, G, B signals in the
original CGH images to determine the centromere posi-
tion and to generate integrated density profiles. The use of
kernels in SVM makes it possible to select whole normal-
ized integrated density profiles directly as features without
any further treatment such as quantization or dimension
reduction. This method avoids the complex image en-
hancement, feature extraction and selection, or feature
dimension reduction and the possible loss of useful infor-

mation. The feature extraction approach is simple,
straightforward, timesaving, and has been proved to be
effective.

The SVM classifier offers a promising computerized
intelligent system for automatic karyotyping of CGH hu-
man chromosomes. It is important for the SVM to easily
use the information provided by the integrated density
profiles, which makes the simple feature extraction
method feasible. Good generalization ability and a success
rate of above 90% can be achieved easily. Although there
are only 71 metaphases available, the SVM classifier shows
its good generalization ability with limited training sam-
ples. This is quite important in practice.

The Vysis CGH System, which uses enhanced DAPI-
inverse images for karyotyping, achieved a 90% success
rate (Dr. Jim Piper, personal communication). However,
we have not seen any published results of the detailed
DAPI-inverse image enhancement algorithm and its suc-
cess rate. The feature extraction method and the SVM-
based classifier offer a promising system for automatic
karyotyping of CGH human chromosomes.

There has been discussion about whether the test DNA
image (usually the green signal) can be used for chromo-
some classification in CGH analysis. It is true that the
information carried by the test DNA image is completely
unrelated to the chromosome class and that the pattern of
test hybridization will have no consistency from one CGH
analysis to another. Therefore, the green signals are com-
pletely unreliable when applied to chromosome classifi-
cation. Because of the variety of chromosome imbalances
in CGH analysis, the decision rule obtained by some data
set may not have good generalization ability when applied
to the unknown test data. However, experiments showed
that better results could be obtained if all three profiles of
R, G, B signals were used. Experiment results of selecting
integrated density profiles of R, G, B signals as features are
shown in Tables 4 (with a context-free classifier) and 5
(with a context-dependent classifier). In practice, some
biologists use green images during manual karyotyping.
For example, when the ends or centromeres are not clear
in DAPI images, the red and green images are used for
reference. The CGH images available refer to only two
samples of test DNA (9). Further experiments are needed

Table 2
Classification Results By Using Density Profiles

of R, B Signals as Features

Train data Test data Total errors Success rate

2,273 893 92 89.70%

Table 3
Classification Results By Taking Into Account

the Number Constraint

Train data Test data Total errors Success rate

2,273 893 82 90.82%

Table 4
Classification Results By Using Density Profiles of R, G, B

Profiles as a Feature and a Context-Free Classifier

Train data Test data Total errors Success rate

2,273 893 83 90.71%

Table 5
Classification Results By Using Density Profiles of R, G, B
Profiles as a Feature and a Context-Dependent Classifier

Train data Test data Total errors Success rate

2,273 893 67 92.50%
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to determine whether the G signals can be generalized to
wider applications. We are now collecting data from dif-
ferent laboratories for further research.

There is room for improvement. The selection of the
kernel, its parameters such as . of the Gaussian kernel,
and the tradeoff parameter C lack sufficient theoretical
guidance and finding the optimal parameter of the Gauss-
ian kernel requires many experiments. More training data
can surely increase the success rate. For example, a higher
success rate has been achieved by using the Jackknife
procedure. The context-dependent algorithm used here is
simple and could be improved by modifying it. The im-
ages of CGH metaphases are not suitable for classification
training. A lot of overlapping chromosomes can be found
in the metaphases (Fig. 4). Part of the banding patterns in
the profiles corresponding to the overlapping region can-
not be restored completely. There are less than 42 chro-
mosomes in some metaphases. These factors worsen the
experiment results. Because all the profiles are generated
from original CGH images, image enhancement before
profile generation may improve the success rate.
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FIG. 4. A metaphase with overlapping chromosomes.
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