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ABSTRACT
Motivation: The large volume of single nucleotide polymor-
phism data now available motivates the development of meth-
ods for distinguishing neutral changes from those which have
real biological effects. Here, two different machine-learning
methods, decision trees and support vector machines (SVMs),
are applied for the first time to this problem. In common with
most other methods, only non-synonymous changes in protein
coding regions of the genome are considered.
Results: In detailed cross-validation analysis, both learning
methods are shown to compete well with existing methods,
and to out-perform them in some key tests. SVMs show bet-
ter generalization performance, but decision trees have the
advantage of generating interpretable rules with robust estim-
ates of prediction confidence. It is shown that the inclusion of
protein structure information produces more accurate meth-
ods, in agreement with other recent studies, and the effect of
using predicted rather than actual structure is evaluated.
Availability: Software is available on request from the authors.
Contact: westhead@bmb.leeds.ac.uk

INTRODUCTION
An important aspect of the post-genome biology of model
organisms and human is to understand the biological effects
of inherited variations between individuals. For instance, a
key problem for the pharmaceutical industry is to understand
variations in drug treatment responses among individuals at
the molecular level. Among these variations, single nucleotide
polymorphisms (SNPs) have received much attention recently.
SNPs are subtle variations, such as insertions, deletions and
substitutions observed in the genomic DNA sequences of
individuals of the same species. An enormous volume of SNP
data are available in the public databases (http://snp.cshl.org
and http://www.ncbi.nlm.nih.gov/SNP, Sherry et al., 2001).

SNPs in protein coding exons are classified as synonymous
or non-synonymous according to whether or not they alter
the protein sequence. Non-synonymous SNPs (nsSNPs) can
affect gene function through their effect on the structure and
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function of the encoded protein. There are many examples of
SNPs in coding regions that have a relationship with disease
phenotypes (Chakravarti, 2001; Licinio and Wong, 2002).
Equally, synonymous SNPs, and those outside protein coding
regions can affect gene function through altered regulation,
splicing and levels of protein expression. The volumes of SNP
data now available pose a key question: can we predict which
SNPs are likely to be neutral and which are likely to affect
gene function?

Several recent studies have considered how deleterious
and neutral nsSNPs might be distinguished using sequence
and structural aspects of the proteins in which they occur.
A study by Wang and Moult (2001) showed that most of
the detrimental nsSNPs affect protein function indirectly
through effects on protein structural stability, for instance
by disruption to the protein hydrophobic core, and these
authors provided a set of empirical rules to predict deleterious
SNPs. Following this, other workers (Chasman and Adams,
2001; Sunyaev et al., 2001; Ramensky et al., 2002; Saunders
and Baker, 2002) have asserted the importance of protein
structural considerations, and developed prediction methods
that depend on mapping SNPs to positions in (homologous)
three-dimensional (3D) protein structures, as well as using
information from multiple sequence alignments.

In contrast to the above studies, which use mapping to
3D structures, Ng and Henikoff (2001) have developed the
SIFT (Sorting Tolerant from Intolerant) method, based on
sequence conservation and scores from position-specific scor-
ing matrices. These authors assert that their method performs
‘similarly’ to the structure-based methods. However, fair
comparison of these tools is fraught with difficulties, and the
intimate relationship of 3D structure with protein function
and stability would suggest that the use of explicit structural
information alongside sequence conservation will be found
to improve performance, as supported by the recent study of
Saunders and Baker (2002).

Of the tools described above, the Chasman and Adams
method is the only one that involves automated learning from
training data. While the other methods depend on rules derived
empirically, this method uses a training data set to estimate the
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probability that a particular nsSNP will affect protein function.
It is based on the description of a mutation or SNP in terms of
a set of attributes, including sequence conservation and struc-
tural features. The probability of an effect is estimated from
the proportion of training set mutations with matching attrib-
utes, in which an effect on function is known to occur. Effects
are predicted if the probability is >0.5. The probability also
serves as an estimate of the confidence level of the predic-
tion. Attributes were chosen by a detailed statistical analysis
of their effect on function, and the method was trained and
cross-validated using the extensive systematic mutation data
sets available for lysozyme (Alber et al., 1987; Rennell et al.,
1991) and the lac repressor (Markiewicz et al., 1994; Suckow
et al., 1996).

Automated learning from training data is an attractive
alternative to manual tuning of empirical rules. After the set
of descriptive attributes have been defined for each mutation,
automated methods are able to explore much more fully how
these attributes can be used to produce a prediction method
that is, in some sense, approximately optimal. It is also much
easier to perform rigorous cross-validation of such methods.
Here, we report the application of two machine-learning
methods, decision trees, as implemented in C4.5 (Quinlan,
1993) and support vector machines (SVMs) (Cristianini and
Shawe-Taylor, 2000). The principal difference between these
methods lies in the type of classifying function they attempt
to learn. The decision tree represents the classifier as a tree
structure in which each node represents a decision based on
an attribute value, and it leads to a set of predictive rules that
can be interpreted easily. On the other hand, the SVM relies
on a mapping of the input attributes to a feature space that can
be of very high dimension, where the classifier takes the form
of a linear function (hyperplane). These methods have been
found to be effective in many diverse fields (Mitchell, 1997).
Here, we provide a comparison of the two methods and show
that they have a contribution to make in SNP analysis.

The attributes used by our methods include both sequence
and structure-based information, but in contrast to other
methods we investigate the possibility of using only struc-
tural attributes that can be predicted with sufficient accuracy
from sequence (secondary structure and solvent accessibility),
rather than relying on mapping mutations to (homologous) 3D
structures. By removing the need for a homologous structure
the applicability of our method is extended significantly. It
is not clear from the literature which of the currently avail-
able methods performs the best, but the availability of detailed
cross-validation data and prediction confidence estimates for
the Chasman and Adams method (above) is very conveni-
ent for comparison with our learning methods. Accordingly,
we adopt their training sets (unbiased mutation data for lyso-
zyme and lac repressor proteins), and replicate and extend
their cross-validation techniques. Throughout this paper, the
Chasman and Adams method is referred to as ‘the probabilistic
method’. As an example application of our method, we report

Fig. 1. A simplified example decision tree. Acc is the solvent access-
ibility (b = buried, e = exposed, i = intermediate), Mut_res is the
mutated residue identity (R = Arginine), Cons_value is the conser-
vation score of the original residue. In this case the final decision is
binary, Y (effect) or N (no effect).

the application of our method to the SNPs observed to occur
between two strains of the nematode worm Caenorhabditis
elegans.

SYSTEM AND METHODS
Here, we provide only brief descriptions of the decision tree
and SVM methods. More detail can be found in the references
cited.

Decision trees
Decision tree learning (Mitchell, 1997; Witten and Frank,
2000) is a means for approximating discrete-valued target
functions, in which the learned function is represented by a
decision tree. Each instance (in this case a mutation or a SNP)
is sorted down the tree from the root according to the val-
ues of its attributes (e.g. types of residues involved, sequence
conservation, structural features) until it reaches a classifying
leaf node (‘effect’ or ‘no effect’) where the prediction is made.
This process is illustrated in the (fictitious) example shown in
Figure 1.

Here we used the C4.5 decision tree software, which is
derived from Hunt’s method (Hunt et al., 1966) for construct-
ing a decision tree. The software can be downloaded freely
(http://www.cse.unsw.edu.au/~quinlan/). First, the decision
tree was obtained for the training data using the program c4.5
and rules were generated by the program called c4.5rules,
which uses the decision tree constructed by c4.5. Experi-
ments were conducted to optimize the input parameters of the
software (for both prediction accuracy and generalization), but
the default values were found to be approximately optimal in
most cases, and were used throughout this paper.

The decision tree software gives an estimated accuracy for
each rule, which is derived from the training data. These estim-
ated accuracies were used to assign confidence levels to the
predictions. Rules with estimated accuracies of x% were taken
to have a confidence level of x/100 (e.g. a rule with estimated
accuracy of 90% was assigned an estimated confidence level
of 0.9). The confidence level can be viewed as an estimate
of the probability that a prediction from the rule is correct.
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In order to facilitate comparison with other published meth-
ods, we report (see Results) error rates for predictions made
from rules with confidence levels above a defined threshold
(e.g. error rates at the confidence level threshold of 0.6 contain
predictions from all rules whose confidence level is �0.6).

SVMs
Currently, SVMs (Vapnik, 1998) are gaining great attention in
the field of bioinformatics. Here, a classic two-class problem
is addressed: SNPs have to be divided into two classes, ‘effect’
or ‘no effect’. Like decision trees, SVMs use an input vector of
attributes for each instance. Using a kernel function the input
vectors are mapped to a feature space of high dimension in
which the SVM method constructs a hyperplane that optimally
separates instances from the two classes. Here, we constructed
SVMs using mySVM (Vapnik, 1998, http://www-ai.cs.uni-
dortmund.de/SOFTWARE/MYSVM/). After various trials of
different parameters for better performance (data not shown),
we chose the polynomial kernel function of degree d = 2
given by

K(x, y) = (x∗y + 1)d

The values of the other parameters for the mySVM software
were ε = 1.0 × 10−12 and C = 1.

The mySVM software does not provide any estimate of
confidence in classifications, and SVM theory in this area is
currently not well developed. In contrast to our analysis of
decision trees, therefore, we do not provide confidence levels
for predictions made by SVMs.

Data sets
The systematic unbiased mutagenesis data set of lac repressor
(Markiewicz et al., 1994; Suckow et al., 1996) and T4 lyso-
zyme (Alber et al., 1987; Rennell et al., 1991) were used to
train and validate the prediction methods. Mutations in the
first 62 residues of lac repressor were omitted, because they
are missing from protein databank structure of this protein
(Berman et al., 2000). The number of mutations taken for
the analysis was 3303 mutations for lac repressor and 1990
for lysozyme. The experimental results for both the proteins
are given as four-valued expressions of the effect of each
mutation on the protein function. In the case of lysozyme,
plaque-forming ability was rated as ++ (no effect), + (slight
effect), +/− (larger effect) and − (complete absence). Taking
++ as a neutral mutation and all the rest as effects gives a data
set in which 38% of mutations have an effect on function. In
the case of the lac repressor the four values given were + (no
effect), +− (slight effect), −+ (larger effect) and − (com-
plete absence). Here, ‘+’ was considered as neutral and rest
as effects, resulting in 45% of the mutations having an effect
on the protein function. These definitions were adopted by
Chasman and Adams.

It is not clear that the method above is the best way to convert
the four experimental effect classes into a binary classifica-
tion. Here, it was employed in order to give comparability to

previous studies, which have adopted the same definition, and
because it leads to a similar rate of mutations causing effects
(38–45%) in each data set, suggesting that it defines a similar
degree of effect in each protein. It is not clear how this defin-
ition relates to observable phenotypic effects on an organism,
a point that we will discuss later.

In order to investigate these issues further we used a third,
smaller data set (336 mutations) for the HIV protease (Loeb
et al., 1989). This data set contains at least one mutation
at every sequence position. In this case the experimentalists
define only three degrees of effect, + (no effect), +/− (small
effect), and − (complete absence). Taking a definition ana-
logous to the one adopted for the other data, where everything
other than + is considered as an effect, resulted in 67% of
mutations being considered as effects. This percentage is sig-
nificantly different to the 38–45% observed in lac repressor
and lysozyme data. Therefore, in addition, we investigated
how an alternative definition in which both + and +/−
were treated as neutral would change the performance of the
learning methods. With this latter definition 47% of protease
mutations have an effect on function.

The SNPs data of C.elegans genome were obtained from
St Louis Washington University web site (Wicks et al., 2001),
(http://www.genome.wustl.edu/projects/celegans/index.php?
snp=1) and the six chromosome data from Sanger
centre website (http://www.sanger.ac.uk/Projects/C_elegans/
WORMBASE/GFF_files.shtml). The SNPs data are between
CB4856, an isolate from Hawaiian Islands, with reference to
the completely sequenced N2 strain (from Bristol, UK). The
SNP data are from part (5.4 Mb) of the C.elegans genome. The
SNPs had to be associated to the position in the chromosome
data by Fasta (Pearson and Lipman, 1988; Pearson, 1990)
alignment. Using the exon, intron and intergenic information
provided by Sanger centre web site, the protein coding regions
were translated to get the corresponding protein sequences.

Attributes
The attributes of SNPs used for predictions were chosen from
the following set: the residue identities of the original and
mutated residue, the physicochemical classes of these residues
(hydrophobic, polar, charged, glycine), sequence conser-
vation score at the mutated position, molecular mass shift
on mutation, hydrophobicity difference, secondary structure,
solvent accessibility and buried charge. This set is based on
other attribute sets from the literature; changes in these quant-
ities on mutation are likely to affect protein function (e.g.
by changing a key conserved functional residue) or protein
structural stability (e.g. by disruption of the hydrophobic core
through a residue size change reflected in a large molecular
mass shift). Only the latter three attributes require inform-
ation from protein structure rather than sequence, but these
have been included because they can be predicted (see below)
and so our method does not require mapping to a homologous
3D structure. In contrast to other methods, we do not use the
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crystallographic B factor, which would limit the applicability
of our method to sequences that can be mapped to homolog-
ous X-ray structures. In the Results section, we investigate the
subset of these attributes that produces optimal cross-validated
predictions.

The secondary structure and solvent accessibility inform-
ation for lysozyme and lac repressor proteins was extrac-
ted from homology-derived secondary structure of proteins
(Sander and Schneider, 1991) files, as 3D structures are
available for these proteins. A three-state description of
solvent accessibility (buried, intermediate and exposed) was
used. In order to study the effect of using predicted rather than
actual structure, and in cases of proteins of unknown struc-
ture, PHD (Rost and Sander, 1993, 1994) was used to predict
secondary structure and solvent accessibility. The hydro-
phobicity values were taken from the literature. The sequence
conservation score was calculated using the ScoreCons pro-
gram (Valdar and Thornton, 2001a,b) using multiple sequence
alignments of proteins extracted by BLAST (Altschul et al.,
1990) searches of the SWALL database (Boeckmann et al.,
2003) using an E-value cut-off of 0.01 and aligned with
Clustal W (Thompson et al., 1994). The mutation mass shift
was calculated as the difference between the relative molecu-
lar mass of the mutated residue and the original residue. The
wild type residue was deemed to be a buried charge if it was
one of K, R, D, E, H and its solvent accessibility was in the
buried class.

Cross-validation methods
Machine learning methods are generally evaluated by a stat-
istical technique called cross-validation. The data are divided
into two sets randomly. The first (‘training set’) is used in
training the learning method; the second (‘test set’) is used for
subsequent evaluation of the accuracy of the trained method.
This tests the ability of the method to generalize and make
predictions on unknown data.

We report three types of cross-validation: homogeneous,
heterogeneous (after Chasman and Adams) and mixed. For
homogeneous cross-validation, each protein data set was
taken separately and cross-validation performed on that set
in isolation. For heterogeneous cross-validation, the data set
of one protein (e.g. lysozyme) was used as training set and
that of the other protein (e.g. lac repressor) was used as test
set. For mixed cross-validation, the data from each protein was
pooled as a single data set and cross-validation performed on
this pooled set.

In case of homogeneous and mixed cross-validations, the
data were randomized and split into 10 equal parts. One part
was used as test set and the remainder as training set. This
procedure was repeated 10 times so that each case or example
(here it is each mutation) was used exactly once for testing.
This is called 10-fold cross-validation, and has been shown to
give good estimated error rates (Witten and Frank, 2000). In
10-fold cross-validation, the central tendency and spread of

results were assessed as median and interquartile range (these
were found to be very similar to the alternative mean and SD).

RESULTS
The results presented in this section concern error rates or
misclassification rates, observed in predictions of functional
effects of mutations (nsSNPs). Predictions are binary valued,
‘effect’ or ‘no effect’; indicating whether or not a given SNP
is predicted to have a deleterious effect on protein function.
The error rate is the proportion of the total number of predic-
tions that were wrong. In all cases, three different error rates
are reported, the overall error rate, and separate error rates for
positive (effect) predictions and negative (no effect) predic-
tions. With some methods it is possible to attach an estimated
confidence level to each prediction. This can be viewed as
an estimate of the probability that the prediction is correct.
If a threshold is set so that only predictions above a certain
confidence level are accepted, then the number of predictions
made usually decreases as this threshold is increased (i.e. if
higher confidence is required then methods generally make
fewer predictions). Therefore, we report number of predic-
tions made as well as error rates: the better of two methods
compared at the same confidence level or error rate is the one
able to make the largest number of predictions.

Optimization of the set of attributes
Here, optimization means finding an attribute set that max-
imizes the total number of predictions while minimizing
the overall error rate. Initially the sequence-based attributes,
including conservation score and the identities of wild type
and mutated residues and their physicochemical classes were
chosen. Following this, attributes were added sequentially to
this basic set to test their effect on the quality of the predictions.
The performance of the decision tree method at a confidence
level of 0.5 using mixed (lysozyme and lac repressor) cross-
validation for an expanding attribute set is shown in Figure 2.
It is clear from Figure 2 that each addition to the attribute set
prompts a fall in the overall error rate and a slight increase
in the number of predictions made. Also, the addition of
structural attributes, such as buried charge, solvent accessib-
ility and secondary structure information reduces error rates,
in agreement with the conclusions drawn in previous study
(Saunders and Baker, 2002). Given these observations, the
full set of attributes (set 5 in Fig. 2) was used for learning in
all the subsequent studies reported here.

The error rates in Figure 2 are all in the range 0.29–0.21.
These are significantly lower than the best error rates that
could be achieved with naïve prediction methods. A naïve
method predicting either class randomly with equal probabil-
ity would have an error rate of 0.5 on any test set, while one
with knowledge of the composition of the test set could use
this optimally by predicting the dominant class (‘no effect’ in
this case) exclusively. In this case, the latter method would
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Fig. 2. The effect of including extra attributes on error rates (gray
line and square markers) and prediction numbers (black line and dia-
mond markers) in mixed cross-validation using decision tree learning
(predictions with a confidence level of 0.5 or greater). Attribute set 1:
the identities and physicochemical classes of wild type and mutated
residues and also the sequence conservation score. Set 2: set 1 plus
mass and hydrophobicity differences. Set 3: set 2 plus buried charge.
Set 4: set 3 plus solvent accessibility. Set 5: set 4 plus secondary
structure. Error rates are significantly lower (95% level) with set 5
compared to any other set (Wilcoxon rank sum test).

have an error rate of 0.42 (the proportion of ‘effect’ mutations
in the data set).

Performance of decision tree learning
The results for homogeneous cross-validation are given in
Table 1A. Results from the decision tree method are com-
pared with the published results of the probabilistic method
of Chasman and Adams (2001). Note that data in this table
are cumulative: each confidence level threshold includes pre-
dictions made at a confidence level equal to or higher than the
threshold. Both methods show the expected increase in both
the overall number of predictions and observed error rates with
decreasing confidence level threshold. The overall error rates
of the decision tree method are generally significantly lower
than those of the probabilistic method for both proteins. The
exceptions to this are the error rates at high confidence levels
(0.8 and 0.9) for the lac repressor. Viewing the ‘effect’ predic-
tions separately, the error rates follow the same trend as the
overall error rates, with the decision tree performing best at
lower confidence thresholds. At higher thresholds (e.g. 0.9),
error rates from the probabilistic method are lower, but these
rates are achieved at the expense of making fewer predictions.
For instance in the case of the lac repressor at a confidence
threshold of 0.9, the probabilistic method makes 10 effect
predictions with no errors (repeat cross-validations were not
reported for this method), while (in multiple cross-validations)
the decision tree makes on average 21.5 predictions and 1.5
errors. In the case of ‘no effect’ predictions the decision tree
performs best on the lysozyme data in terms of both error
rate and prediction numbers at each confidence level, but
performance is more comparable on the lac repressor data.

It is interesting to compare observed error rates with the
estimated confidence levels of predictions. For instance, in the
case of the decision tree method the error rate at confidence
threshold 0.9 (Table 1A) is close to the approximate expected
value of 0.1 (= 1−0.9). In the case of both proteins, reflecting
the use of rules with confidence value 0.9 or above. Comparing
error rates to confidence levels for thresholds lower than 0.9 in
Table 1A is more difficult because data are given cumulatively.
For instance, the predictions at the threshold 0.5 include all
predictions of confidence 0.5 and above, including many of
much higher confidence and the corresponding error rate is
therefore significantly <0.5.

Homogeneous cross-validation tests the ability of a method
to learn rules applicable to a single protein. Heterogeneous
cross-validation is a much more stringent and realistic test. It
examines the ability of a method to learn rules that general-
ize from one protein to another. The results of heterogeneous
cross-validation are shown in Table 1B. In this case, the overall
error rates at all confidence levels are higher than in homo-
geneous cross validation, as expected for a more difficult test.
However, in contrast with homogeneous cross validation the
decision tree error rates are higher than those of the probabil-
istic method at all but the highest confidence level thresholds.
This is an indication that while the decision tree performs best
in homogeneous cross validation it is more prone to learning
protein-specific rules that do not generalize well to other pro-
tein examples. The effect seems to be particularly marked for
‘effect’ predictions, with performance of the methods being
more comparable for ‘no effect’ predictions.

Although extensive in the cases of lysozyme and lac
repressor, the mutation data for the two proteins are still a very
small sample of naturally occurring proteins, and it is almost
certainly unreasonable to expect rules learned from a single
protein to be universally applicable. To form our most accurate
prediction method, we therefore used all the data in training.
Error rates for such a method can be estimated by mixed cross-
validation. The results of this for various confidence levels are
presented in Table 2 (numbers not in parentheses). In this case,
the observed error rates at each confidence level are much
more similar to those observed in homogeneous cross valida-
tion, indicating that when both data sets are used for training
the decision tree method is able to learn rules applicable to
both proteins. Mixed cross-validation was not performed by
Chasman and Adams (2001) so no comparison can be made
with the probabilistic method in this case.

It is noticeable in several of the above cases that the cumu-
lative number of ‘effect’ predictions tends to increase for each
successive decrease in the confidence level threshold, while
the number of ‘no effect’ predictions often reaches a plateau.
For instance, in homogeneous cross-validation (Table 1A) the
number of no effect predictions made with the decision tree
method does not increase between confidence level thresholds
of 0.7–0.5 in the case of either protein. This indicates that
the decision tree rules predicting ‘no effect’ are all of a
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Table 2. Prediction results and error rates from mixed cross-validation at several confidence level thresholds

Prediction Actual Confidence threshold

0.9 0.8 0.7 0.6 0.5

Effect Effect 28.5 ± 12.1 70 ± 7.4 105 ± 3.4 133 ± 4.1 135 ± 4.1
(6.5 ± 2.6) (32 ± 4.4) (80 ± 4.8) (110 ± 7.8) (124 ± 7.9)

No effect 2 ± 0.5 9 ± 2.7 26.5 ± 4.7 42.5 ± 2.6 44.5 ± 3.1
(0 ± 3.8) (4 ± 0.9) (16.5 ± 4.8) (31.5 ± 7.8) (42.5 ± 6.8)

No Effect No effect 32 ± 13.4 197 ± 37.4 228 ± 41.9 233 ± 37.4 233 ± 37.4
(17.5 ± 2.4) (115 ± 39.4) (149 ± 45.8) (157 ± 43.6) (157 ± 43.6)

Effect 1.5 ± 1.4 28 ± 3.8 40.5 ± 8.3 41.5 ± 7.3 41.5 ± 7.3
(1.5 ± 1) (17.5 ± 5.5) (32 ± 4.9) (37.5 ± 4) (37.5 ± 4)

Overall error rate 0.08 ± 0.04 0.13 ± 0.02 0.18 ± 0.01 0.2 ± 0.01 0.21 ± 0.01
(0.1 ± 0.04) (0.14 ± 0.02) (0.2 ± 0.03) (0.21 ± 0.03) (0.23 ± 0.02)

Effect error rate 0.09 ± 0.02 0.11 ± 0.02 0.20 ± 0.02 0.24 ± 0.01 0.25 ± 0.02
(0 ± 0.03) (0.12 ± 0.00) (0.17 ± 0.04) (0.23 ± 0.03) (0.25 ± 0.03)

No effect error rate 0.08 ± 0.05 0.13 ± 0.01 0.16 ± 0.01 0.16 ± 0.02 0.16 ± 0.02
(0.09 ± 0.05) (0.15 ± 0.02) (0.17 ± 0.03) (0.18 ± 0.04) (0.18 ± 0.04)

Decision tree results using actual structure (data outside parentheses) are compared with those using predicted structure (data in parentheses). The upper half of the table gives total
prediction numbers and the lower half gives error rates.
Results given as median ± interquartile range.

confidence level 0.7 or above, while there are some rules
of lower confidence for ‘effect’ predictions. It would seem
to be easier to find high confidence rules for predicting ‘no
effect’.

Effect of predicted data
Here we compare decision tree performance using predic-
tions for secondary structure and solvent accessibility instead
of experimentally determined values. The results from mixed
cross-validation using decision trees for various confidence
levels are given in Table 2. It is encouraging that observed
error rates are generally similar, or very slightly higher
when predicted structure is used. However, the real effect
of using predicted structure is seen when numbers of predic-
tions are considered. When predicted structure is used it is
clear that fewer predictions are possible at each confidence
level threshold (e.g. at the confidence threshold of 0.9, on
average 28.5 successful predictions of effects are made with
actual structures and only 6.5 with predicted). The degrada-
tion of performance is therefore evident in prediction numbers
rather than error rates, and this suggests that the predicted
confidence levels of the decision tree rules are at least robust
enough to recognize when lower quality data leads to less
certain predictions.

The three-state secondary structure predictions used have
accuracies of 74% (lysozyme) and 80% (lac repressor),
and the three-state solvent accessibility predictions have
accuracies of 51% (lysozyme) and 57% (lac repressor). It
would be expected that our methods might perform less well
on proteins for which these predictions were less accur-
ate. However, with only two proteins available there is

insufficient data to enable assessment of any trend relating
the performance of our methods to the accuracy of these
predictions.

Rules derived from decision trees
An advantage of the decision tree method is that it produces
intelligible rules, and attaches a confidence level to each rule.
For example, using the pooled data the final predictions are
made on the basis of 50 rules predicting ‘effect’ and 39 rules
predicting ‘no effect’. It is not practical to analyse all the rules
in this paper, but some illustrative examples are given below.

Rule 1: residue = L; mut_res = P; Obs_Acc = b � class
‘effect’ [90.2%].

Rule 2: residue = G; Obs_Acc = b; Cons_value > 0.252;
Cons_value � 0.352 � class ‘effect’ [77.1%]

Rule 3: residue = A; mut_res = G � class ‘no effect’
[96.9%].

Here residue is the original residue, mut_res represents the
mutated residue, Obs_Acc is the observed solvent accessibil-
ity of the original residue, and Cons_value is the conservation
score of the original residue. The number in parentheses is
the estimated percentage accuracy of the rule. The first rule
indicates that changing a buried leucine residue to a proline
tends to affect function, and can be understood in the light of
our knowledge of the effect of proline on secondary structure.
The second reflects the special nature of glycine (small side
chain and high flexibility); replacing glycine in a buried and
conserved position tends to affect the function. This second
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Table 3. Comparison of the performance of decision trees (C4.5), SVMs and the probabilistic method for homogenous (A) and heterogeneous
(B) cross-validation

(A) Homogeneous

Prediction Actual Lysozyme Lac repressor

C4.5 SVM Probabilistic method C4.5 SVM Probabilistic method

Effect Effect 52.5 ± 2.5 44 ± 5.1 43 95 ± 2.9 92 ± 2.9 78
No effect 18.5 ± 2.3 23 ± 1.6 24 24 ± 2.4 53 ± 4.5 27

No Effect No effect 86 ± 4.4 100 ± 4.8 63 146 ± 18.6 144 ± 6.9 169
Effect 11 ± 1 35 ± 2 28 17.5 ± 5.3 39 ± 3.4 43

Overall error rate 0.2 ± 0.02 0.29 ± 0.01 0.33 0.16 ± 0.01 0.27 ± 0.01 0.22
Effect error rate 0.25 ± 0.04 0.37 ± 0.04 0.36 0.19 ± 0.01 0.37 ± 0.02 0.26
No effect error rate 0.12 ± 0.02 0.26 ± 0.02 0.31 0.13 ± 0.03 0.20 ± 0.02 0.20

(B) Heterogeneous

Prediction Actual Training: Lysozyme Test: Lac repressor Training: Lac repressor Test: Lysozyme

C4.5 SVM Probabilistic method C4.5 SVM Probabilistic method

Effect Effect 851 858 551 299 323 341
No effect 708 475 345 176 186 166

No Effect No effect 1107 1503 786 483 1042 644
Effect 365 467 182 232 439 328

Overall error rate 0.35 0.28 0.28 0.34 0.31 0.33
Effect error rate 0.45 0.36 0.39 0.37 0.36 0.33
No effect error rate 0.25 0.24 0.19 0.32 0.30 0.34

The upper half of the table gives total prediction numbers and the lower half gives error rates.
Data for decision trees and probabilistic method taken from Tables 1 and 2 at confidence level threshold 0.5.

Table 4. Comparison of decision trees (C4.5 confidence level threshold 0.5) and SVM in mixed cross-validation

Prediction Actual C4.5 SVM

Effect Effect 135 ± 4.1 (124 ± 7.9) 131 ± 4 (62 ± 4.5)
No effect 44.5 ± 3.1 (42.5 ± 6.8) 70 ± 4.3(29 ± 6.6)

No Effect No effect 233 ± 37.4 (157 ± 43.6) 251 ± 6.9 (291 ± 5.1)
Effect 41.5 ± 7.3 (37.5 ± 4) 76 ± 5 (151 ± 6.4)

Overall error rate 0.21 ± 0.01 (0.23 ± 0.02) 0.28 ± 0.01 (0.33 ± 0.02)
Effect error rate 0.25 ± 0.02 (0.25 ± 0.03) 0.36 ± 0.01 (0.36 ± 0.05)
No effect error rate 0.16 ± 0.02 (0.18 ± 0.04) 0.23 ± 0.02 (0.34 ± 0.01)

Results using actual structure (data outside parentheses) are compared to those using predicted structure (data in parentheses). The upper half of the table gives total prediction
numbers and the lower half gives error rates. Results given as median ± interquartile range.

rule gives both lower and upper limits on the conservation
score, but we regard the upper limit as a feature reflecting
learning on what is still a relatively small data set. On the
other hand, rule 3 shows that substituting residues with sim-
ilar properties tends not to affect the function. It is noteworthy
that the first two ‘effect’ rules relate to changes in the stability
of the structure, rather than specific effects on key functional
residues.

Performance of SVMs
The results of our second learning method, SVMs, are given
in detail in Tables 3 and 4. Here comparative results are taken
from the 50% confidence threshold predictions of decision
trees and the probabilistic method. It is not possible to
provide confidence levels for SVM predictions (see System
and Methods), but since SVMs provide a prediction for every
data point, it is most meaningful to compare results with the
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other methods where they make the largest number of predic-
tions, i.e. including all predictions from the 0.5 confidence
level upwards.

The results of homogeneous cross-validation in Table 3A
indicate that decision trees tend to have the lowest error
rates. The performances of SVM and probabilistic meth-
ods are similar, with the SVM performing better on lyso-
zyme and the probabilistic method performing better on lac
repressor. Prediction numbers vary from method to method
but are broadly comparable. However, in heterogeneous cross-
validation (Table 3B), it is clear that the decision tree method
has higher error rates, particularly when the lysozyme data
are used for training and lac repressor for testing (we earlier
attributed this effect to the learning of protein-specific rules).
In contrast with the decision tree, the SVM produces perform-
ance in heterogeneous cross-validation that is better than the
probabilistic method. The error rates from the two methods
are very similar, but at these rates the SVM is able to make
significantly more successful predictions. For example, with
lysozyme training and lac repressor test the SVM makes 858
successful ‘effect’ predictions and 1503 successful ‘no effect’
predictions, to be compared with 551 and 786 for the probab-
ilistic method. This indicates that the SVM is less susceptible
than the decision tree to protein-specific effects in the small
learning set associated with a single protein.

In Table 4, we give a comparison of decision trees and SVMs
in mixed cross-validation using both actual and predicted
(numbers in parentheses) secondary structure and solvent
accessibility. In this test, the decision tree out-performs the
SVM in both cases. It is also interesting to note that while
the effect of predicted data on the decision tree is easy to
understand (error rates remain broadly similar but prediction
numbers fall), it is more complicated for the SVM. The ‘no
effect’ error rate increases significantly (from 0.23 to 0.34)
when predicted data are used. This is probably related to
the fact that our decision tree predictions are limited to those
with a confidence level of 0.5 or greater. There is no estim-
ate of confidence for the SVM and low confidence predictions
(confidence level lower than 0.5) cannot be filtered out as they
can with decision trees.

Difference in results depending on definitions of
effect and no effect
The effect of a mutation on protein function takes a continuum
of possible values from complete abolition of function through
degrees of loss of functional efficiency to no observable effect.
Yet this type of study requires conversion of this data to a bin-
ary valued ‘effect’ or ‘no effect’. For the process of training a
machine learning method to work it is clearly important that
this conversion process be approximately consistent, i.e. that
it defines an equivalent level of functional effect between dif-
ferent proteins. In the heterogeneous cross-validation using
lysozyme and lac repressor data we found no evidence
of inconsistency, and this was reinforced by the similar

Table 5. Prediction results for the HIV test set from methods trained on
lysozyme and lac repressor data

Prediction Actual C4.5 SVM

Effect Effect 173 (135) 160 (140)
No effect 42 (80) 33 (94)

No Effect No effect 25 (37) 78 (83)
Effect 21 (9) 65 (19)

Overall error rate 0.24 (0.34) 0.29 (0.34)
Effect error rate 0.20 (0.37) 0.17 (0.40)
No effect error rate 0.46 (0.20) 0.45 (0.19)

The upper half of the table gives total prediction numbers and the lower half gives error
rates. Numbers outside parentheses treat the HIV mutations as ‘effect’ if any effect on
function was detected, those in parentheses require complete abolition of function for
an ‘effect’.
Decision tree (C4.5) results use prediction from confidence level threshold 0.5.

proportion of ‘effect’ mutations in each data set (38–45%,
see System and Methods for details). However, this was not
the case with the much smaller data set from the HIV protease.

In Table 5, we show results obtained for predictions on the
HIV data by methods trained on the combined lysozyme and
lac repressor data. The numbers not in parentheses use a con-
version analogous to that used for the training data, i.e. where
any experimentally detected loss in activity is regarded as an
effect (see Methods). With the first conversion, it is clear that
both machine-learning methods produce very high ‘no effect’
error rates, in excess of 0.45 and close to the expected 0.5 for
random predictions. Many of the mutations predicted to have
no effect actually do have an effect according to this definition.
This led us to suspect inconsistency of the conversion of exper-
imental observations to binary values, and the observed high
proportion of ‘effect’ mutations in the data set with this con-
version (67%, much greater than that in the training data) was
further evidence for this possibility. With this in mind, we re-
assessed the HIV predictions using the alternative conversion
where only complete abolition of function was considered an
effect (reducing the proportion of effect mutations in the HIV
data to 47%, which is more consistent with the training data
from lysozyme and lac repressor). This alternative conversion
was applied to the HIV test data only and not to the training
data, so there is no issue of unbalanced training. The results
are shown in parentheses in Table 5. Changing to this con-
version method clearly improves the ‘no effect’ error rate, but
also significantly increases the error rate observed in ‘effect’
predictions. We interpret this to indicate that neither of these
conversions is really consistent with the level of functional
effects defined in the training data, the first defining too many
minor functional changes as effects, and the second requiring
too great a functional change to define an effect.

Applications of methods to C.elegans SNPs
As an illustration, we have applied our methods to predictions
of the functional effects of a set of 803 nsSNPs between two
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C.elegans strains. Using SVMs or decision trees trained on
the combined lysoszyme and lac repressor data resulted in the
prediction that around 300 (37%) of these might affect protein
function (see Discussion).

DISCUSSION
We have made a thorough study of the use of two machine
learning methods to predict the functional effects of SNPs, and
compared the results with those from an existing probabilistic
method (Chasman and Adams, 2001). Our results suggest that
the machine learning methods we use are competitive with the
probabilistic method and perform significantly better in some
circumstances. Decision trees are able to provide predictions
with significantly lower error rates in homogeneous cross-
validation, but seem to do less well in the more difficult and
realistic test of heterogeneous cross-validation. However, in
this more difficult test our results show that the SVM was able
to perform at the same error rates as the probabilistic method,
while out-performing it in providing a significantly greater
number of predictions.

In comparison with the SVM, and also with the probabil-
istic method, we found that decision tree learning was more
susceptible to learning protein specific rules, resulting in very
low error rates in homogeneous cross-validation, but signi-
ficantly higher error rates in heterogeneous cross-validation.
This might suggest that decision trees are not the method of
choice for this problem. Nevertheless, decision trees do have
advantages. First, they produce interpretable rules, and we
have shown that these often make sense from a protein struc-
ture and stability perspective. Second, confidence levels can
be derived for decision tree rules. Apart from the obvious
utility of a confidence estimate to go with each prediction,
we showed that these confidence estimates are generally very
robust. When we moved from actual structural data to lower
quality predicted data, this was recognized in the derivation
of decision tree rules with reduced confidence. This effect
was manifested as falling prediction numbers at each confi-
dence level, while the observed error rates were maintained
at approximately constant values. It is hardly surprising that
decision trees learn protein-specific rules when faced with
training data from a single protein, but this effect is clearly
reduced when training is on data from more than one pro-
tein (see the Results for mixed cross-validation). In time, it is
likely that suitable training sets for other proteins will become
available, which should lead to the production of even higher
quality decision trees.

The lack of confidence level estimates for SVM learning is
a disadvantage of that method. It would seem likely that more
confident SVM predictions would be those from data points
located further from the optimal separating hyperplane, and
that it should be possible to fit suitable probability distribu-
tions to the data to provide confidence estimates based on this
distance. However, this theory is not well developed, and such

calculations are not available in the software we used, or other
commonly available software to our knowledge.

The inclusion of protein structure data in the attribute set
has been discussed much in the literature (see Introduction).
We find that the use of structural attributes like secondary
structure, solvent accessibility and buried charge produces
machine-learning methods that have lower error rates than
those based on sequence features alone. It is likely that
most mutations affecting protein function actually affect it
indirectly through changes in structural stability, and there-
fore structural information should be valuable. An interesting
further observation from decision tree learning is that rules
predicting ‘no effect’ seem to have higher confidence levels
on average. It would seem to be easier to predict if a mutation
does not affect stability than to predict if it does.

It is important to appreciate that the way functional effects
are defined can seriously affect predictions. For instance, it
might be required to predict all observable effects on func-
tion in some applications, but just complete abolition of
function in others. Methods are trained to predict a certain
level of effect, and if applied to data sets where differ-
ent levels of effect need to be predicted they will perform
badly, as we illustrated with the HIV protease test data.
It is very difficult to define equivalent levels of functional
effect between two completely different proteins and this
highlights a general problem with methods of this type. How-
ever, the heterogeneous cross-validation results we report
here, and also those from the probabilistic method, suggest
that the definitions we adopted for lysozyme and the lac
repressor (an enzyme and a regulatory protein) are approx-
imately equivalent. Based on this observation, it would seem
reasonable to accept that a definition of effect resulting in
a similar proportion of ‘effect’ mutations in unbiased muta-
tion data sets for two proteins would indicate approximately
equivalent definitions. However, application of this rule in
the case of the HIV data did not produce a conclusive
answer. More systematic mutation data sets with functional
effects defined for different proteins are now required to
assess the generalizability of both definitions and prediction
methods.

This leads to the question of what level of effect should be
predicted. The methods reported here were trained to predict
any observable effect on protein function. In application to
the C.elegans SNP data this leads to the prediction that 37%
of nsSNPs might affect protein function. This number is quite
large, given that the SNPs in this case are between two healthy
strains, but it is not out of line with estimates made using
other methods applied to human SNP data (e.g. Chasman and
Adams, 2001; Sunyaev et al., 2001). The degree of effect
on protein function needed to produce observable phenotypic
consequences or diseases will vary from gene to gene, but one
possible explanation of these relatively large numbers is that
the some of the protein functional consequences we predicted
are too minor to cause major phenotypic effects. However, it is
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not possible to rule out errors in the SNP data or the annotation
of the C.elegans genome as alternative explanations.

In conclusion, we have shown that machine-learning meth-
ods can make a useful contribution to SNP prediction prob-
lems, and compete well with currently available methods. The
generalization capability of the SVM is clearly a great advant-
age, but we have shown that decision trees too have significant
advantages. A clear limitation of this study is the availability
of only two really systematic and extensive mutation data sets
for different proteins, but as more become available the power
of all learning methods is sure to increase.
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