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ABSTRACT

Recent research has demonstrated quite convincingly that accurate cancer diagnosis can be
achieved by constructing classifiers that are designed to compare the gene expression profile
of a tissue of unknown cancer status to a database of stored expression profiles from tissues of
known cancer status. This paper introduces the JCFO, a novel algorithm that uses a sparse
Bayesian approach to jointly identify both the optimal nonlinear classifier for diagnosis
and the optimal set of genes on which to base that diagnosis. We show that the diagnostic
classification accuracy of the proposed algorithm is superior to a number of current state-of-
the-art methods in a full leave-one-out cross-validation study of five widely used benchmark
datasets. In addition to its superior classification accuracy, the algorithm is designed to
automatically identify a small subset of genes (typically around twenty in our experiments)
that are capable of providing complete discriminatory information for diagnosis. Focusing
attention on a small subset of genes is useful not only because it produces a classifier with
good generalization capacity, but also because this set of genes may provide insights into
the mechanisms responsible for the disease itself. A number of the genes identified by the
JCFO in our experiments are already in use as clinical markers for cancer diagnosis; some
of the remaining genes may be excellent candidates for further clinical investigation. If it
is possible to identify a small set of genes that is indeed capable of providing complete
discrimination, inexpensive diagnostic assays might be widely deployable in clinical settings.

Key words: disease diagnosis, classification, feature selection, joint optimization, sparse Bayesian
methods, JCFO, RVM, SVM.

1. INTRODUCTION

In an effort to improve the accuracy of cancer diagnosis and enable the prediction of patient
response to different treatment options, a considerable amount of research effort has recently been

expended to develop methods that are capable of leveraging the availability of databases of gene expression
profiles collected from various classes of cancers (Golub et al., 1999). While a large number of supervised
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and unsupervised methods from the pattern recognition literature have been proposed in this context,
techniques based on linear support vector machines (SVM) have proven to be the most popular, and also
quite accurate (Ben-Dor et al., 2000; Furey et al., 2000; Guyon et al., 2002).

Other recent research has shown that the expression levels of fewer than ten genes are often sufficient
for accurate diagnosis of most cancers, even though the expression levels of a large number of genes are
strongly correlated with the disease (Frank, 2002; Xiong et al., 2001). In fact, the use of a much larger
set of gene expression levels has been shown to have a deleterious effect on the diagnostic accuracy due
to the phenomenon known as the curse of dimensionality, in which the risk of overfitting increases as the
dimensionality of data grows relative to the number of training samples. By identifying a small subset of
genes on which to base a diagnosis, we can not only achieve improved diagnostic accuracy, but also gain
possibly significant insights into the nature of the disease and the genetic mechanisms responsible for it. In
addition, assays that require very few gene expression levels to be measured in order to make a diagnosis
are far more likely to be widely deployed in a clinical setting.

In this paper, we develop a Bayesian generalization of the SVM that jointly and simultaneously identifies
the optimal nonlinear classifier and selects the optimal set of features (in this case, the genes involved in
the diagnosis) via the optimization of a single posterior objective function. This joint classifier and feature
optimization (JCFO) algorithm implements feature selection by first associating a positive scaling factor
with the expression level of each gene. Then, during the training phase, along with the identification of the
optimal classifier, the JCFO jointly estimates the optimal scaling factors with a strong prior preference for
setting most of them to zero. Since setting the scaling factor for a gene to zero is equivalent to removing its
effect on the classifier, the algorithm typically picks out only a handful of genes (typically around twenty
in our experiments) that are actually used in the diagnosis. In the context of kernel classification, at an
abstract level, a kernel classifier is simply a form of weighted voting based on the similarity of the gene
expression profile of an unlabeled sample to the gene expression profiles of prototypical class examples
that are identified during the classifier design. In the JCFO, this similarity between profiles as expressed
in the kernel basis functions is determined using only the expression levels of the small subset of genes
with nonzero scaling factors.

1.1. Related work

Our method differs in a couple of ways from earlier approaches that have been taken to the problem of
identifying the genes that provide maximum diagnostic capability. Specifically, previous work has for the
most part focused on the problem of feature selection in isolation from the problem of classifier design
(the so-called filter approach to feature selection); typically, features (genes) are first selected, and then
all those features are used to design a classifier for producing the diagnosis. One variation on this kind of
approach is to perform dimensionality reduction before classification using PCA, SVD, linear discriminant
analysis, or a related projection technique (West et al., 2001). While projection techniques reduce the
tendency towards overfitting in the context of high-dimensional data, they have the unfortunate property
that they produce new predictors that are now linear (or in some cases nonlinear) combinations of all
the genes at once, obviating the benefits of clinical deployability and mechanistic insights that might be
associated with identifying a truly small set of genes useful for diagnosis. In contrast to methods using a
filter approach to feature selection, other work has adopted the so-called wrapper approach (Weston et al.,
2000; Guyon et al., 2002; Zhu and Hastie, 2002) in which the algorithm iterates between the problems of
feature selection and classifier design.

Our approach is slightly different from both these approaches in that it involves solving these two
problems at once. By combining the two problems of feature selection and classifier design and solving
them together as part of a joint optimization, we seek to satisfy the most fundamental requirement of
feature selection, namely, that we retain those features that are most useful in performing the classification
itself. We address the feature selection problem by using sparsity-promoting priors as an integral part of
the objective function used during the training procedure for designing the classifier, rather than as an
external wrapper. This obviates the need to first select the genes that provide maximal diagnostic accuracy
on the basis of a full leave-one-out cross-validation (LOOCV) study and then evaluate the accuracy of the
resulting classifiers by performing another full LOOCV on the same data (see Ambroise and McLachlan,
2002).
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Several algorithms proposed in the last few years—including the relevance vector machine (RVM)
of Tipping (2001)—have used an automatic relevance determination (ARD) technique (Neal, 1996) for
selecting either the features or the basis functions of the classifier during its training. More recently,
Figueiredo and Jain have proposed an expectation maximization (EM) algorithm for sparse probit regression
that achieves a similar result by maximizing a Bayesian a posteriori distribution (Figueiredo and Jain,
2001). While this algorithm does very well on a variety of pattern recognition benchmark problems, it
only identifies an optimal classifier given a particular set of features. Other methods have used a framework
of this sort to do automatic feature selection but only with direct hyperplane classifiers in the original feature
space (nonkernelized) (Li et al., 2002; Roth, 2003). The JCFO we propose here uses Bayesian priors to
promote sparsity in both the selection of genes, as discussed above, and the basis functions used in the
classifier, including the case where that classifier might be a kernel classifier. The JCFO extends the EM
algorithm of Figueiredo and Jain (2001) by optimizing a Bayesian posterior to simultaneously obtain both
the best classifier and the best feature scaling. Due to the close relationship between the JCFO and the
algorithm of Figueiredo and Jain, we have deliberately tried where possible to preserve their notation in
the interest of clarifying the presentation for the reader who may already be familiar with their work.

The remainder of this paper is structured as follows. In Section 2, we formalize the basic problem of
pattern recognition in cancer diagnosis, introduce the notation used in the remainder of the paper, and
discuss the broader context of the proposed approach, as well as its limitations. We introduce the novel
JCFO algorithm in Section 3. In Section 4, we compare the performance of both the JCFO and the sparse
probit regression algorithm of Figueiredo and Jain to current state-of-the-art classifiers (including the SVM
and the RVM) on five widely used cancer diagnosis benchmark datasets. We conclude with a discussion
of these results in Section 5.

2. PROBLEM FORMULATION

In the traditional pattern recognition literature, the problem of cancer diagnosis using the gene expression
profile of a new tissue sample and a database of known gene expression profiles and their diagnoses falls
under the general class of supervised pattern recognition. Given a database of training samples from N

tissues, we have a set of N gene expression profiles x(i) indexed by i ∈ {1, 2, . . . , N}. Each expression
profile x(i) = [x(i)

1 , x
(i)
2 , . . . , x

(i)
d ] ∈ Rd is a d-dimensional vector representing the measured expression

levels of d genes in the tissue sample. The class membership of each database sample is known and is
denoted by y(i). In a two-class case (e.g., the tissues are either cancerous or noncancerous), we can assume
without loss of generality that y(i) ∈ {0, 1}. Thus, the training set D consists of N sets of expression
profiles and their corresponding class membership labels.

D =
{(

x(i), y(i)
)

: x(i) ∈ R
d , y(i) ∈ {0, 1}

}N

i=1
(1)

Assuming a parametric form for the functional relationship between x and y as y = fα(x), during the
training phase, we seek to find the optimal parameters α based on the evidence provided by the training
data, D. In other words, in this formulation, we seek to learn a binary function fα(·) : Rd → {0, 1}. This
is the formulation adopted by the popular SVM classifier. However, it is often desirable not simply to
classify x into one of two classes, but to know the degree of confidence for that classification. In such a
case, we would be interested in learning a function gα(x) taking values in the interval [0,1] (rather than
just the set {0, 1}), which can be interpreted as the probability that x belongs to class 1, for example, in
logistic regression

P(y = 1|x) = gα(x) = σ

(

α0 +
d

∑

l=1

αlxl

)

(2)

where σ (z) = {1 + exp(−z)}−1 is the logistic link function. The advantage of a classifier with a link
function that gives class probabilities over a hard classifier like the SVM is that it can be used to obtain
different optimal classifiers under different (possibly asymmetric) cost functions. In the case where the
cost function is simply the misclassification error, a classifier can be obtained by thresholding gα(x) at 1

2 .
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In this paper, we consider classification functions of the form

P(y = 1|x) = gα(x) = #
(

βT hθ (x)
)

(3)

where α = [βT , θT ]T are the parameters to be learned, #(z) is the standard Gaussian cumulative distri-
bution function (otherwise known as the probit link function),

#(z) =
∫ z

−∞
N(x|0, 1) dx = 1√

2π

∫ z

−∞
exp

(−x2

2

)

dx, (4)

and hθ (x) is the vector whose scalar elements are the values of the basis functions for the classifier
evaluated at x (we assume that the basis functions are parameterized by θ ).

To illustrate the physical meaning of hθ (x) more clearly, we consider three special cases of the general
formulation that we have just outlined.

• Linear classifiers:

hθ (x) = [1, x1, . . . , xd ]T . (5)

For linear classifiers, the parameterization of the basis functions by θ is irrelevant. Note that in the case
of symmetric misclassification costs, i.e., if we decide that y = 1 when P(y = 1|x) = gα(x) > 1

2 ,
βT hθ (x) represents the distance of the gene expression profile x from the classifying linear hyperplane.
Here, the dimensionality of β is M = d + 1.

• Nonlinear classifiers:

hθ (x) = [1, ψ1(x, θ), . . . , ψk(x, θ)]T (6)

where ψj (·) are k nonlinear basis functions of the classifier. Here, the dimensionality of β is M = k +1
and for symmetric misclassification costs, βT hθ (x) represents the distance of the gene expression profile
x from the classifying linear hyperplane in the ψ-space. In other words, the nonlinear classification
problem in the original feature space (i.e., x-space) is transformed into a linear classification problem
into another space using the nonlinear vector mapping function between the two spaces hθ (x).

• Kernel classifiers:

hθ (x) =
[

1, Kθ (x, x(1)), . . . , Kθ (x, x(N))
]T

(7)

where Kθ (x, x(i)) is some symmetric kernel function parameterized by θ (Cristianini and Shawe-Taylor,
2000). Figure 1 depicts the kernel mapping between the feature space containing x and the kernel space
containing hθ (x). The kernel basis function Kθ (x, x(i)) provides a nonlinear measure of similarity
between the gene expression levels of a new unlabeled sample x and a labeled sample from our training
database x(i). Here, the dimensionality of β is M = N +1. Kernel basis functions are used in the SVM.

In this paper, we will use the parameter vector θ to represent the scaling factors associated with the
genes. Thus, the dimensionality of θ is d, and we can write θ = [θ1, θ2, . . . , θd ]T ∈ Rd . Specifically, if
θl = 0, then our diagnostic classifier does not use any information about the expression level of the l-th
gene in the process of making its decision.

While the SVM requires special restrictions to be placed on the kernel function for the kernel to be
admissible in the training procedure— Kθ (·, ·) has to be a Mercer kernel—the JCFO does not have any
such requirements, and the same is true of the RVM and sparse probit regression algorithms as well. In
the research presented in this paper, we have used n-th order polynomial kernels in our experiments:

Kθ (x, x(i)) =
(

1 +
d

∑

l=1

θlxlx
(i)
l

)n

. (8)



CANCER DIAGNOSIS USING GENE EXPRESSION DATA 231

FIG. 1. Kernel mapping: a vector x in the feature space of d dimensions is mapped by hθ (·) into a vector hθ (x) in
the kernel space of N dimensions, which is spanned by the N kernel basis functions.

In this paper, we seek to find classifiers (i.e., to find values of β and θ ) that not only diagnose the
presence or absence of cancer accurately, but also do so with very few nonzero elements in either β or
θ . Sparsity in β implies that the classifier finds a small subset of prototypical samples that are highly
representative of the different classes we seek to distinguish, while sparsity in θ implies that it implicitly
performs feature selection (i.e., it identifies the genes important for the diagnosis).

2.1. Bayesian pattern recognition

Our solution can be summarized as follows: the problems of classifier design and feature selection can
be viewed together as the single problem of estimating the best parameters α = [βT , θT ]T from limited
data. In order to obtain good generalization (i.e., to perform well on new data not seen during training),
we need to control the complexity of the learned classifier function. Specifically, we need to guard against
two potential problems: if the classifier is too complex it may “learn” irrelevant properties of the particular
dataset on which it is trained, and not perform well on as-yet-unseen data (overfitting); on the other hand,
if the classifier is too simple, then we may be unable to effectively capture the essential structure of the
underlying relationship (underfitting). In a Bayesian approach, we solve this problem by introducing some
kind of prior knowledge into the design phase.

More precisely, we accomplish this by choosing prior probability distributions over the parameters β
and θ to reflect our (subjective) beliefs about them before seeing any data. In our case, we choose priors
that reflect our belief that both β and θ are sparse, i.e., P(β, θ) is large when most of these parameters
are exactly zero (as opposed to being nearly zero). This suggests that the prior distributions must drop off
very fast as the parameters β and θ move away from zero, making density functions that are smoothly
differentiable at zero—like the Gaussian—inappropriate.

After seeing the data D, we can use Bayes rule to obtain a posterior distribution P(β, θ |D). The posterior
will reflect our final opinion about β and θ , taking into account both our prior subjective knowledge (sparsity
of the solution) and the evidence provided by the data. Thus, the optimal classifier can be identified by
finding the maximum a posteriori (MAP) estimate of β and θ .

The problem, however, is that finding the MAP value of the posterior for our parameters can be a
computationally expensive task if we choose arbitrary sparsity-promoting priors. In general, we would
be forced to adopt expensive MCMC techniques. However, our algorithm builds upon the prior work of
Figueiredo and Jain (2001) and Tipping (2001), both of whom have developed methods to find a sparse
estimate of β under certain forms of the prior. In particular, we extend the algorithm of Figueiredo and
Jain to jointly design the classifier and the feature scaling, i.e., to estimate β and θ .

In this paper, we choose a Laplacian prior that allows us to design an elegant EM algorithm to find a
maximum of the posterior probability density. Using an EM algorithm to optimize the posterior probability
immediately raises the concern that any maximum we find may be simply a local rather than global
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maximum. To investigate this, we have sampled the Hessian of the objective function at a large number
of points to test for positive definiteness, and based on this sampling, believe that our objective function
has only a single global maximum, at least for polynomial kernels. However, we do not yet have an
analytical proof of this, and sampling evidence can never be conclusive since it is possible that we may
have inadvertently sampled in a limited region in which the Hessian is positive definite. Regardless of
whether the posterior maximum we reach is local or global, our experiments on the five widely used
benchmark datasets in Section 4 indicate that the JCFO has better diagnostic classification accuracy than
other current state-of-the-art methods reported in the literature.

Finally, it is worth noting that sparsity in β for kernel classifiers is known to be an important indicator
of the capacity of the classifier, which measures its generalization. As is evident from the curse of dimen-
sionality, sparsity in the features as governed by θ is also an important factor in increasing the robustness
of the classifier design. Thus, our choice of sparsity-promoting priors reflects our desire to obtain a robust
classifier that performs well on as-yet-unseen test data.

3. JOINT CLASSIFIER AND FEATURE OPTIMIZATION

As the first step of our Bayesian analysis, we have to specify the prior on the parameters β and θ that
we want to estimate. We choose to adopt a Laplacian prior on β, since it is known from earlier work that
this prior promotes sparsity (making several βi = 0) due to its use of the l1 norm (or lasso) penalty:

P(β|η) =
M
∏

i=1

η

2
exp(−η |βi |) =

(η

2

)M
exp(−η ‖β‖1). (9)

Figure 2 illustrates this property of a Laplacian prior, and contrasts it with a Gaussian prior, whose
derivative at zero is zero. As the figure illustrates, the difference between P(0) and P(βi ) for small
βi is much larger for a Laplacian than for a Gaussian. As a result, if we use a Laplacian prior, learning
procedures that seek to maximize the posterior would explicitly favor values of βi that are exactly 0 instead
of small values close to 0, thus promoting sparsity in β. Methods that control model complexity using a
Laplacian prior (or equivalently, an l1 or lasso penalty) have become quite popular recently (see Tibshirani,
1996; Figueiredo and Jain, 2001; Fung and Mangasarian, 2002; Rosset et al., 2003; Roth, 2003) and are
theoretically well-justified (see Friedman et al., 2004; Donoho and Elad, 2002 and references therein).

If we attempt to use a Laplacian prior directly, we run into computational difficulties. However, equiv-
alently, we may instead use the two-level hierarchical model described below, which corresponds to an

FIG. 2. Sparsity-promoting Laplacian prior: the Laplacian distribution is sharply peaked and not smoothly differen-
tiable about zero, unlike the Gaussian distribution, which is everywhere smoothly differentiable and whose derivative
at zero is zero.
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effective Laplacian prior. Under such a model, each βi is given a zero-mean Gaussian prior with its own
variance τi :

P(βi |τi ) = N(βi |0, τi ). (10)

If we further suppose the variances τi to have an exponential distribution as their hyperprior,

P(τi |γ1) = γ1

2
exp

(

−γ1τi

2

)

, for τi ! 0, (11)

then the effective prior can be obtained by integrating out τi ,

P(βi |γ1) =
∫ ∞

0
P(βi |τi )P (τi |γ1)dτi =

√
γ1

2
exp(−√

γ1 |βi |), (12)

which shows that a Laplacian prior is equivalent to a two-level hierarchical model characterized by zero-
mean Gaussian priors with independent variances and an exponential hyperprior for those variances.

In estimating the parameter θi , we can adopt a prior that is similar to that for βi but differs in one critical
aspect: we must ensure that our algorithms learn θi ! 0. The reason for this requirement is somewhat
subtle. Essentially, θi measures the scaling of the individual genes. In the forms of the kernels that we
have described in Equation (8), using a negative scaling θi effectively implies that if we compare two gene
expression profiles using these kernels, similar levels of expression of that particular gene would actually
reduce the value of that kernel function between the two expression profiles. Though greater similarity
of a particular gene’s expression levels in two different expression profiles need not necessarily imply
that these two expression profiles are more similar (in the context of diagnostic classification, especially
when the particular gene is irrelevant for the diagnosis), it can never imply that the profiles are somehow
less similar. Thus, even though θi can be exactly zero, it can never be negative. As a result, we consider
a two-level hierarchical model for θi that explicitly makes them nonnegative. In particular, we adopt
nonnegative Gaussian priors on θi with independent variances given by ρi , and exponential priors on ρi .
This is described below:

P(θi |ρi ) =
{

2 N(θi |0, ρi ) if θi ! 0
0 if θi < 0

(13)

P(ρi |γ2) = γ2

2
exp

(

−γ2ρi

2

)

, for ρi ! 0. (14)

Thus, the effective prior on θi is

P(θi |γ2) =
{√

γ2 exp(−√
γ2θi ) if θi ! 0

0 if θi < 0.
(15)

3.1. EM estimation of MAP parameters

Having specified the priors on the parameters that we seek to estimate, we can now proceed to the
description of an EM algorithm that finds a (possibly local) maximum of the posterior distribution over β
and θ . To motivate the development of the algorithm, let us consider the latent variable interpretation of
the probit link function, as exploited by Albert and Chib (1993) and, subsequently, by Figueiredo and Jain
(2001).

Let z(x, β, θ) = βT hθ (x) + w, where w is a zero-mean unit-variance Gaussian random variable. If the
classifier is defined as y = 1 for z(x, β, θ) ! 0 and y = 0 for z(x, β, θ) < 0, then we recover the probit
model, because

P(y = 1|x) = P
(

βT hθ (x) + w > 0
)

= #
(

βT hθ (x)
)

.

(16)

Figure 3 provides a graphical depiction of the intuition behind this interpretation.
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FIG. 3. Latent variable interpretation of z: the variable z represents the distance in kernel space between the sample
and the hyperplane describing the classifier (parameterized by β). The probit link function provides the probability of
belonging to a particular class, so class membership is determined by the sign of z.

Given data D =
{

〈x(i), y(i)〉 : x(i) ∈ Rd , y(i) ∈ {0, 1}
}N

i=1, consider the corresponding vector of missing
variables z = [z(1), z(2), . . . , z(N)]T , as well as the vectors of missing variables τ = [τ1, τ2, . . . , τM ]T
and ρ = [ρ1, ρ2, . . . , ρd ]T . If we knew the values of z, τ , and ρ, we would have an easier estimation
problem for β and θ since we would effectively only have to find the maximum a posteriori solution for
the following system of equations under Gaussian priors:

z = H θβ + w (17)

where H θ =
[

hθ (x
(1)), hθ (x

(2)), . . . ,hθ (x
(N))

]T
is known as the design matrix and w is a vector of i.i.d.

zero-mean unit-variance Gaussian samples. This suggests the use of an EM algorithm to find a locally
maximum a posteriori estimate of β and θ . We consider z, τ , and ρ as hidden variables and β and θ as
the parameters to be estimated. The EM algorithm will produce a sequence of estimates for β̂(t) and θ̂ (t)

by alternating between two steps:
E-step: The log-posterior on the parameters that we seek to estimate (here β, θ ) given the data D and

the hidden variables (here z, τ , and ρ), is log(P (β, θ |y, z, τ , ρ)). In the E-step, we compute the expected
value of this log-posterior conditioned on the data D and the current estimate of the parameters, β̂(t), θ̂ (t).
This is usually denoted as the Q function:

Q
(

β, θ
∣

∣

∣
β̂(t), θ̂ (t)

)

=
∫

P
(

z, τ , ρ
∣

∣

∣
y, β̂(t), θ̂ (t)

)

× log P(β, θ |y, z, τ , ρ) dzdτdρ. (18)

M-step: Update the current parameter estimate according to

β̂(t+1), θ̂ (t+1) = arg max
β,θ

Q
(

β, θ
∣

∣

∣
β̂(t), θ̂ (t)

)

. (19)

In what follows, we drop the θ subscripts on the H and h terms to simplify the notation. As a first
step, we see that the complete log-posterior on the learning parameters β and θ , including the hidden
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variables z, τ , and ρ, is

log P(β, θ |y, z, τ , ρ) = log P(z|β, θ) + log P(β|τ ) + log P(θ |ρ) + c

= − ‖Hβ − z‖2 − βT T β − θT Rθ + c

= −zT z − βT H T (Hβ − 2z) − βT T β − θT Rθ + c

(20)

where the matrix T = diag(τ−1
1 , τ−1

2 , . . . , τ−1
M ), the matrix R = diag(ρ−1

1 , ρ−1
2 , . . . , ρ−1

d ), and c is a
constant that can be ignored. Thus, the Q function is

Q
(

β, θ
∣

∣

∣
β̂(t), θ̂ (t)

)

= E
[

−zT z − βT H T (Hβ − 2z) − βT T β − θT Rθ
∣

∣

∣
y, β̂(t), θ̂ (t)

]

. (21)

Since we seek to maximize the Q function w.r.t. β and θ in the EM algorithm, terms like E[−zT z |
y, β̂(t), θ̂ (t)] that do not involve β or θ can be effectively ignored in the M-step, and thus are irrelevant in
the E-step as well. Therefore, the Q function simplifies to

Q
(

β, θ
∣

∣

∣
β̂(t), θ̂ (t)

)

= −βT H T Hβ + 2βT H T E
[

z
∣

∣

∣
y, β̂(t), θ̂ (t)

]

− βT E
[

T
∣

∣

∣
y, β̂(t), θ̂ (t)

]

β − θT E
[

R
∣

∣

∣
y, β̂(t), θ̂ (t)

]

θ . (22)

The E-step thus simplifies to computing the expectations associated with each of these terms. Fortunately,
each of these computations can be expressed in closed form. As for the term associated with the expectation
of z, we have

vi = E
[

z(i)
∣

∣

∣
y, β̂(t), θ̂ (t)

]

=







































hT (x(i))β̂(t) +
N

(

hT (x(i))β̂(t)
∣

∣ 0, 1
)

1 − #
(

−hT (x(i))β̂(t)
) , if y(i) = 1

hT (x(i))β̂(t) −
N

(

hT (x(i))β̂(t)
∣

∣ 0, 1
)

#
(

−hT (x(i))β̂(t)
) , if y(i) = 0

(23)

which follows from the observation that z(i) is distributed as a Gaussian with mean hT (x(i))β̂(t), but
left-truncated at zero if y(i) = 1 and right-truncated at zero if y(i) = 0. After some further algebraic
manipulations, it can be shown that for the term associated with the expectation of T , we have

ωi = E
[

τ−1
i

∣

∣

∣
y, β̂

(t)
i , γ1

]

=

∫ ∞

0
τ−1
i P (τi |γ1)P

(

β̂
(t)
i

∣

∣

∣
τi

)

dτi

∫ ∞

0
P(τi |γ1)P

(

β̂
(t)
i

∣

∣

∣
τi

)

dτi

= γ1

∣

∣

∣
β̂

(t)
i

∣

∣

∣

−1
. (24)

The last term in the E-step computation is associated with the expectation of R, and a manipulation similar
to that above yields the following:

δi = E
[

ρ−1
i

∣

∣

∣
y, θ̂

(t)
i , γ2

]

= γ2

(

θ̂
(t)
i

)−1
. (25)

Note that our prior on θ requires that each θi be nonnegative, so we employ a constrained optimization
here to ensure that this remains true. If θi becomes exactly zero for some values of i, we can simply prune
those features and continue with the remainder of the optimization.
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In summary, all three integrations required for the expectation terms in the E-step can be done analyti-
cally. If we define v = [v1, v2, . . . , vN ]T , & = diag(ω1, ω2, . . . , ωM), and ' = diag(δ1, δ2, . . . , δd), then
in the M-step we have to maximize the following Q function with respect to β and θ jointly:

Q
(

β, θ
∣

∣

∣
β̂(t), θ̂ (t)

)

= −βT H T Hβ + 2βT H T v − βT &β − θT 'θ , (26)

∂Q

∂β
= 2H T v − 2H T Hβ − 2&β, (27)

∂Q

∂θl
= −2δlθl − 2

N
∑

n=1

M
∑

m=1

{

(Hβ − v)βT *
(

∂H

∂θl

)}

(i,j)

, (28)

where * represents the element-wise matrix Hadamard product. In this paper, we have primarily used
polynomial kernel classifiers of the form given in Equation (8) so that Hi,1 = 1 and Hi,(j+1) = (1 +
∑d

l=1 θlx
(i)
l x

(j)
l )n. This means that ∂Hi,1

∂θl
= 0, and ∂Hi,(j+1)

∂θl
= nx

(i)
l x

(j)
l (1 + ∑d

l=1 θlx
(i)
l x

(j)
l )n−1 for j =

1, 2, . . . , N .
Since H is in general a nonlinear function of θ , Q is also highly nonlinear and cannot be maximized

analytically. Moreover, the optimization of β and θ cannot be pursued independently. However, we can
exploit the fact that for any given θ , the optimal βθ corresponding to it can be evaluated analytically by
setting ∂Q

∂β = 0 above. Thus, we have

β̂θ
(t+1) = (& + H T H )−1H T v

= κ(I + κH T Hκ)−1κH T v
(29)

where κ = diag(k1, k2, . . . , kM) and its diagonal entries are ki = ω
−1/2
i = γ

−1/2
1 |β̂(t)

i |1/2. The matrix κ
has been introduced to enable a stable numerical implementation, which is necessary since the sparsity-
promoting properties of the hierarchical priors will drive several of the βi to zero, thereby causing numerical
instabilities in any implementation using & directly.

Although β̂(t+1) can be computed straightforwardly, we are forced to employ numerical nonlinear opti-
mization techniques to obtain θ̂ (t+1) from the M-step. In our research, we have used the implementation
of a subspace trust region method that is contained in the Matlab optimization toolbox and is based on the
interior-reflective Newton method of Coleman and Li (1996). This is an iterative method, each iteration
of which involves the approximate solution of a large linear system using the method of preconditioned
conjugate gradients. This method also requires that we provide the derivatives of the Q function with
respect to θ , which we have computed in Equation (28).

We summarize the full algorithm in the subsection below for clarity.

3.2. Summary of the JCFO algorithm

1. Given the training set D, use an initial uninformative scaling of θi = 1 for all the features to compute
the initial design matrix H .

2. Using the initial design matrix H , compute an initial seed estimate for β using a weakly penalized ridge
regression with the labels as data. In other words, compute β = (εI + H T H )−1Hy with a suitably
small ε (we have used 10−6 in our experiments). Note that this corresponds to a weak zero-mean
Gaussian prior with a very large variance for each of the elements of β.

3. Using the initial seed estimate for β and the initial uninformative scaling θ , compute the priors & and
' using Equations (24) and (25), respectively.

4. With the above β and θ as a starting point, use a nonlinear optimization technique to find the values of
β̂(0) and θ̂ (0) that maximize (26). This provides a suitable starting point for the EM algorithm below.

5. E-Step: Given the current estimates for β̂(t) and θ̂ (t), update the values of v, &, and ' using Equations
(23), (24), and (25), respectively.

6. M-Step: Obtain the new estimates β̂(t+1) and θ̂ (t+1) using the values of v, &, and ' from the E-step
by maximizing (26).

7. Repeat steps 5 and 6 until convergence of the log-posterior.
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Note that we must employ a constrained optimization in steps 4 and 6 to ensure satisfaction of the linear
inequality constraints θi ! 0. Also, note that if we use a linear classifier with the formulation for h given
in Equation (5), then we have a fixed θ and, consequently, our M-step simply reduces to Equation (29).
In this case, no nonlinear optimization would be required, but the sparsity of β would still ensure that
we use the expression levels of very few genes in designing a hyperplane classifier. We have used this
version as a fast but powerful feature selection algorithm to reduce the dimensionality of the data that has
to be handled by the JCFO with a linear (i.e., polynomial order 1) kernel. Thus, we can first perform the
feature selection using exactly the same algorithm by simply changing our design matrix and keeping θ
constant; this procedure typically identifies about 50 genes to be of relevance (nonzero scaling). Then, we
can quickly run the JCFO since the dimensionality of the search space for the nonlinear optimization in
the M-step is much smaller (and thus the search is much faster).

It should be observed that although both the JCFO with a linear kernel and the simpler version above
using (5) construct sparse hyperplane classifiers, they will be expected to perform differently due to the
different priors on each model. Using (5), we have sparsity in the features but not in the kernel coefficients,
while the JCFO still has both kinds of sparsity. Since this affords an extra amount of regularization, we
have observed greater classification accuracy for the JCFO, even though both methods construct hyperplane
classifiers.

4. EXPERIMENTAL RESULTS

In this paper, while we are the first to apply the sparse probit regression algorithm of Figueiredo and
Jain to the problem of classifying gene expression data, our primary contribution is the development and
application of the JCFO algorithm. To gauge the efficacy of these algorithms in comparison with a number
of others, we tested them on two benchmark cancer datasets and three breast cancer datasets; all the datasets
provide expression levels for human genes produced by Affymetrix high-density oligonucleotide microar-
rays. To measure diagnostic accuracy, we use a full leave-one-out cross-validation procedure (LOOCV)
where we train on N − 1 samples and test on the remaining sample which has not been used during
training. By cycling through all the samples, we can get realistic and honest estimates of the accuracy of
these methods. In all our experiments, we normalize the expression levels for each gene by subtracting the
mean and dividing by the standard deviation of that gene. The hyperparameters γ1 and γ2 of the JCFO
were adjusted in each cycle of the LOOCV by using a hold-out test set of 10% of the data; the chosen
values were then used with the entire dataset to obtain the classifiers for that cycle of the LOOCV. The
regularization constant of the SVM was chosen similarly.

In order to reduce the computational cost of the full LOOCV procedure, we accelerated our JCFO
feature selection in each cycle of the LOOCV by preprocessing using the JCFO algorithm with a linear
h function of the form given in Equation (5), as explained above. Thus, we were able to perform the
complete LOOCV error rate estimation for the JCFO on an 800MHz Pentium III Windows machine within
a couple of hours, by taking advantage of the reduction in dimensionality of the search space for the
general nonlinear optimization. It is worth pointing out that we did not preselect features first by using a
LOOCV and then performing the classification. Instead, the above two-step process was simply a proxy
for a single, larger optimization problem.

We first examined two benchmark cancer datasets reported in the literature to evaluate the ability of
different classification methods to recover clinical outcomes. The first bench mark dataset contains examples
of human acute leukemia, originally analyzed by Golub et al. (1999). The dataset containing expression
levels of 7,129 genes can be obtained at www-genome.wi.mit.edu/mpr/table_AML_ALL_samples.rtf. To
collect this data, bone marrow or blood samples were taken from 72 patients, 47 with acute myeloid
leukemia (AML) and 25 with acute lymphoblastic leukemia (ALL). The second benchmark dataset contains
expression levels of 2,000 genes from 40 tumor and 22 normal colon tissues. The dataset was originally
analyzed by Alon et al. (1999) and was downloaded from www.molbio.princeton.edu/colondata.

In Table 1, we present a full leave-one-out cross-validation study for each of the two benchmark datasets
to compare the accuracy of the diagnostic classification reported by the JCFO against that reported by
Adaboosting, the SVM, the RVM, logistic regression, and sparse probit regression. For kernel classi-
fiers, low-degree polynomial kernels were chosen because previous literature has indicated these to be
most accurate for these gene expression datasets; in particular, linear kernels have been found to work
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Table 1. Accuracy of Diagnostic Classification: Multiple Classifiers Applied
to Two Benchmark Cancer Datasets (% Correct in LOOCV Study)

Classifier AML/ALL Colon tumor

Adaboosting (decision stumps)a 95.8 72.6
SVM (quadratic kernel)a 95.8 74.2
SVM (linear kernel)a 94.4 77.4
RVM (linear kernel) 94.4 80.6
RVM (no kernel: on feature space)b 97.2 88.7
Logistic regression (no kernel: on feature space)b 97.2 71.0
Sparse probit regression (quadratic kernel) 95.8 84.6
Sparse probit regression (linear kernel) 97.2 91.9
Sparse probit regression (no kernel: on feature space) 97.2 85.5
JCFO (quadratic kernel) 98.6 88.7
JCFO (linear kernel) 100.0 96.8

aBen-Dor et al., 2000.
bKrishnapuram et al., 2002.

Table 2. Most Important Genes for Distinguishing AML from ALL, as Selected by the JCFO

θ i Index Accession Gene name Gene description

1.14 1780 M19507 MPO myeloperoxidase
0.83 3848 U82759 HOXA9 homeo box A9
0.81 1797 M20902 APOC1 apolipoprotein C-I
0.77 1830 M22960 PPGB protective protein for beta-galactosidase (galactosialidosis)
0.70 4952 Y07604 NME4 non-metastatic cells 4, protein expressed in
0.67 5599 L15326 PTGS2 prostaglandin-endoperoxide synthase 2
0.56 5003 Y10207 CD171 Human CD171 protein
0.51 5108 Z29067 NEK3 NIMA (never in mitosis gene a)-related kinase 3
0.46 1883 M27891 CST3 cystatin C (amyloid angiopathy and cerebral hemorrhage)
0.42 6540 X85116 EPB72 erythrocyte membrane protein band 7.2 (stomatin)
0.42 2289 M84526 DF D component of complement (adipsin)
0.41 6185 M14483 PTMA prothymosin, alpha (gene sequence 28)
0.41 879 Y00371 HSPA8 heat shock 70kDa protein 8
0.40 5349 M61853 CYP2C18 cytochrome P450, subfamily IIC, polypeptide 18
0.35 1835 M23197 CD33 CD33 antigen (gp67)
0.34 4197 X17042 PRG1 proteoglycan 1, secretory granule
0.33 6170 M13690 SERPING1 serine (or cysteine) proteinase inhibitor, clade G, member 1
0.32 1395 L20941 FTH1 ferritin, heavy polypeptide 1
0.30 1942 M31994 ALDH1A1 aldehyde dehydrogenase 1 family, member A1
0.29 3321 U50136 LTC4S leukotriene C4 synthase
0.27 5767 X13294 MYBL1 v-myb myeloblastosis viral oncogene homolog (avian)-like 1
0.26 1976 J02963 ITGA2B integrin, alpha 2b (platelet glycoprotein IIb, antigen CD41B)
0.23 805 HG1612 MACMARCKS macrophage myristoylated alanine-rich C kinase substrate
0.18 6056 U28055 MST1 macrophage stimulating 1 (hepatocyte growth factor-like)
0.16 2122 M63138 CTSD cathepsin D (lysosomal aspartyl protease)
0.16 1934 M31627 XBP1 X-box binding protein 1
0.12 3392 U53468 NDUFA5 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5, 13kDa
0.08 3715 U77604 MGST2 microsomal glutathione S-transferase 2
0.07 6226 M28170 CD19 CD19 antigen
0.03 1686 M11722 DNTT deoxynucleotidyltransferase, terminal
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Table 3. Most Important Genes for Distinguishing Colon Tumors, as Selected by the JCFO

θ i Index Accession Gene name Gene description

2.10 1357 T84051 CDC42 cell division cycle 42 (GTP binding protein, 25kDa)
1.76 974 U00968 SREBF1 sterol regulatory element binding transcription factor 1
1.47 1924 H64807 placental folate transporter (H. sapiens)
1.44 1873 L07648 MXI1 MAX interacting protein 1
1.41 350 D26129 RNASE1 ribonuclease, RNase A family, 1 (pancreatic)
1.38 377 Z50753 GUCA2B guanylate cyclase activator 2B (uroguanylin)
1.21 1757 H16096 PMPCB peptidase (mitochondrial processing) beta
1.01 765 M76378 CSRP1 cysteine and glycine-rich protein 1
0.86 1346 T62947 RPL24 ribosomal protein L24
0.84 1976 K03474 AMH anti-Mullerian hormone
0.75 792 R88740 ATP5J ATP synthase, H+ transporting, mitochondrial F0 complex, subunit F6
0.74 70 T61661 PFN1 profilin 1
0.74 554 H24401 MAP kinase phosphatase-1 (H. sapiens)
0.74 698 T51261 SERPINE2 serine (or cysteine) proteinase inhibitor, clade E (nexin), member 2
0.72 1546 T51493 PPP2R5C protein phosphatase 2, regulatory subunit B (B56), gamma isoform
0.64 1740 M81651 SEMG2 semenogelin II
0.50 1641 K02268 PDYN prodynorphin
0.42 1024 R65697 REL v-rel reticuloendotheliosis viral oncogene homolog (avian)
0.37 1644 R80427 C4-dicarboxylate transport sensor protein DCTB (R. leguminosarum)
0.32 1623 T94993 FGFR2 fibroblast growth factor receptor 2 (keratinocyte growth factor receptor)
0.14 1909 U10886 PTPRJ protein tyrosine phosphatase, receptor type, J
0.12 1482 T64012 CHRND cholinergic receptor, nicotinic, delta polypeptide
0.10 1094 R33481 ATF7 activating transcription factor 7
0.06 187 T51023 HSPCB heat shock 90kDa protein 1, beta
0.06 1504 H78386 IL1R2 interleukin 1 receptor, type II
0.03 1241 T64885 general negative regulator of transcription subunit 1 (S. cerevisiae)

well. We occasionally tested quadratic kernels for completeness but our results are consistent with earlier
work: a linear kernel is very effective. For the RVM, logistic regression, and sparse probit regression,
we also tested a nonkernelized hyperplane classifier directly in the feature space; this is not possible for
the SVM.

Since the JCFO has been designed to identify the optimal genes as well as the optimal classifier, we
further analyzed the genes that are identified as most important by the classifier. Tables 2 and 3 show
the genes identified by the JCFO as being most important for making a diagnostic decision. The reported
values of θ in these tables were obtained by taking the mean of the θ obtained for each of the classifiers
designed in the LOOCV (so N = 72 in Table 2 and N = 62 in Table 3).

We also examined three different breast cancer datasets. The first was a Duke University study in
which N = 38 breast tumors were classified based on estrogen receptor (ER) status. The second was a
Duke University study in which the same N = 38 breast tumors were classified based on lymph node
(LN) involvement status. The third was a set of N = 58 breast tissues collected by researchers at Lund
University in Sweden. To accelerate the time required to complete the full LOOCV for all of the methods
and to give as much performance benefit as possible to the classification methods that suffer from the curse
of dimensionality, the three breast cancer datasets were pared in advance to include only the 2,000 most
relevant genes as determined by the Fisher discriminant ratio (FDR). Restricting the set of available genes
in this way does not improve the accuracy of the JCFO because it is designed to perform feature selection
as part of its optimization, but the smaller set of relevant initial features does improve the accuracy of the
other methods.

In Table 4, we present a full leave-one-out cross-validation study for each of the three datasets to
compare the accuracy of the diagnostic classification reported by the JCFO against that reported by the
SVM, the RVM, and sparse probit regression. Since linear kernels seemed to outperform quadratic kernels
in the previous tests on gene expression data (see Table 1), we do not consider quadratic kernels here.
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Table 4. Accuracy of Diagnostic Classification: Multiple Classifiers Applied
to Three Breast Cancer Datasets (% Correct in LOOCV Study)

Classifier Duke ER status Duke LN status Lund

SVM (linear kernel) 97.4 78.9 87.9
RVM (linear kernel) 94.7 92.1 88.5
RVM (no kernel) 89.5 81.6 96.5
Sparse probit regression (linear kernel) 97.4 89.5 86.2
Sparse probit regression (no kernel) 84.2 89.5 96.5
JCFO (linear kernel) 97.4 94.7 98.3

5. DISCUSSION

First, as indicated in Tables 1 and 4, on all five datasets, the classification accuracy of the JCFO is
superior to all of the other classification methods we tested or found in the literature, including the sparse
probit regression EM algorithm with a Jeffreys prior as proposed by Figueiredo and Jain. Specifically,
the Jeffreys EM algorithm failed to consistently learn effective classifiers when using a second-order
polynomial kernel. Though the use of the Laplacian prior did permit the design of a reasonable classifier,
the real benefits of nonlinear classifier design are impossible to achieve with a poorly designed polynomial
kernel that is required to weight all the features as equally relevant in measuring similarity between two sets
of expression profiles of genes. The JCFO improves classification performance by finding the appropriate
scaling and selection of genes to use, all as part of the algorithm. Of course, this joint optimization comes
at a price: the algorithm is significantly slower than the sparse probit regression algorithm of Figueiredo
and Jain, though it was still acceptable for our purposes. However, the computational complexity of our
algorithm might render it impractical with current technology if it were applied to datasets with several
hundreds or thousands of samples. Fortunately, the sample sizes available in current datasets are typically
much smaller. The large number of genes does not pose a problem since we can preprocess all the
genes found useful by the sparse probit regression algorithm and use our algorithm only on this reduced
set of around fifty genes as discussed above. In this case, our algorithm converges in less than half
an hour.

Second, the genes that the JCFO algorithm associates with high θ values for each of these cancer types
are shown in Tables 2 and 3. We note that almost all genes with high values of θ in Table 2 are of known
relevance to the AML/ALL distinction. In particular, CST3, CD33, DF, HOXA9, LTC4S, PRG1, CTSD,
and EPB72 were all determined by Golub et al., to be predictive of AML. In addition, MPO (not identified
by Golub et al.) is known to occur in virtually all cells of the myeloid lineage and none of the lymphoid
lineage, and antibodies to MPO are used as clinical determinants of AML. CD33 is similarly a marker for
AML, expressed in nearly all malignant myeloblasts. HOXA9 is transformed in myeloid cells and can lead
to leukemia in animal models. DF (adipsin) is expressed during myeloid cell differentiation. Many other
genes with high θ are known to play a role in myeloid/lymphoid differentiation, and a few novel genes
have been identified as well. Similar results hold in the case of the colon tumor data. The genes with high
values of θ in Table 3 are in many cases also known to be implicated in colon cancer or other cancers,
including CDC42, MXI1, RNASE1, GUCA2B, REL, FGFR2, and PTPRJ. A few anomalous genes like
AMH and SEMG2 are also given nonzero values of θ , and we are currently investigating these genes for
novel properties.

Third, if the RVM and sparse probit regression are formulated without a kernel (operating directly on
the feature space), they too can identify a set of diagnostically most informative genes, just like the JCFO.
The difference is in the number of genes that are identified by these methods. Indeed, the JCFO typically
identifies less than half as many genes as other methods while providing better diagnoses. All the methods
can identify a small subset of genes (typically 50 or so) that carry complete diagnostic information, but
the JCFO is more sparse than the others used here. This depends to some extent on the parameters
characterizing the prior, but for comparison, we retained the priors of the RVM in the same form as used
by Li et al. (2002) with a = b = 0. If we use other parameters, then we get better accuracy but worse
feature selection (in that we lose much of the sparsity).
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Finally, it is worth noting that the expression levels of many genes are well-correlated with the class
variable y but the methods considered in this paper select only a subset of genes that carry distinct
information. This is not to imply that other genes are not well correlated, but simply that if we have the
information provided by the set of genes identified here, then we do not obtain new information from other
genes. We are interested in identifying such genes because we believe they provide us important clues
about the genetic mechanisms underlying the disease; further study and analysis of a small set of about
20 genes will be much more tractable in terms of computational and human resources than analyzing tens
of thousands of genes.

In conclusion, the JCFO has successfully achieved both of its objectives: LOOCV classification accuracy
above the state-of-the-art and automatic gene selection. Nevertheless, considerable scope for improvement
remains, and we must still address several questions. Is our prior optimal? Does our EM formulation
converge to a global maximum, or do we face multiple local maxima? Can we improve the computational
efficiency of our optimization implementation? We are investigating different ways to address these issues
in our current work. All code developed as part of this research is available from the first author.
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