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ABSTRACT

Motivation: Protein backbone torsion angle prediction
provides useful local structural information that goes beyond
conventional three-state («, 8 and coil) secondary structure
predictions. Accurate prediction of protein backbone torsion
angles will substantially improve modeling procedures for local
structures of protein sequence segments, especially in mod-
eling loop conformations that do not form regular structures as
in a-helices or g-strands.

Results: We have devised two novel automated methods in
protein backbone conformational state prediction: one method
is based on support vector machines (SVMs); the other
method combines a standard feed-forward back-propagation
artificial neural network (NN) with a local structure-based
sequence profile database (LSBSP1). Extensive benchmark
experiments demonstrate that both methods have improved
the prediction accuracy rate over the previously published
methods for conformation state prediction when using an
alphabet of three or four states.

Availability: LSBSP1 and the NN algorithm have been imple-
mented in PriISM.1, which is available from www.columbia.
edu/~ayl/.

Contact: ayl@columbia.edu; cleslie@cs.cloumbia.edu
Supplementary information: Supplementary data for the
SVM method can be downloaded from the Website www.cs.
columbia.edu/compbio/backbone.

INTRODUCTION

Protein backbone torsiord( W) angles are highly correlated

to protein secondary structures. The distribution ofdhel

angles in any region of the Ramachandran plot. Figure la
summarizes the relationship between backbone torsion angles
and secondary structure by plotting the distribution®efl
angles in the alpha, beta and loop regions.

Botha-helices angg-strands are relatively straightin struc-
ture; the turning points in protein chains are made up of
residues in loop regions. The loop residues in a protein
chain play important roles as structural determinants in con-
necting regular secondary structure elements, leading to a
specific protein folding topology for the protein structure
(Richardson, 1981). Moreover, many loop residues involve
enzymatic activities and protein—protein interactions, such as
in antibody—antigen interactions. Local structural informa-
tion provided by predictive algorithms will facilitate signi-
ficantly the analysis of protein sequence—structure—function
relationships.

Although many loop regions contain recurrent local struc-
tural motifs (see recent reviews, de Brevetnal., 2002;
Wojcik et al., 1999), the large conformational variability
makes the characterization and prediction of loop conform-
ations one of the most challenging molecular modeling prob-
lems (see e.g. de Bakket al., 2003; Fiseret al., 2000;
Galaktionovet al., 2001; Wojciket al., 1999; Xianget al.,
2002). Accurate predictions of protein backbone torsion
angles will improve further the prediction capacities of loop
modeling procedures.

Three-stated, 8 and coil) secondary structure prediction
methods have reacheeB0% accuracy (Petersenal., 2000;
Pollastriet al., 2002; Rost, 2001). Although these methods are
powerful tools in protein structure prediction from amino acid

angles in protein structures is mostly clustered around th&equences, three-state secondary structure predictions do not
alpha (centered ab = —60°, ¥ = —40°), beta (centered distinguish one loop conformation from the other. Backbone

atd = —120¢°, ¥ = 120) and L-alpha (centered & =

60°, ¥ = 0°) regions of the Ramachandran plathelices

torsion angle predictions, on the other hand, provide local
structural information that is useful in defining local structures

andg-sheets consist of residues with backbone torsion anglef®r highly variable loop regions in amino acid sequences.

distributed mostly in the alpha and bebe-d angle regions,

While three-state secondary structure prediction methods

respectively. Backbone structures in the loop regions are ndtave been developed with increasing accuracy, the proced-

as regular as im-helices ands-sheets and can have—V

*To whom correspondence should be addressed.

ure for prediction of protein backbone torsion angles has
received relatively little attention. The hidden Markov model
HMMSTR, based on local sequence—structure correlations in
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Fig. 1. (a) Density plot of the joint distribution ob—W¥ angles inx-helix, 8-sheet and loop (coil) region from left to right. The density at a

point in the plot is estimated by the area of the disk that is centered at the point and contains exactly 100 obseby&iotsin(backbone
conformational states. The backbone torsion angle ranges of the backbone conformational states (A, B, G and E) are defined in the right-hanc
side of the Ramachandran plot. The definitions of the conformational states shown in the Ramachandran plot were obtaineddtam Oliva
(1997).
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proteins, has been demonstrated to make backbone torsiaoil) secondary structure prediction methods have provided
angle predictions with significant accuracy (Bystreffal.,  essentially no local structural information.
2000). This was the first protein backbone torsion angle pre- The two prediction methods have been benchmarked against
diction method benchmarked with a large set of test proteingxtensive testing cases. The results show that these two meth-
(Bystroffetal., 2000). HMMSTR uses an alphabet of 11 con- ods improve backbone torsion angle prediction accuracy over
formation states, 10 correspondingite angle regions and those for which results have been published previously.
one forcis-peptide bonds.

Other authors have presented an extensive study of the prgqETHODS
dictability of different definitions and alphabet sizes of local . . .
structural states (de Breveehal., 2000). One of the goals of Protein backbone torsion angle conformational
using a predicted local structure is improving the performancec'tat%
of profile HMMs for fold recognition (Karchiret al., 2003).  Following previous work, protein backbone torsion angles
The focus of this work, however, is on the fold recognition are mapped onto thé—¥ plot (Oliva et al., 1997; Yang
problem rather than optimizing conformation state predictionand Wang, 2003). We divided thke—&' map into four major

Recently, a local structure prediction method based on aonformational states: A, B, G and E. Figure 1b shows the
local structure-based sequence profile database (LSBSP1) sV angle ranges of these conformational states. Almost
been devised and tested for prediction accuracy (Yang anall the residues in our training/testing proteins (see below
Wang, 2003). Although the LSBSP1 local structure predictiorfor more details on the training/testing sets) have backbone
procedure has been demonstrated to predict reasonably acctorsion angles distributed in one of the four major conform-
ate local structures for sequence segments of nine consecutiagonal states. Only 0.38% of the residues have a backbone
residues based on the root mean square deviation (RMS@pnformation outside the four major conformational states. In
measure, the backbone torsion angle prediction accuracy efddition, 1.8% of the residues, most of which are the N- or
the LSBSP1-based procedure has made only marginal pr&-terminal residues, are not assigned to any of the conform-
gress in comparison with HMMSTR (Yang and Wang, 2003)ational states because they lack well-defined backbone atoms
(see also Table 2 for a comparison of the two publishedo calculate theb—¥ angles. These residues were removed
prediction results). from our training/testing set.

In this work, we report two novel protein backbone tor- i
sion angle prediction procedures. One extends the previodsOc@ Structure-based sequence profile database
LSBSP1 prediction procedure by using an artificial neural- SBSP1
network (NN) algorithm to process and summarize the predicWe only briefly describe the construction of the LSBSP1 data-
tion results. The other uses support vector machines (SVMd)ase; more details can be found in a recently published work
to make protein backbone torsion angle predictions basefirang and Wang, 2003). The procedure has also been sum-
on the protein sequence profile produced with PSI-BLASTmarized in a flow chart available from our ftp server (ftp://
(Altschul et al., 1997) and the three-state secondary strucps7ayang.cpmc.columbia.edu/pub/LSBSP1flowl.pdf). The
ture prediction from PSI-PRED (Jones, 1999). The goal 0l.SBSP1 database contains a total of 138604 position-
the prediction procedures is to predict the backbone conspecific score matrices (PSSMs). Each PSSM has dimen-
formational state of each residue in protein chains. Insteadions of 9x 20. Each of the PSSMs was calculated from
of using fine conformational states as in, e.g. HMMSTR, oura structure-based multiple alignment constructed with a
prediction procedures focused on prediction accuracy basesked nine-residue segment from a protein structure. The
on four (A, B, G and E; Fig. 1b for definition) or three (A, seed segments in LSBSP1 are nine consecutive residue
B and G/E) conformational states. This goal reflects the gensequence segments from the non-redundant protein struc-
eral observation that, as shown in Figure 1a, there are onlures in PDB_SELECT_25 [PDB_SELECT_25; Hobohm
three major backbone conformational states for residues it al. (1992) version Feb/2001, with no pairwise sequence
proteins. Bystroff and Baker (1998) have demonstrated thatentify >25%]. To construct a PSSM based on a seed
the backbones of two eight-residue segments can be supesegment, we first used the seed segment as a probe to
imposed with RMSD less than 1.4 A if none of the backbonesearch through the non-redundant proteins. Sequence seg-
torsion angles in one segment deviates from the correspondaents from the non-redundant protein set that are identical
ing torsion angles in the other segment by more thar?.120 in backbone conformational state (Fig. 1) and have the
This indicates that accurate coarse-grained backbone coamino acid replacement scores above a threshold in com-
formational state prediction can be extremely useful in locaparison with the seed sequence were aligned to construct
structure prediction. This is particularly true for highly vari- a preliminary local structure-based sequence profile for
able local structures as in the coil regions, which constitutehe seed segment. The sequence similarity was calculated
slightly less than half the residues in proteins, and thosevith the structure-specific amino acid substitution matrices
residues for which the conventional three-state § and that we have developed to align distantly related protein

1614


ftp://

Protein backbone angle prediction

pairs (Yang, 2002). This preliminary local structure-based The 216 input units are divided into nine groups, repres-
sequence profile was then converted into a pre-PSSM in halenting a window of nine consecutive residues. We use a
bit units with the Bayesian prediction pseudo-count methodine-residue window for prediction input because the LSBSP1

(Tatusovet al., 1994): database was constructed with nine-residue segments (see
a5 above). An orthogonal representation of an amino acid type
Wi = 2log, (p—l> , (1)  requires 21 input units. The input unit that specifies the amino
1

acid type is set to 1, while all other 19 input units are set to
wherep; is the background probability (Tatusewal., 1994)  zero. The 21st input unit is set to 1 for residue positions in

for amino acid type and the nine-residue window outside the N- or C-terminus of the
. 20 . protein chain. The last three (the 22nd to the 24th) input units
Qi = Crit B+ M =3 ima Conpi , (2)  in each group are encoded with values summarized from the

M+ B backbone torsion angle predictions with the LSBSP1 data-

where Cjy; is the number of amino acid typethat appear base. To make the LSBSP1-based backbone torsion angle
in the columnJ of the sequence profiled is the num-  prediction, we use each window of nine-residue segments
ber of rows in the sequence profile. The teth + M — in the query protein sequence as a probe sequence segment
Zk:l,ZO Cyi) in the numerator is the pseudo-count, whereto match for nine-residue structure-based sequence profiles
B = MY%® s considered adequate (Tatuseval., 1994). in the LSBSP1 database. All the LSBSP1 profiles for which
This pre-PSSM (7], a 20 x 9 matrix) was further refined the matching scores are more than a threshold of 20 and for
by removing from the preliminary structure-based multiplewhich the secondary structure assignments are consistent with
alignment the sequence segments that did not score hightre PSI-PRED secondary structure prediction of the query
than a threshold %15) with the pre-PSSM. The remain- sequence segment by more than 50% (Yang and Wang, 2003)
ing set of segments form a refined local structure-basedre aligned tothe query sequence to formamultiple alignment.
sequence profile, and the PSSM was recalculated and sav@sitions in the multiple alignment represent the predictions
along with the sequence and structural information of theof the backbone conformational states, which can be A, B
seed nine-residue segment in the LSBSP1 database. Thé G/E, for the corresponding residue in the query sequence.
procedure described above was applied to all the nineAs the nine-residue window slides through the query pro-
residue sequence segments in the non-redundant protei@in chain one residue at a time, the backbone conformational
structures to construct the LSBSP1 database in the PrISM dtate predictions accumulate in the multiple alignment. Each
system. columnin the multiple alignment shows all the backbone con-

Protein backb tors | edicti ith formational state predictions for the corresponding residue in
roten backbonetorsion ang epredic |or_1 Wi _ the query protein. After the predictions for all nine-residue
L SBSP1 database and artificial NN algorithm: the windows in the query protein, the multiple alignment for all

L SBSP1 + NN method the predicted backbone conformational states is then conver-
The goal of the LSBSPANN prediction procedure is to ted into a PSSM with Equation (1) to calculdté;;, where
predict the backbone conformational state of the central can be A, B or G/E. ThéV,; is a log-odds ratio in half-bit
residue in a nine-residue segment from a query proteimnits for the backbone conformational state predictions versus
sequence. A standard feed-forward back-propagation artifrandom predictions based on background probabilities of the
cial NN (Rumelhartt al., 1986) with single hidden layer is conformational states at positiohin the query sequence; a
used in the torsion angle prediction procedure. The input layelarge positiveW,; value indicates that the residue positifn
has 216 input units, representing a window of nine consecutis consistently predicted to be theonformational state, and
ive residues in a protein chain. The hidden layer has 50 unit@ negativeW; value indicates that thé position is consist-
Architectures with more hidden layer units did notimprove theently predicted to be the naneonformational state. Three
performance of the prediction capacities. The output layer hagalues within the range between 0 and 1 are calculated from
three units, representing are A, B or G/E backbone conform¥,; for each position/ in the query protein sequence using
ational state of the central residue in the input nine-residu¢he standard logistic function (Jones, 1999):
segment. We group the G and E states into one class in the 1

prediction output because the E conformational state has only aji = (3)
1.7% of the total training cases. The scarcity of the train- 1+e M

ing cases made the prediction for E conformational state bywherei can be A, B or G/E. Thesey; values are used in
itself extremely difficult with the artificial NN and the SVM the 22nd to the 24th input units for each group to encode the
algorithm (see e.g. the results shown in Table 2). By groupinformation of predicted backbone conformational states.

ing together the G and E training cases (6.4% of the training An on-line back-propagation training procedure was used
cases), we were able to train the NN algorithm to predicto update the weights connecting the nodes after each training
residues in the G/E state with reasonable accuracy. pattern presentation (Rumelhattal., 1986). Each training
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pattern was randomly selected from a pool of nine-residueletails). Two tests have been performed to isolate the pre-
structural segments from training proteins. The input units areliction effect of the two types of information: first, we used
encoded based on the sequence of the nine-residue segmenty the sequence information and removed the 22nd to the
and thea,; values derived from Equation (3) (see above).24th input units from the input nodes and re-ran the 10-fold
The three output target values are set to 0 or 1 based on tlreoss-validation (see above). The results showed an overall
backbone conformational state of the central residue of therediction accuracy rate of 61.5%. Second, we used only the
nine-residue segment. The momentum value of 0.9 is used to;; values, the information of predicted backbone conform-
prevent oscillation. The learning rate of 0.001 was found taational states (the 22nd to the 24th input units) and removed
be adequate in all the training procedures. the first 21 input units from the input nodes and re-ran the
Atotal of 97 365 nine-residue segments derived from a non10-fold cross-validation. The results showed an overall pre-
redundant protein set were used as training and testing casehiction accuracy rate of 67.8%. These tests indicate that the
These non-redundant proteins are fromthe PDB_SELECT _2tter information contributed more to the prediction accur-
list (version Dec/2002) and are not related to any of the proacy and that the artificial NN algorithm does indeed combine
teinsin LSBSP1 (from PDB_SELECT_25 version Feb/2001)these two types of information to make optimum prediction.
with a p-value threshold of 10° (or average sequence ] ) o ]
ID < 18%). The proteins in the non-redundant protein sefr Otéin backbonetorsion angle prediction with
are not related to each other by more than 25% sequend®VM and PSI-PRED
identity. It is important to have the training/testing proteins\e also developed an SVM method to predict the backbone
unrelated to the proteins in LSBSP1 because close homolog®nformation of the middle amino acid in a nine-residue
to the proteins in LSBSP1 tend to have a high accuracy isequence segment. Here again, we either classify four types
backbone torsion angle prediction with the LSBSP1-basedf conformational states (A, B, E and G) or combine the
method. The training and testing processes were carried oo smallest states into a single class (E/G) for three-state
with 10-fold jackknife cross-validation: 10% of the segmentsclassification. Our main effort is to design the feature repres-
were used as testing cases, while the remaining 90% segntation of nine-residue amino acid segments. The three kinds
ments were used in training; the processes repeat 10 timegf information we use for features are amino acid sequences,
each with a different 10% of the nine-residue segments. FOPS|-BLAST (Altschulet al., 1997) profiles and secondary
each training—testing process, the training iteration was tefstructures that are known (for training data) and that are
minated when the prediction capacities of the network starte@redicted by PSI-PRED (Jones, 1999) (for test data).
to degrade on the 10% testing cases. The prediction accuracy
was calculated by averaging the prediction accuracy rate fopPPort vector machines Support vector machines are a
the testing cases over the 10-fold cross-validation processe@mily of algorithms for classification problems (Vapnik,
Prediction accuracies were calculated by comparing the trug998). Given a training dataset witih labeled training
backbone conformational state with the predicted conformasa@mples £i, yi) (1 < i < m,x; € %" andy; € {1,-1}),
tional state. The predicted conformational state was indicatete goal is to learn a ‘large margin’ linear classifjeto dis-
by the output node with the largest output value. criminate between the two classes. Here, a linear classifier
Finally, the NN was again trained with all the 97 365 nine- ¢an be represented as a function:
residue segments and the trained network was tested with a
set of recently released proteins that are not related to any f@) =(w,x) +bweR",x eRN",beN). (4
of the training proteins and the proteins in LSBSP1. The
samep-value threshold described in the previous paragrapfThe decision boundary is a hyperplahe, x) + » = 0, and
was used to identify the test proteins in a recently releasethe margin for a training example is the valuey; f (x;)
PDB_SELECT_25 list (version Apr/2003). The prediction (>0 if the example is correctly classified). A test example
accuracy for the new test proteins was then compared withvill be classified as positive iff (x) > 0, negative other-
the average accuracy from the 10-fold cross-validation. Thevise. The linear classification function can be learned with a
comparisonis to ensure thatthe LSBSIN method has not  soft margin SVM (Cristianini and Shawe-Talor, 2000), which
been over-trained and the benchmarked accuracy is generallycorporates a trade-off between maximizing the geometric
applicable to protein sequences of unknown structure. margin and minimizing margin violations on the training set.
The NN input nodes combine two types of information: An important property of the SVM optimization problem is
the amino acid sequence of the query sequence segment (ithat we can replace the inner prodyct x ;) by a kernel func-
first 21 input units) and they; values, the information on tion K (x, y); here, the kernel implicitly represents the inner
the predicted backbone conformational states (the 22nd tproduct between feature vectors for pairs of input examples,
the 24th input units). The combination of these two types ofK (x, y) = (®(x), ®(y)), for some feature mapping from
information gives the optimum overall prediction accuracythe original input vector space to a feature spaice (or a
of 78.2% in the 10-fold cross-validation results (Table 4 forHilbert space). Typical kernels include polynomial kernels,
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K(x,y) = ({(x,y) + )¢, or radial basis kernels, (three kinds of secondary structures plus the blank position).
2 We denote the secondary structure feature mapsas

K(x,y) = exp <_u) _ Different feature representations can be combined by con-

20 catenation of feature vectors (direct product of vectors); we

A one-versus-all classification is used to make multiclasgVrite, €.9.®pinary X ®secfor the direct product of binary and

predictions from trained binary SVM classifiers. We simply Secondary structure feature maps. _
choose our prediction to be the class that gives the maximum TWo datasets are used for evaluation of the SVM method:

margin for each test examp/{e PDB_SELECT_25 and a m0d|f|ed VerSiOI’l Of the Dunbl’aCk-
culled PDB (Karchin et al., 2003). This version of
y = argmal fj ()1, Dunbrack-culled PDB has a sequence identity cutoff of 20%,

a resolution cutoff of 3.0 A and &-factor cutoff of 1.0 with
fragments shorter that 20 residues removed. The Dunbrack-
culled PDB dataset provides a more accurate non-redundant
benchmark and allows us to compare the SVM performance
Binary encoding featuremap A simple way of representing with other results from the literature.

an amino acid sequence is through binary encoding. Here, For the PDB_SELECT_ 25 dataset, we performed two
each amino acid is represented as a 21-dimensional vectaets of benchmark experiments for evaluation of the SVM
where each dimension corresponds to one type of amino acitlassifiers. First we used proteins in the LSBSP1 database
or to a special null character that is used to fill in the blank(PDB_SELECT_25 version Feb/2001) as the training set,
positions in window segments containing entries before thend we tested on PDB_SELECT_25 (version Dec/2002) pro-
beginning or after the end of a protein sequence. The introdudeins that are not related to any proteins in the training set.
tion of a null character helps to make predictions for boundary=or the second set of experiments, we performed 10-fold
positions without affecting the overall accuracy. To encode arcross validation on PDB_SELECT_25 as described in the
amino acid or blank at a particular position in the sequenceneural net approach above. The results produced from the two
we put a positive constard, in the corresponding entry in the training/testing procedures were essentially identical, and we
feature vector and 0 in all other entries. A length 9-segmient report only the 10-fold cross validation experiments below.
is mapped to a 188 x 21)-dimension vector by the feature Finally, we performed 3-fold cross validation experiments
map Poinary- on the dunbrack-in-scop dataset, where the number of folds
was chosen for consistency with previous published results
ﬁéarchinet al., 2003) in order to allow comparison.

where f; is the SVM classifier for thg-th class.
We use the publicly available SV package to learn the
binary classifiers (Joachims, 1999) in our experiments.

PS-BLAST profile feature map Instead of using a binary

encoding of the amino acid sequence, we can represent t

sequence segmentwith its PSI-BLAST log-odds score profile.

These scores are calculatedlasQ; / P;)1/A;, whereQ; isthe RESULTS AND DISCUSSION

estimated probability for residueto be found in that column,  Feature representations and kernel selection

P; is the background frequencyidindl; is a scale parameter. for S\VM

The way we construct the profile kernel is as follows: the )

PSSM is constructed for all protein sequences with the PSI\-Ne first report results on t.h e PDB_SELECT_25 data_set.

BLAST program running under the standard setup of PSI_Table 1 compares the prediction accuracy_betyveenfourdlﬁer—
ent types of feature maps for SVM classification. The profile

fature mapping outperforms the binary mapping by around

into 9 x 20 matrices (each of the nine positions encodes %% and is outperformed by the secondary structure feature

probability distribution over 20 amino acids). For the blankmapping by 3%. A breakdown of results by conformation

positions at the beginning and the end of a protein sequence '
20 zeros are filled in to represent the background distributio state suggests that both the profile and secondary structure

The feature mapPprofie, assigns to a length nine segment Yeature maps have good results in the alpha and beta regions

the concatenation of nine 20-dimension vectors in the PSSI\/P.Utare. Ie;s helpfulinthe loopregions; n particular, the binary
éncoding is more successful than profile or secondary struc-

Predicted secondary structure feature mapping In addition  ture for prediction of the E/G state, which almost always
to the protein sequence, another useful source of informatioaccurs in loops. These results are understandable, given
we can use is the secondary structure. The secondary struitie strong correlation between secondary structure and local
ture of training sequences is derived from the DSSP programonformation forx-helices ang-strands and given that pro-
(Kabsch and Sander, 1983). For testing sequences, secondditgs help predict these regular secondary structures; for loop
structures are predicted with the PSI-PRED program (Jonesggions, secondary structure information is complementary to
1999). As with binary encoding for amino acid sequencesl|ocal conformation and not directly useful for prediction. By
we can represent a length nine segment as a binary encodiigegrating the secondary structure with the profile or binary
of nine positions, each of which has a 4-dimensional vectomapping, both are improved significantly to approximately
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Table 1. Prediction results using 10-fold cross-validation by SVM classification with various feature maps (PDB_SELECT_25 dataset)

Test case Dbinary Dprofile Dsec Dpinary X Psec Dprofile X Dsed Dprofile X ‘btruefsetl:) Dprofile X ®pred75€8
(%) (%) (%) (%) (%) (%) (%)
A 50689 77.10 77.30 71.30 80.50 82.00 83.41 68.31
B 40268 51.00 65.40 87.22 78.80 79.00 86.78 89.51
GI/E 4760 54.20 42.60 7.76 48.50 51.10 52.68 54.28
Total 97 365 64.80 70.10 73.70 77.70 78.70 82.78 76.15

The combination ofpinary andPprofile is NOt included sinc@profie is a richer representation dyinary. The definitions of these feature mappings are described in the Methods section.
2Dprofile X Psec USES true secondary structure for training and predicted secondary structure for testing.

bd),,mme x Pyye_ses USES true secondary structure for both training and testing.

CDprofile X Ppred_see Uses predicted secondary structure for both training and testing.

Table 2. Comparison of the prediction accuracies from the SVM method against the two previously published results

SVM @proile X Psec LSBSP1-consensus prediction (consensus lexil HMMSTR
Test cases Accuracy (%) Test cases Accuracy (%) Test cases Accuracy (%)
A 50689 82.5 17466 82.7 'A= 9625 82.0
B 40268 79.6 12732 71.2 'B= 7749 71.6
G 4760 32.9 1491 32.8 'G= 837 155
E 1648 0.3 461 6.5 B= 199 22.6
Total 97 365 77.3 32150 74.6 18410 74.0

The training and testing of the SVM method are described in the Methods section. The L8&8B&nsus data are reproduced from Table 1 of Yang and Wang (2003). The HMMSTR
data are reproduced from Table 5 of Bystreifal. (2000). The definitions of the conformational states in HMMSTR predictions are not completely identical to the definitions of the
A, B, G and E conformational states shown in Figure 1. For comparisos; A+ G,B =B+ E+d+b+e, G =L +1and E = x; the backbone conformational states on

the right-hand side of the equations were defined by Bysétaff. (2000). The A B’, G’ and E states are approximately equivalent to the A, B, G and E states defined in Figure 1.
The test cases listed under the HMMSTR predictions are the residues in, tBe & and E backbone conformational state, respectively.

the same accuracy. The similarity in performance could bengle ranges into four (A, B, G and E) states. (The final state
explained by the fact that the predicted secondary structuresrresponds ta@is-peptide bonds rather than the backbone
used for testing segments are also derived from profiles in PShngle state, and we omit this small set of residues in the
PRED. Finally, in the last two columns of Table 1, we use truecomparison.) One might consider this comparison unfair with
secondary structure and predicted secondary structure for bottMMSTR, which is trying to perform a more difficult multi-
training and testing. We find that using true secondary strucelass prediction problem; however, if the predictions, when
ture improves results dramatically for conformation state Agrouped into this coarser four-state setting, are less accur-
but slightly degrades the performance for E/G, again showate than four-state prediction methods, one could argue that
ing that secondary structure information is not predictive ofa smaller alphabet is better justified. We present the SVM
conformation states in loop regions. prediction accuracy in Table 2 by making explicit G and E
All the results shown in the table are produced with linearstate predictions. The separation of the two states slightly
kernels. We also performed experiments using polynomiatlecreases the overall prediction accuracy (Tables 1 and 2).
kernels and RBF kernels on the combined profile feature magven so, the comparisons are not straightforward because
and secondary structure feature map and obtained a sligttte three methods were benchmarked with different sets of
improvement of about 1% in each case (see supplementatgst cases. One interesting negative result is that the SVM
Website for results). method performs poorly on the smallest class (E) compared
with both LSBSP%#consensus and HMMSTR, indicating per-
Comparison with other methods haps that the simple feature representation is not expressive
Table 2 compares the SVM results of linear kernels with pro-€nough to detect this class. However, overall, the SVM pre-
file and secondary structure prediction with results reproducediction clearly outperforms the previous methods by a few
from our previous work (LSBSPfconsensus prediction) percent. More importantly, the SVM predictions were bench-
(Yang and Wang, 2003) and the published HMMSTR predicsmarked with a much larger set of test cases: the SVM test
tion accuracy (Bystrofet al., 2000). Since HMMSTR uses set is 3-fold larger than the test set used in benchmarking the
a larger alphabet of 11 conformation states, we facilitate th& SBSPH-consensus method and is 5-fold larger than the test
comparison by grouping the 10 states that corresporid-tb setusedin benchmarking the HMMSTR method. Based onthe
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Table 3. Position-wise predicted conformation states are tabulated according to true values

dunbrack-in-scop PDB_SELECT_25

Apred gpred G/EPred Total Apred grred G/EPred Total
A0bs 125244 25008 2835 153087 ohg 41571 8165 953 50689
Bobs 21921 102542 3344 127807 ol 7385 31803 1080 40268
G/EPbs 4019 4366 11004 19389 s 1570 1565 3273 6408
Total 151184 131916 17183 300283 Total 50526 41533 5306 97365

Table 4. Comparison of the prediction results from SVM with linear kernel Table5. SVM predictions for test cases from the dunbrack-in-scop dataset
and LSBSP%*NN methods

] ] All residues Loop residues only
All residues Loop residues only Test cases SVM (%) Test cases SVM (%)
Izigs SVM  LSBSPH  Test SVM  LSBSPi+
%) NN (%) cases (%) NN (%) A 153087 81.8 47 497 60.9
B 127807 80.2 58981 71.4
A 50689 814 819 14262 614 613 G/E 19389 56.8 16756 58.2
B 40268 795  78.0 17109 71.0 701 Total 300283 79.5 123234 65.6
GIE 6408 522 501 5082 552  47.1
Total 97365 787  78.2 36453 65.1 635

Here, the loop residues are the residues in the coil regions that connect two flankingccuracy derived from the 10-fold cross-validation (Table 4),
regular secondary structure elements in the test proteins. Coil residuesAn ted indicating that the prediction capacities of the LSBSRIN
C-termini are not included. Regular secondary structure elements were defined by ”}ﬁethod shown in Table 4 have not been over-trained.
DSSP programa-helices are regions with at least four consecutive H residues charac- ..
terized by the DSSP program, afiestrands are regions with at least two consecutive Table 4 compares the predlctlon performance of the SVM
E residues characterized by the DSSP program. The test cases are obtained from tieethod and the LSBSRINN method. The comparison
PDB_SELECT_25 dataset. shows that the SVM prediction is slightly better than the
LSBSPH-NN method but by<1%. To compare further the
large benchmark, we expect that the SVM prediction accurtwo methods on more level ground, we trained the SVM
acy will generalize to backbone torsion angle predictions fomethods with the proteins used in constructing the LSBSP1
protein sequences of unknown structure. database and then tested on the 97 365 test cases. The pre-
Table 3 further shows the SVM prediction (Table 2) detailsdiction accuracies are almost identical to the results shown in
in a number of predicted residues. Prediction errors are showFables 1 and 2. We conclude that the SVM method is more
as the off-diagonal numbers. The SVM prediction has beemccurate than the LSBSRNN method by a small margin.
validated with the same procedure and parameters but with aFinally, to verify our results, one additional SVM experi-
different protein set: the dunbrack-in-scop dataset. The resultment is done on the dunbrack-in-scop dataset with the profile
are compared side-by-side in Table 3. The differences arand secondary structure feature map using 3-fold cross-
comparable with<1% (Tables 4 and 5), indicating that the validation. The results shownin Table 5 are slightly better than
benchmark results shown in this work are relatively insensitivahose on PDB_SELECT_25, probably due to cleaner struc-
to the choice of the test and/or the training datasets. tural data in the second dataset. [We can compare the overall
o ] ) accuracy of 79.5% on this dataset for three-state prediction and
Prediction accuracy in loop region 78.4% for four-state prediction with previous results obtained
The trained LSBSPENN was tested with proteins in the using neural nets (Karchital., 2003) that found an accuracy
most recent PDB_SELECT_25 list (April 2003). All new of 58.8% on a 10-state conformation alphabet and 64.9% on
non-redundant proteins that are not related to the training four-state alphabet.]
proteins for the LSBSPANN method are used to testthe pre- The usefulness of the backbone torsion angle prediction
diction method. The results are summarized as follows: 14 898sides in prediction of local structures in protein sequences
residues are in A backbone conformational state, and 81.5%f an unknown structure. Our prediction assessments have
are correctly predicted; 11462 residues are in B backbonshown that the backbone torsion angle predictiongfbelix
conformational state, and 76.6% are correctly predicted; 206&ndg-strand residues are highly accurate (89% on average and
residues are in G/E backbone conformational state, and 45.6%9% baseline; baseline is evaluated with a random prediction
are correctly predicted. Overall, 77.0% of the residues are cobased on the conformational state population in the training
rectly predicted. The test results are similar to the predictiorproteins). However, local structuresirhelices ang-strands
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line in Figure 2a shows that 30% of the loops (1394 out of

1600 4673 loops) with 2—10 residues can be predicted with high
o 1400 accuracy (more than 80% residues in the loop are predicted
o 140 correctly). In contrast, the dotted line in Figure 2a indicates
E 10006 that random prediction can only produce high accuracy pre-
o, o diction for 4% of the loops. Figure 2b shows that the average
= 600 - : ' "'-‘.._‘ 1 backbone torsion angle predictions are relatively insensitive to
§ . o LEEBRMNT N the loop length. Together, Figure 2a and b indicate that some of
e 200 T % ranl om :4? the local conformations of residues in protein loop regions are
oqzn% 20%-40% 40%-60% 60%-80% 80%-100% recognizable from their local amino acid sequences and that
prediction accuracy these local structural motifs are notrestricted to short segments

of residues connecting two secondary structural elements.

(b)

>

A - — CONCLUSION

‘E 0.8 1 1 } Optimally combining available information is one of the
‘c“ g'; @ M 0etane_od’\ A A st difficult challenges in knowledge-based protein structure pre-
T E N R N diction procedures. The SVM and the LSBSRN methods

% 0.4 ; ; ; are fundamentally different in using structural and sequence
@ 03 i i ' i information derived from the database of known protein struc-
f,‘ gf ! ! | | ! tures. A similar prediction accuracy rate suggests that we are
g o ' ' approaching the prediction limit for the prediction methods
g © & W B AN & B with the current knowledge in the protein structural database.
© loop length (residues) The results show that backbone torsion angles in regular sec-

ondary structure elements can be predicted with high accuracy,
Fig. 2. (a) Distribution of protein loops against backbone torsion @nd backbone torsion angles in loop residues are more diffi-
angle prediction accuracy rate. A total of 4673 loops with 2—10cult to predict. However, the current prediction accuracy for
residues were used as test loops, which have not been used in tl@op backbone torsion angles suggests that some of the struc-
training of the LSBSPENN prediction methods. The prediction tural motifs in loop regions can be recognized with a high
accuracy for each loop was calculated as the ratio of the correctlgccuracy from local sequence information alone. The predic-
pl’ediCted residues over the residues in the |00p. The distribution qﬁons W|” prov|de useful |nformat|0n for mode“ng prote|n
t_he loops againsF the prediction accuracy rate is shown in the solidyy,ctures from protein sequences. With the upcoming expan-
Ilne.. The dotted line shgws the distribution of the same set of k,)OP%ion of protein structural databases, we expect to improve
against a random prediction accuracy rate. The random plrec“Ct'olnurther our prediction capacities in recognizing protein local
accuracy rate for each loop was calculated with random predictions . P P 9 gp
for the loop residues based on the background probabilities for thgonformatlons from local sequence segments.
conformational statesb] Average prediction accuracy rate plotted

against loop length. The dataset shown in this plot is the same as tisCKNOWLEDGEMENTS
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