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ABSTRACT
Motivation: Protein backbone torsion angle prediction
provides useful local structural information that goes beyond
conventional three-state (α, β and coil) secondary structure
predictions. Accurate prediction of protein backbone torsion
angles will substantially improve modeling procedures for local
structures of protein sequence segments, especially in mod-
eling loop conformations that do not form regular structures as
in α-helices or β-strands.
Results: We have devised two novel automated methods in
protein backbone conformational state prediction: one method
is based on support vector machines (SVMs); the other
method combines a standard feed-forward back-propagation
artificial neural network (NN) with a local structure-based
sequence profile database (LSBSP1). Extensive benchmark
experiments demonstrate that both methods have improved
the prediction accuracy rate over the previously published
methods for conformation state prediction when using an
alphabet of three or four states.
Availability: LSBSP1 and the NN algorithm have been imple-
mented in PrISM.1, which is available from www.columbia.
edu/~ay1/.
Contact: ay1@columbia.edu; cleslie@cs.cloumbia.edu
Supplementary information: Supplementary data for the
SVM method can be downloaded from the Website www.cs.
columbia.edu/compbio/backbone.

INTRODUCTION
Protein backbone torsion (�, �) angles are highly correlated
to protein secondary structures. The distribution of the�–�

angles in protein structures is mostly clustered around the
alpha (centered at� = −60◦, � = −40◦), beta (centered
at � = −120◦, � = 120◦) and L-alpha (centered at� =
60◦, � = 0◦) regions of the Ramachandran plot.α-helices
andβ-sheets consist of residues with backbone torsion angles
distributed mostly in the alpha and beta�–� angle regions,
respectively. Backbone structures in the loop regions are not
as regular as inα-helices andβ-sheets and can have�–�

∗To whom correspondence should be addressed.

angles in any region of the Ramachandran plot. Figure 1a
summarizes the relationship between backbone torsion angles
and secondary structure by plotting the distributions of�–�

angles in the alpha, beta and loop regions.
Bothα-helices andβ-strands are relatively straight in struc-

ture; the turning points in protein chains are made up of
residues in loop regions. The loop residues in a protein
chain play important roles as structural determinants in con-
necting regular secondary structure elements, leading to a
specific protein folding topology for the protein structure
(Richardson, 1981). Moreover, many loop residues involve
enzymatic activities and protein–protein interactions, such as
in antibody–antigen interactions. Local structural informa-
tion provided by predictive algorithms will facilitate signi-
ficantly the analysis of protein sequence–structure–function
relationships.

Although many loop regions contain recurrent local struc-
tural motifs (see recent reviews, de Brevernet al., 2002;
Wojcik et al., 1999), the large conformational variability
makes the characterization and prediction of loop conform-
ations one of the most challenging molecular modeling prob-
lems (see e.g. de Bakkeret al., 2003; Fiseret al., 2000;
Galaktionovet al., 2001; Wojciket al., 1999; Xianget al.,
2002). Accurate predictions of protein backbone torsion
angles will improve further the prediction capacities of loop
modeling procedures.

Three-state (α, β and coil) secondary structure prediction
methods have reached∼80% accuracy (Petersenet al., 2000;
Pollastriet al., 2002; Rost, 2001). Although these methods are
powerful tools in protein structure prediction from amino acid
sequences, three-state secondary structure predictions do not
distinguish one loop conformation from the other. Backbone
torsion angle predictions, on the other hand, provide local
structural information that is useful in defining local structures
for highly variable loop regions in amino acid sequences.

While three-state secondary structure prediction methods
have been developed with increasing accuracy, the proced-
ure for prediction of protein backbone torsion angles has
received relatively little attention. The hidden Markov model
HMMSTR, based on local sequence–structure correlations in
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Fig. 1. (a) Density plot of the joint distribution of�–� angles inα-helix, β-sheet and loop (coil) region from left to right. The density at a
point in the plot is estimated by the area of the disk that is centered at the point and contains exactly 100 observations. (b) Protein backbone
conformational states. The backbone torsion angle ranges of the backbone conformational states (A, B, G and E) are defined in the right-hand
side of the Ramachandran plot. The definitions of the conformational states shown in the Ramachandran plot were obtained from Olivaet al.
(1997).
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proteins, has been demonstrated to make backbone torsion
angle predictions with significant accuracy (Bystroffet al.,
2000). This was the first protein backbone torsion angle pre-
diction method benchmarked with a large set of test proteins
(Bystroff et al., 2000). HMMSTR uses an alphabet of 11 con-
formation states, 10 corresponding to�–� angle regions and
one forcis-peptide bonds.

Other authors have presented an extensive study of the pre-
dictability of different definitions and alphabet sizes of local
structural states (de Brevernet al., 2000). One of the goals of
using a predicted local structure is improving the performance
of profile HMMs for fold recognition (Karchinet al., 2003).
The focus of this work, however, is on the fold recognition
problem rather than optimizing conformation state prediction.

Recently, a local structure prediction method based on a
local structure-based sequence profile database (LSBSP1) has
been devised and tested for prediction accuracy (Yang and
Wang, 2003). Although the LSBSP1 local structure prediction
procedure has been demonstrated to predict reasonably accur-
ate local structures for sequence segments of nine consecutive
residues based on the root mean square deviation (RMSD)
measure, the backbone torsion angle prediction accuracy of
the LSBSP1-based procedure has made only marginal pro-
gress in comparison with HMMSTR (Yang and Wang, 2003)
(see also Table 2 for a comparison of the two published
prediction results).

In this work, we report two novel protein backbone tor-
sion angle prediction procedures. One extends the previous
LSBSP1 prediction procedure by using an artificial neural
network (NN) algorithm to process and summarize the predic-
tion results. The other uses support vector machines (SVMs)
to make protein backbone torsion angle predictions based
on the protein sequence profile produced with PSI-BLAST
(Altschul et al., 1997) and the three-state secondary struc-
ture prediction from PSI-PRED (Jones, 1999). The goal of
the prediction procedures is to predict the backbone con-
formational state of each residue in protein chains. Instead
of using fine conformational states as in, e.g. HMMSTR, our
prediction procedures focused on prediction accuracy based
on four (A, B, G and E; Fig. 1b for definition) or three (A,
B and G/E) conformational states. This goal reflects the gen-
eral observation that, as shown in Figure 1a, there are only
three major backbone conformational states for residues in
proteins. Bystroff and Baker (1998) have demonstrated that
the backbones of two eight-residue segments can be super-
imposed with RMSD less than 1.4 Å if none of the backbone
torsion angles in one segment deviates from the correspond-
ing torsion angles in the other segment by more than 120◦.
This indicates that accurate coarse-grained backbone con-
formational state prediction can be extremely useful in local
structure prediction. This is particularly true for highly vari-
able local structures as in the coil regions, which constitute
slightly less than half the residues in proteins, and those
residues for which the conventional three-state (α, β and

coil) secondary structure prediction methods have provided
essentially no local structural information.

The two prediction methods have been benchmarked against
extensive testing cases. The results show that these two meth-
ods improve backbone torsion angle prediction accuracy over
those for which results have been published previously.

METHODS
Protein backbone torsion angle conformational
states
Following previous work, protein backbone torsion angles
are mapped onto the�–� plot (Oliva et al., 1997; Yang
and Wang, 2003). We divided the�–� map into four major
conformational states: A, B, G and E. Figure 1b shows the
�–� angle ranges of these conformational states. Almost
all the residues in our training/testing proteins (see below
for more details on the training/testing sets) have backbone
torsion angles distributed in one of the four major conform-
ational states. Only 0.38% of the residues have a backbone
conformation outside the four major conformational states. In
addition, 1.8% of the residues, most of which are the N- or
C-terminal residues, are not assigned to any of the conform-
ational states because they lack well-defined backbone atoms
to calculate the�–� angles. These residues were removed
from our training/testing set.

Local structure-based sequence profile database
LSBSP1
We only briefly describe the construction of the LSBSP1 data-
base; more details can be found in a recently published work
(Yang and Wang, 2003). The procedure has also been sum-
marized in a flow chart available from our ftp server (ftp://
ps7ayang.cpmc.columbia.edu/pub/LSBSP1flow1.pdf). The
LSBSP1 database contains a total of 138 604 position-
specific score matrices (PSSMs). Each PSSM has dimen-
sions of 9× 20. Each of the PSSMs was calculated from
a structure-based multiple alignment constructed with a
seed nine-residue segment from a protein structure. The
seed segments in LSBSP1 are nine consecutive residue
sequence segments from the non-redundant protein struc-
tures in PDB_SELECT_25 [PDB_SELECT_25; Hobohm
et al. (1992) version Feb/2001, with no pairwise sequence
identify >25%]. To construct a PSSM based on a seed
segment, we first used the seed segment as a probe to
search through the non-redundant proteins. Sequence seg-
ments from the non-redundant protein set that are identical
in backbone conformational state (Fig. 1) and have the
amino acid replacement scores above a threshold in com-
parison with the seed sequence were aligned to construct
a preliminary local structure-based sequence profile for
the seed segment. The sequence similarity was calculated
with the structure-specific amino acid substitution matrices
that we have developed to align distantly related protein
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pairs (Yang, 2002). This preliminary local structure-based
sequence profile was then converted into a pre-PSSM in half-
bit units with the Bayesian prediction pseudo-count method
(Tatusovet al., 1994):

WJi = 2 log2

(
qJ i

pi

)
, (1)

wherepi is the background probability (Tatusovet al., 1994)
for amino acid typei and

qJ i = CJi + (B + M − ∑20
k=1 CJk)pi

M + B
, (2)

whereCJi is the number of amino acid typei that appear
in the columnJ of the sequence profile.M is the num-
ber of rows in the sequence profile. The term(B + M −∑

k=1,20 CJk) in the numerator is the pseudo-count, where
B = M0.5 is considered adequate (Tatusovet al., 1994).
This pre-PSSM ([WJi ], a 20× 9 matrix) was further refined
by removing from the preliminary structure-based multiple
alignment the sequence segments that did not score higher
than a threshold (>15) with the pre-PSSM. The remain-
ing set of segments form a refined local structure-based
sequence profile, and the PSSM was recalculated and saved
along with the sequence and structural information of the
seed nine-residue segment in the LSBSP1 database. The
procedure described above was applied to all the nine-
residue sequence segments in the non-redundant protein
structures to construct the LSBSP1 database in the PrISM.1
system.

Protein backbone torsion angle prediction with
LSBSP1 database and artificial NN algorithm: the
LSBSP1 + NN method
The goal of the LSBSP1+NN prediction procedure is to
predict the backbone conformational state of the central
residue in a nine-residue segment from a query protein
sequence. A standard feed-forward back-propagation artifi-
cial NN (Rumelhartet al., 1986) with single hidden layer is
used in the torsion angle prediction procedure. The input layer
has 216 input units, representing a window of nine consecut-
ive residues in a protein chain. The hidden layer has 50 units.
Architectures with more hidden layer units did not improve the
performance of the prediction capacities. The output layer has
three units, representing are A, B or G/E backbone conform-
ational state of the central residue in the input nine-residue
segment. We group the G and E states into one class in the
prediction output because the E conformational state has only
1.7% of the total training cases. The scarcity of the train-
ing cases made the prediction for E conformational state by
itself extremely difficult with the artificial NN and the SVM
algorithm (see e.g. the results shown in Table 2). By group-
ing together the G and E training cases (6.4% of the training
cases), we were able to train the NN algorithm to predict
residues in the G/E state with reasonable accuracy.

The 216 input units are divided into nine groups, repres-
enting a window of nine consecutive residues. We use a
nine-residue window for prediction input because the LSBSP1
database was constructed with nine-residue segments (see
above). An orthogonal representation of an amino acid type
requires 21 input units. The input unit that specifies the amino
acid type is set to 1, while all other 19 input units are set to
zero. The 21st input unit is set to 1 for residue positions in
the nine-residue window outside the N- or C-terminus of the
protein chain. The last three (the 22nd to the 24th) input units
in each group are encoded with values summarized from the
backbone torsion angle predictions with the LSBSP1 data-
base. To make the LSBSP1-based backbone torsion angle
prediction, we use each window of nine-residue segments
in the query protein sequence as a probe sequence segment
to match for nine-residue structure-based sequence profiles
in the LSBSP1 database. All the LSBSP1 profiles for which
the matching scores are more than a threshold of 20 and for
which the secondary structure assignments are consistent with
the PSI-PRED secondary structure prediction of the query
sequence segment by more than 50% (Yang and Wang, 2003)
are aligned to the query sequence to form a multiple alignment.
Positions in the multiple alignment represent the predictions
of the backbone conformational states, which can be A, B
or G/E, for the corresponding residue in the query sequence.
As the nine-residue window slides through the query pro-
tein chain one residue at a time, the backbone conformational
state predictions accumulate in the multiple alignment. Each
column in the multiple alignment shows all the backbone con-
formational state predictions for the corresponding residue in
the query protein. After the predictions for all nine-residue
windows in the query protein, the multiple alignment for all
the predicted backbone conformational states is then conver-
ted into a PSSM with Equation (1) to calculateWJi , where
i can be A, B or G/E. TheWJi is a log-odds ratio in half-bit
units for the backbone conformational state predictions versus
random predictions based on background probabilities of the
conformational states at positionJ in the query sequence; a
large positiveWJi value indicates that the residue positionJ

is consistently predicted to be thei conformational state, and
a negativeWJi value indicates that theJ position is consist-
ently predicted to be the non-i conformational state. Three
values within the range between 0 and 1 are calculated from
WJi for each positionJ in the query protein sequence using
the standard logistic function (Jones, 1999):

aJ i = 1

1 + e−WJi
, (3)

wherei can be A, B or G/E. TheseaJ i values are used in
the 22nd to the 24th input units for each group to encode the
information of predicted backbone conformational states.

An on-line back-propagation training procedure was used
to update the weights connecting the nodes after each training
pattern presentation (Rumelhartet al., 1986). Each training
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pattern was randomly selected from a pool of nine-residue
structural segments from training proteins. The input units are
encoded based on the sequence of the nine-residue segment
and theaJ i values derived from Equation (3) (see above).
The three output target values are set to 0 or 1 based on the
backbone conformational state of the central residue of the
nine-residue segment. The momentum value of 0.9 is used to
prevent oscillation. The learning rate of 0.001 was found to
be adequate in all the training procedures.

A total of 97 365 nine-residue segments derived from a non-
redundant protein set were used as training and testing cases.
These non-redundant proteins are from the PDB_SELECT_25
list (version Dec/2002) and are not related to any of the pro-
teins in LSBSP1 (from PDB_SELECT_25 version Feb/2001)
with a p-value threshold of 10−6 (or average sequence
ID < 18%). The proteins in the non-redundant protein set
are not related to each other by more than 25% sequence
identity. It is important to have the training/testing proteins
unrelated to the proteins in LSBSP1 because close homologs
to the proteins in LSBSP1 tend to have a high accuracy in
backbone torsion angle prediction with the LSBSP1-based
method. The training and testing processes were carried out
with 10-fold jackknife cross-validation: 10% of the segments
were used as testing cases, while the remaining 90% seg-
ments were used in training; the processes repeat 10 times,
each with a different 10% of the nine-residue segments. For
each training–testing process, the training iteration was ter-
minated when the prediction capacities of the network started
to degrade on the 10% testing cases. The prediction accuracy
was calculated by averaging the prediction accuracy rate for
the testing cases over the 10-fold cross-validation processes.
Prediction accuracies were calculated by comparing the true
backbone conformational state with the predicted conforma-
tional state. The predicted conformational state was indicated
by the output node with the largest output value.

Finally, the NN was again trained with all the 97 365 nine-
residue segments and the trained network was tested with a
set of recently released proteins that are not related to any
of the training proteins and the proteins in LSBSP1. The
samep-value threshold described in the previous paragraph
was used to identify the test proteins in a recently released
PDB_SELECT_25 list (version Apr/2003). The prediction
accuracy for the new test proteins was then compared with
the average accuracy from the 10-fold cross-validation. The
comparison is to ensure that the LSBSP1+NN method has not
been over-trained and the benchmarked accuracy is generally
applicable to protein sequences of unknown structure.

The NN input nodes combine two types of information:
the amino acid sequence of the query sequence segment (the
first 21 input units) and theaJ i values, the information on
the predicted backbone conformational states (the 22nd to
the 24th input units). The combination of these two types of
information gives the optimum overall prediction accuracy
of 78.2% in the 10-fold cross-validation results (Table 4 for

details). Two tests have been performed to isolate the pre-
diction effect of the two types of information: first, we used
only the sequence information and removed the 22nd to the
24th input units from the input nodes and re-ran the 10-fold
cross-validation (see above). The results showed an overall
prediction accuracy rate of 61.5%. Second, we used only the
aJ i values, the information of predicted backbone conform-
ational states (the 22nd to the 24th input units) and removed
the first 21 input units from the input nodes and re-ran the
10-fold cross-validation. The results showed an overall pre-
diction accuracy rate of 67.8%. These tests indicate that the
latter information contributed more to the prediction accur-
acy and that the artificial NN algorithm does indeed combine
these two types of information to make optimum prediction.

Protein backbone torsion angle prediction with
SVM and PSI-PRED
We also developed an SVM method to predict the backbone
conformation of the middle amino acid in a nine-residue
sequence segment. Here again, we either classify four types
of conformational states (A, B, E and G) or combine the
two smallest states into a single class (E/G) for three-state
classification. Our main effort is to design the feature repres-
entation of nine-residue amino acid segments. The three kinds
of information we use for features are amino acid sequences,
PSI-BLAST (Altschulet al., 1997) profiles and secondary
structures that are known (for training data) and that are
predicted by PSI-PRED (Jones, 1999) (for test data).

Support vector machines Support vector machines are a
family of algorithms for classification problems (Vapnik,
1998). Given a training dataset withm labeled training
samples (xi , yi) (1 ≤ i ≤ m,xi ∈ �n andyi ∈ {1,−1}),
the goal is to learn a ‘large margin’ linear classifierf to dis-
criminate between the two classes. Here, a linear classifier
can be represented as a function:

f (x) = 〈w,x〉 + b(w ∈ �n,x ∈ �n,b ∈ �). (4)

The decision boundary is a hyperplane〈w,x〉 + b = 0, and
the margin for a training examplexi is the valueyif (xi)

(>0 if the example is correctly classified). A test example
will be classified as positive iff (x) > 0, negative other-
wise. The linear classification function can be learned with a
soft margin SVM (Cristianini and Shawe-Talor, 2000), which
incorporates a trade-off between maximizing the geometric
margin and minimizing margin violations on the training set.
An important property of the SVM optimization problem is
that we can replace the inner product〈xi ,xj 〉 by a kernel func-
tion K(x,y); here, the kernel implicitly represents the inner
product between feature vectors for pairs of input examples,
K(x,y) = 〈�(x),�(y)〉, for some feature mapping� from
the original input vector space to a feature space�N (or a
Hilbert space). Typical kernels include polynomial kernels,
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K(x,y) = (〈x,y〉 + 1)d , or radial basis kernels,

K(x,y) = exp

(
−‖x − y‖2

2σ 2

)
.

A one-versus-all classification is used to make multiclass
predictions from trained binary SVM classifiers. We simply
choose our prediction to be the class that gives the maximum
margin for each test examplex:

y = argmax[fj (x)],
wherefj is the SVM classifier for thej -th class.

We use the publicly available SVMlight package to learn the
binary classifiers (Joachims, 1999) in our experiments.

Binary encoding feature map A simple way of representing
an amino acid sequence is through binary encoding. Here,
each amino acid is represented as a 21-dimensional vector,
where each dimension corresponds to one type of amino acid
or to a special null character that is used to fill in the blank
positions in window segments containing entries before the
beginning or after the end of a protein sequence. The introduc-
tion of a null character helps to make predictions for boundary
positions without affecting the overall accuracy. To encode an
amino acid or blank at a particular position in the sequence,
we put a positive constant,δ, in the corresponding entry in the
feature vector and 0 in all other entries. A length 9-segmentS

is mapped to a 189(9 × 21)-dimension vector by the feature
map�binary.

PSI-BLAST profile feature map Instead of using a binary
encoding of the amino acid sequence, we can represent the
sequence segment with its PSI-BLAST log-odds score profile.
These scores are calculated as[ln(Qi/Pi)]/λi , whereQi is the
estimated probability for residuei to be found in that column,
Pi is the background frequency ofi andλi is a scale parameter.
The way we construct the profile kernel is as follows: the
PSSM is constructed for all protein sequences with the PSI-
BLAST program running under the standard setup of PSI-
PRED, and then these PSSMs are cut along with the sequence
into 9 × 20 matrices (each of the nine positions encodes a
probability distribution over 20 amino acids). For the blank
positions at the beginning and the end of a protein sequence,
20 zeros are filled in to represent the background distribution.
The feature map,�profile, assigns to a length nine segmentS

the concatenation of nine 20-dimension vectors in the PSSM.

Predicted secondary structure feature mapping In addition
to the protein sequence, another useful source of information
we can use is the secondary structure. The secondary struc-
ture of training sequences is derived from the DSSP program
(Kabsch and Sander, 1983). For testing sequences, secondary
structures are predicted with the PSI-PRED program (Jones,
1999). As with binary encoding for amino acid sequences,
we can represent a length nine segment as a binary encoding
of nine positions, each of which has a 4-dimensional vector

(three kinds of secondary structures plus the blank position).
We denote the secondary structure feature map as�sec.

Different feature representations can be combined by con-
catenation of feature vectors (direct product of vectors); we
write, e.g.�binary × �secfor the direct product of binary and
secondary structure feature maps.

Two datasets are used for evaluation of the SVM method:
PDB_SELECT_25 and a modified version of the Dunbrack-
culled PDB (Karchin et al., 2003). This version of
Dunbrack-culled PDB has a sequence identity cutoff of 20%,
a resolution cutoff of 3.0 Å and aR-factor cutoff of 1.0 with
fragments shorter that 20 residues removed. The Dunbrack-
culled PDB dataset provides a more accurate non-redundant
benchmark and allows us to compare the SVM performance
with other results from the literature.

For the PDB_SELECT_25 dataset, we performed two
sets of benchmark experiments for evaluation of the SVM
classifiers. First we used proteins in the LSBSP1 database
(PDB_SELECT_25 version Feb/2001) as the training set,
and we tested on PDB_SELECT_25 (version Dec/2002) pro-
teins that are not related to any proteins in the training set.
For the second set of experiments, we performed 10-fold
cross validation on PDB_SELECT_25 as described in the
neural net approach above. The results produced from the two
training/testing procedures were essentially identical, and we
report only the 10-fold cross validation experiments below.
Finally, we performed 3-fold cross validation experiments
on the dunbrack-in-scop dataset, where the number of folds
was chosen for consistency with previous published results
(Karchinet al., 2003) in order to allow comparison.

RESULTS AND DISCUSSION
Feature representations and kernel selection
for SVM
We first report results on the PDB_SELECT_25 dataset.
Table 1 compares the prediction accuracy between four differ-
ent types of feature maps for SVM classification. The profile
feature mapping outperforms the binary mapping by around
6% and is outperformed by the secondary structure feature
mapping by 3%. A breakdown of results by conformation
state suggests that both the profile and secondary structure
feature maps have good results in the alpha and beta regions
but are less helpful in the loop regions; in particular, the binary
encoding is more successful than profile or secondary struc-
ture for prediction of the E/G state, which almost always
occurs in loops. These results are understandable, given
the strong correlation between secondary structure and local
conformation forα-helices andβ-strands and given that pro-
files help predict these regular secondary structures; for loop
regions, secondary structure information is complementary to
local conformation and not directly useful for prediction. By
integrating the secondary structure with the profile or binary
mapping, both are improved significantly to approximately
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Table 1. Prediction results using 10-fold cross-validation by SVM classification with various feature maps (PDB_SELECT_25 dataset)

Test case �binary �profile �sec �binary × �sec �profile × �sec
a �profile × �true_ sec

b �profile × �pred_ sec
c

(%) (%) (%) (%) (%) (%) (%)

A 50 689 77.10 77.30 71.30 80.50 82.00 83.41 68.31
B 40 268 51.00 65.40 87.22 78.80 79.00 86.78 89.51
G/E 4760 54.20 42.60 7.76 48.50 51.10 52.68 54.28
Total 97 365 64.80 70.10 73.70 77.70 78.70 82.78 76.15

The combination of�binary and�profile is not included since�profile is a richer representation of�binary. The definitions of these feature mappings are described in the Methods section.
a�profile × �sec: uses true secondary structure for training and predicted secondary structure for testing.
b�profile × �true_ sec: uses true secondary structure for both training and testing.
c�profile × �pred_ sec: uses predicted secondary structure for both training and testing.

Table 2. Comparison of the prediction accuracies from the SVM method against the two previously published results

SVM �profile × �sec LSBSP1+consensus prediction (consensus level=1) HMMSTR
Test cases Accuracy (%) Test cases Accuracy (%) Test cases Accuracy (%)

A 50 689 82.5 17 466 82.7 A′ = 9625 82.0
B 40 268 79.6 12 732 71.2 B′ = 7749 71.6
G 4760 32.9 1491 32.8 G′ = 837 15.5
E 1648 0.3 461 6.5 E′ = 199 22.6
Total 97 365 77.3 32 150 74.6 18 410 74.0

The training and testing of the SVM method are described in the Methods section. The LSBSP1+consensus data are reproduced from Table 1 of Yang and Wang (2003). The HMMSTR
data are reproduced from Table 5 of Bystroffet al. (2000). The definitions of the conformational states in HMMSTR predictions are not completely identical to the definitions of the
A, B, G and E conformational states shown in Figure 1. For comparison, A′ = H + G, B′ = B + E + d + b + e, G′ = L + l and E′ = x; the backbone conformational states on
the right-hand side of the equations were defined by Bystroffet al. (2000). The A′, B′, G′ and E′ states are approximately equivalent to the A, B, G and E states defined in Figure 1.
The test cases listed under the HMMSTR predictions are the residues in the A′, B′, G′ and E′ backbone conformational state, respectively.

the same accuracy. The similarity in performance could be
explained by the fact that the predicted secondary structures
used for testing segments are also derived from profiles in PSI-
PRED. Finally, in the last two columns of Table 1, we use true
secondary structure and predicted secondary structure for both
training and testing. We find that using true secondary struc-
ture improves results dramatically for conformation state A
but slightly degrades the performance for E/G, again show-
ing that secondary structure information is not predictive of
conformation states in loop regions.

All the results shown in the table are produced with linear
kernels. We also performed experiments using polynomial
kernels and RBF kernels on the combined profile feature map
and secondary structure feature map and obtained a slight
improvement of about 1% in each case (see supplementary
Website for results).

Comparison with other methods
Table 2 compares the SVM results of linear kernels with pro-
file and secondary structure prediction with results reproduced
from our previous work (LSBSP1+consensus prediction)
(Yang and Wang, 2003) and the published HMMSTR predic-
tion accuracy (Bystroffet al., 2000). Since HMMSTR uses
a larger alphabet of 11 conformation states, we facilitate the
comparison by grouping the 10 states that correspond to�–�

angle ranges into four (A, B, G and E) states. (The final state
corresponds tocis-peptide bonds rather than the backbone
angle state, and we omit this small set of residues in the
comparison.) One might consider this comparison unfair with
HMMSTR, which is trying to perform a more difficult multi-
class prediction problem; however, if the predictions, when
grouped into this coarser four-state setting, are less accur-
ate than four-state prediction methods, one could argue that
a smaller alphabet is better justified. We present the SVM
prediction accuracy in Table 2 by making explicit G and E
state predictions. The separation of the two states slightly
decreases the overall prediction accuracy (Tables 1 and 2).
Even so, the comparisons are not straightforward because
the three methods were benchmarked with different sets of
test cases. One interesting negative result is that the SVM
method performs poorly on the smallest class (E) compared
with both LSBSP1+consensus and HMMSTR, indicating per-
haps that the simple feature representation is not expressive
enough to detect this class. However, overall, the SVM pre-
diction clearly outperforms the previous methods by a few
percent. More importantly, the SVM predictions were bench-
marked with a much larger set of test cases: the SVM test
set is 3-fold larger than the test set used in benchmarking the
LSBSP1+consensus method and is 5-fold larger than the test
set used in benchmarking the HMMSTR method. Based on the
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Table 3. Position-wise predicted conformation states are tabulated according to true values

dunbrack-in-scop PDB_SELECT_25
Apred Bpred G/Epred Total Apred Bpred G/Epred Total

Aobs 125 244 25 008 2835 153 087 Aobs 41 571 8165 953 50 689
Bobs 21 921 102 542 3344 127 807 Bobs 7385 31 803 1080 40 268
G/Eobs 4019 4366 11 004 19 389 G/Eobs 1570 1565 3273 6408
Total 151 184 131 916 17 183 300 283 Total 50 526 41 533 5306 97 365

Table 4. Comparison of the prediction results from SVM with linear kernel
and LSBSP1+NN methods

All residues Loop residues only
Test
cases

SVM
(%)

LSBSP1+
NN (%)

Test
cases

SVM
(%)

LSBSP1+
NN (%)

A 50 689 81.4 81.9 1 4262 61.4 61.3
B 40 268 79.5 78.0 1 7109 71.0 70.1
G/E 6408 52.2 50.1 5 082 55.2 47.1
Total 97 365 78.7 78.2 36 453 65.1 63.5

Here, the loop residues are the residues in the coil regions that connect two flanking
regular secondary structure elements in the test proteins. Coil residues in theN - and
C-termini are not included. Regular secondary structure elements were defined by the
DSSP program:α-helices are regions with at least four consecutive H residues charac-
terized by the DSSP program, andβ-strands are regions with at least two consecutive
E residues characterized by the DSSP program. The test cases are obtained from the
PDB_SELECT_25 dataset.

large benchmark, we expect that the SVM prediction accur-
acy will generalize to backbone torsion angle predictions for
protein sequences of unknown structure.

Table 3 further shows the SVM prediction (Table 2) details
in a number of predicted residues. Prediction errors are shown
as the off-diagonal numbers. The SVM prediction has been
validated with the same procedure and parameters but with a
different protein set: the dunbrack-in-scop dataset. The results
are compared side-by-side in Table 3. The differences are
comparable with<1% (Tables 4 and 5), indicating that the
benchmark results shown in this work are relatively insensitive
to the choice of the test and/or the training datasets.

Prediction accuracy in loop region
The trained LSBSP1+NN was tested with proteins in the
most recent PDB_SELECT_25 list (April 2003). All new
non-redundant proteins that are not related to the training
proteins for the LSBSP1+NN method are used to test the pre-
diction method. The results are summarized as follows: 14 898
residues are in A backbone conformational state, and 81.5%
are correctly predicted; 11 462 residues are in B backbone
conformational state, and 76.6% are correctly predicted; 2065
residues are in G/E backbone conformational state, and 45.6%
are correctly predicted. Overall, 77.0% of the residues are cor-
rectly predicted. The test results are similar to the prediction

Table 5. SVM predictions for test cases from the dunbrack-in-scop dataset

All residues Loop residues only
Test cases SVM (%) Test cases SVM (%)

A 153 087 81.8 47 497 60.9
B 127 807 80.2 58 981 71.4
G/E 19 389 56.8 16 756 58.2
Total 300 283 79.5 123 234 65.6

accuracy derived from the 10-fold cross-validation (Table 4),
indicating that the prediction capacities of the LSBSP1+NN
method shown in Table 4 have not been over-trained.

Table 4 compares the prediction performance of the SVM
method and the LSBSP1+NN method. The comparison
shows that the SVM prediction is slightly better than the
LSBSP1+NN method but by<1%. To compare further the
two methods on more level ground, we trained the SVM
methods with the proteins used in constructing the LSBSP1
database and then tested on the 97 365 test cases. The pre-
diction accuracies are almost identical to the results shown in
Tables 1 and 2. We conclude that the SVM method is more
accurate than the LSBSP1+NN method by a small margin.

Finally, to verify our results, one additional SVM experi-
ment is done on the dunbrack-in-scop dataset with the profile
and secondary structure feature map using 3-fold cross-
validation. The results shown in Table 5 are slightly better than
those on PDB_SELECT_25, probably due to cleaner struc-
tural data in the second dataset. [We can compare the overall
accuracy of 79.5% on this dataset for three-state prediction and
78.4% for four-state prediction with previous results obtained
using neural nets (Karchinet al., 2003) that found an accuracy
of 58.8% on a 10-state conformation alphabet and 64.9% on
a four-state alphabet.]

The usefulness of the backbone torsion angle prediction
resides in prediction of local structures in protein sequences
of an unknown structure. Our prediction assessments have
shown that the backbone torsion angle predictions forα-helix
andβ-strand residues are highly accurate (89% on average and
59% baseline; baseline is evaluated with a random prediction
based on the conformational state population in the training
proteins). However, local structures inα-helices andβ-strands
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Fig. 2. (a) Distribution of protein loops against backbone torsion
angle prediction accuracy rate. A total of 4673 loops with 2–10
residues were used as test loops, which have not been used in the
training of the LSBSP1+NN prediction methods. The prediction
accuracy for each loop was calculated as the ratio of the correctly
predicted residues over the residues in the loop. The distribution of
the loops against the prediction accuracy rate is shown in the solid
line. The dotted line shows the distribution of the same set of loops
against a random prediction accuracy rate. The random prediction
accuracy rate for each loop was calculated with random predictions
for the loop residues based on the background probabilities for the
conformational states. (b) Average prediction accuracy rate plotted
against loop length. The dataset shown in this plot is the same as the
dataset shown in Table 3. In this figure, the dataset was subdivided
into groups based on the loop length, and the average accuracy rate
for each subgroup was calculated by averaging over residues in the
subgroup.

are relatively regular, and hence torsion angle predictions are
not particularly informative in providing additional structural
information in comparison with three-state secondary struc-
ture predictions. In contrast, local structures in loop regions
are highly variable. Tables 4 and 5 show that it is more diffi-
cult to make accurate backbone torsion angle predictions for
loop residues. Still, the prediction accuracies with both the
prediction methods are far greater than the 39.0% baseline cal-
culated with random assignment of backbone conformational
states to residues in the test set with background probabilities.

Figure 2 analyzes the backbone torsion angle prediction
capacities on loop residues using LSBSP1+NN. The solid

line in Figure 2a shows that 30% of the loops (1394 out of
4673 loops) with 2–10 residues can be predicted with high
accuracy (more than 80% residues in the loop are predicted
correctly). In contrast, the dotted line in Figure 2a indicates
that random prediction can only produce high accuracy pre-
diction for 4% of the loops. Figure 2b shows that the average
backbone torsion angle predictions are relatively insensitive to
the loop length. Together, Figure 2a and b indicate that some of
the local conformations of residues in protein loop regions are
recognizable from their local amino acid sequences and that
these local structural motifs are not restricted to short segments
of residues connecting two secondary structural elements.

CONCLUSION
Optimally combining available information is one of the
difficult challenges in knowledge-based protein structure pre-
diction procedures. The SVM and the LSBSP1+NN methods
are fundamentally different in using structural and sequence
information derived from the database of known protein struc-
tures. A similar prediction accuracy rate suggests that we are
approaching the prediction limit for the prediction methods
with the current knowledge in the protein structural database.
The results show that backbone torsion angles in regular sec-
ondary structure elements can be predicted with high accuracy,
and backbone torsion angles in loop residues are more diffi-
cult to predict. However, the current prediction accuracy for
loop backbone torsion angles suggests that some of the struc-
tural motifs in loop regions can be recognized with a high
accuracy from local sequence information alone. The predic-
tions will provide useful information for modeling protein
structures from protein sequences. With the upcoming expan-
sion of protein structural databases, we expect to improve
further our prediction capacities in recognizing protein local
conformations from local sequence segments.
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