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Abstract

A methodology for model selection based on a penalized contrast is developed. This methodology is applied to the
change-point problem, for estimating the number of change points and their location. We aim to complete previous
asymptotic results by constructing algorithms that can be used in diverse practical situations. First, we propose an
adaptive choice of the penalty function for automatically estimating the dimension of the model, i.e., the number of
change points. In a Bayesian framework, we define the posterior distribution of the change-point sequence as a function
of the penalized contrast. MCMC procedures are available for sampling this posterior distribution. The parameters of
this distribution are estimated with a stochastic version of EM algorithm (SAEM). An application to EEG analysis and
some Monte-Carlo experiments illustrate these algorithms.
r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Detection of abrupt changes in the character-
istics of some physical system is one of the
important practical problems arising in signal
processing (speech processing, geophysics, EEG,
EMG and ECG analysis, etc., see [1,2] for several
examples of application).

In a probabilistic framework, we consider a
sequence of random variables Y 1; . . . ;Yn, that
take values in Rp. We assume that some char-

acteristics of the Yi’s changes abruptly at some
unknown instants t%

1ot%

2o ! ! !ot%

K%"1. Here, K%

(resp. K% " 1) is the unknown number of segments
(resp. change points). The changes can affect the
marginal distribution of the Yi’s (the mean, the
variance, or some quantiles for example), or the
joint distribution of the sequence (the spectral
distribution for example).
Among the previously proposed methods for

detecting multiple changes, we mention sequential
methods (see [1] and the references therein) and
local methods (see [3]). We shall adopt here a
global approach, where all the change points are
simultaneously detected by minimizing a penalized
contrast Jðs; yÞ þ bpenðsÞ (see [4–7]). Here, Jðs; yÞ
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measures the fit of s with y. Its role is to locate the
change points as accurately as possible. The
penalty term penðsÞ only depends on the dimen-
sion KðsÞ of the model s and increases with KðsÞ.
Thus, it is used for determining the number of
change points. The penalization parameter b
adjusts the trade-off between the minimization of
Jðs; yÞ (obtained with a high dimension of s), and
the minimization of penðsÞ (obtained with a small
dimension of s).

Asymptotic results concerning penalized least-
squares estimates have been obtained in theoretical
general contexts in [5,6], extending the previous
results of Yao [7]. We shall show that this kind of
contrast can also be useful in practice. The main
problem is the choice of a good penalty function
and a good coefficient b. In the Gaussian case,
Yao [7] suggests the Schwarz criterion. A complete
discussion of the most popular criteria (AIC,
Mallow’s Cp, BIC), and many other references
can be found in [8]. In a more general context, we
can use a contrast other than the least-squares
criterion, since the variables are not necessarily
Gaussian and independent. Nevertheless, we pro-
pose an adaptive procedure for automatically
choosing the penalty parameter b in Section 2.

In a Bayesian framework, we construct a condi-
tional distribution pðsjyÞ / expf"aðJðsÞþ bpenðsÞÞg.
Obviously, the mode of this distribution is the
minimum penalized contrast estimate previously
defined. A MCMC (Markov Chain Monte Carlo)
procedure provides a way to sample and examine
this posterior distribution, instead of only computing
its mode. Furthermore, the artificial introduction of
a ‘‘temperature’’ parameter allows us to concentrate
this posterior distribution around the models s of
highest probability. For the change-point problem,
the so-called stochastic approximation of expecta-
tion–maximization (SAEM) [9] algorithm provides
an estimate of the parameters a and b. In the
particular case of detecting jumps in the mean of a
sequence of Gaussian variables, it was shown in [11]
that this algorithm converges to the maximum
likelihood estimate of a and b.

We apply these algorithms to an EEG recording
with abrupt changes in its spectrum. Here, the
contrast function we use is constructed from the
empirical spectral distribution function.

The last section is devoted to some numerical
experiments. The two proposed approaches esti-
mate the number of changes in the mean and the
variance well. On the other hand, Akaike informa-
tion criteria (AIC) and Bayesian information
criteria (BIC) strongly overestimate the number
of change-points.
The Matlab programs are available at http://

www.math.u-psud.fr/&lavielle/programs.

2. A penalized contrast estimate for the change-
point problem

2.1. The contrast function

In most situations, the characteristic of the Yi’s
that changes abruptly is a parameter y 2 Y, that
remains constant between two changes. We will
strongly use this assumption to define our contrast
function Jðs; yÞ.
Let K be some integer and let s ¼

ðt1; t2; . . . ; tK"1Þ be a sequence of integers satisfy-
ing 0ot1ot2o ! ! !otK"1on. For any 1pkpK ,
let UðY tk"1þ1; . . . ;Y tk ; yÞ be a contrast function
useful for estimating the unknown true value of
the parameter in the segment k. In other words,
the minimum contrast estimate ŷðY tk"1þ1;
. . . ;Y tk Þ, computed on segment k of s, is defined
as a solution of the following minimization
problem:

UðY tk"1þ1; . . . ;Y tk ; ŷðY tk"1þ1; . . . ;Y tk ÞÞ
pUðY tk"1þ1; . . . ;Y tk ; yÞ; 8y 2 Y. ð1Þ

For any 1pkpK , let G be

GðY tk"1þ1; . . . ;Y tk Þ

¼ UðY tk"1þ1; . . . ;Y tk ; ŷðY tk"1þ1; . . . ;Y tk ÞÞ. ð2Þ

Then, define the contrast function Jðs; yÞ as

Jðs; yÞ ¼
1

n

X

K

k¼1

GðY tk"1þ1; . . . ;Y tk Þ, (3)

where t0 ¼ 0 and tK ¼ n.
Several examples of contrast functions are given

in the sections devoted to numerical experiments.
When the true number K% of segments is

known, the sequence ŝn of change-point instants
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that minimizes this kind of contrast has the
property (see [5,6]) that, under extremely general
conditions, for any 1pkpK% " 1,

Pðjt̂n;k " t%

k j4dÞ ! 0

when d ! 1 and n ! 1. ð4Þ

In particular, this result holds for weakly and
strongly dependent process.

As an example, consider the following model:

Yi ¼ mi þ siei; 1pipn, (5)

where ðeiÞ is a sequence zero-mean random
variables with unit variance.

In case of changes in the mean, for example, we
assume that ðmiÞ is a piecewise constant sequence
and ðsiÞ is a constant sequence. In otherwords,
there exist some instants t%

1ot%

2o ! ! !ot%

K%"1
such that, for any 1pkpK%, mt%

k"1
þ1 ¼ mt%

k"1
þ2 ¼

! ! ! ¼ mt%
k
. A Gaussian log-likelihood can be used

to define the contrast function, even if ðeiÞ is not a
Gaussian sequence. Let

UðY tk"1þ1; . . . ;Y tk ; mÞ ¼
X

tk

i¼tk"1þ1

ðYi " mÞ2. (6)

Then,

GðY tk"1þ1; . . . ;Y tk Þ ¼
X

tk

i¼tk"1þ1

ðYi " Y tk"1þ1:tk Þ
2,

(7)

where Y tk"1þ1:tk is the empirical mean of
ðY tk"1þ1; . . . ;Y tk Þ.

On the other hand, changes in the variance
means that ðmiÞ is a constant sequence and ðsiÞ is a
piecewise constant sequence. As before, a Gaus-
sian log-likelihood can be used to define the
contrast function, even if ðeiÞ is not a Gaussian
sequence. Let m ¼ m1 ¼ ! ! ! ¼ mt%

k
and

UðY tk"1þ1; . . . ;Y tk ; s
2Þ

¼ ðtk " tk"1Þ logðs2Þ

þ
1

s2
X

tk

i¼tk"1þ1

ðYi " mÞ2. ð8Þ

Then,

GðY tk"1þ1; . . . ;Y tk Þ

¼ ðtk " tk"1Þ logðŝ2tk"1þ1:tk
Þ, ð9Þ

where

ŝ2tk"1þ1:tk
¼

1

tk " tk"1

X

tk

i¼tk"1þ1

ðYi " Y Þ2

is the empirical variance of ðY tk"1þ1; . . . ;Y tk Þ and
Y is the empirical mean of Y 1; . . . ;Yn.
If the changes affect both the mean and the

variance, a contrast function based on a Gaussian
log-likelihood is

GðY tk"1þ1; . . . ;Y tk Þ

¼ ðtk " tk"1Þ logðŝ2tk"1þ1:tk
Þ, ð10Þ

where

ŝ2tk"1þ1:tk
¼

1

tk " tk"1

X

tk

i¼tk"1þ1

ðYi " Y tk"1þ1:tk Þ
2.

2.2. Penalty function for the change-point problem

When the number of change points is unknown,
it can be estimated by minimizing a penalized
version of Jðs; yÞ. For any sequence of change-
point instants s, let penðsÞ be a function of s that
increases with the number KðsÞ of segments of s.
Then, let ŝn be the sequence of change-point
instants that minimizes

HðsÞ ¼ Jðs; yÞ þ bpenðsÞ. (11)

If b is a function of n that goes to 0 at an
appropriate rate as n goes to infinity, the estimated
number of segments KðŝnÞ converges in proba-
bility to K% and (4) still holds (see [5,6] for more
details).
Given a real observed signal with a fixed, finite

length n, asymptotic results are not very useful
for selecting the penalty term bpenðsÞ. Vari-
ous authors suggest different penalty functions,
according to the model they consider. For
example, the Schwarz criterion is used by
Braun et al. [4] for detecting changes in a DNA
sequence.
Consider first the penalty function penðsÞ. By

definition, penðsÞ should increase with the number
of segments KðsÞ. Following the most popular
information criteria such as AIC and the Schwarz

ARTICLE IN PRESS

M. Lavielle / Signal Processing 85 (2005) 1501–1510 1503



criteria, we suggest to use in practice the simplest
penalty function penðsÞ ¼ KðsÞ.

Remark. We can defend this specific choice of the
penalty function with theoretical considerations.
Indeed, precise results have been recently obtained
by Birgé and Massart [8] in the following model:

Yi ¼ s%ðiÞ þ sei; 1pipn, (12)

where s%ðiÞ ¼
PK%

k¼1 mk1ft%
k"1

þ1pipt%
k
g is a piecewise

constant function. The sequence ðeiÞ is a sequence
of Gaussian white noise, with variance 1. A
penalized least-squares estimate is obtained by
minimizing

Hðs; yÞ ¼
1

n

X

KðsÞ

k¼1

X

tk

i¼tk"1þ1

ðYi " YkÞ2 þ bpenðsÞ.

(13)

In a non-asymptotic context, Birgé and Massart [8]
have shown that a penalty function of the form

penðsÞ ¼ KðsÞ 1þ c log
n

KðsÞ

! "

; b ¼
2s2

n
(14)

is optimal for minimizing Eðkŝs " s%k2Þ, where
ŝsðiÞ ¼

PKðsÞ
k¼1 Yk1ftk"1þ1piptkg is the estimated se-

quence of means. Based on some numerical
experiments, the authors suggest to use c ¼ 2:5.
Note that when the number K% of segments is
small compared to the length n of the series, this
optimal penalty function is an almost linear
function of K. Furthermore, Yao [7] has proved
the consistency of the Schwarz criterion for this
model, here meaning penðsÞ ¼ KðsÞ and
b ¼ 2s2ðlog nÞ=n.

2.3. An adaptive choice of the penalization
parameter

For a given contrast function J and a given
penalty function pen, the problem now reduces to
the choice of the parameter b.

Let KMAX be an upper bound on the dimension
of s. For any 1pKpKMAX, letTK be the set of all
the models of dimension K:

TK ¼ fs ¼ ðt0; . . . ; tK Þ 2 NKþ1; t0
¼ 0ot1ot2o . . . tK"1otK ¼ ng. ð15Þ

By definition the best model ŝK of dimension K
minimizes the contrast function J:

ŝK ¼ arg min
s2TK

Jðs; yÞ. (16)

Note that the sequence ðŝK ; 1pKpKMAXÞ can
easily be computed. Indeed, let G be the upper
triangular matrix of dimension n( n such that the
element ði; jÞ, for jXi is Gi;j ¼ GðYi;Yiþ1; . . . ;YjÞ,
where GðYi; . . . ;YjÞ is the contrast computed with
ðYi;Yiþ1; . . . ;YjÞ. Thus, for any 1pKpKMAX, we
have to find a path t0 ¼ 0ot1ot2o . . . ;
otK"1otK ¼ n that minimizes the total cost

Jðs; yÞ ¼
1

n

X

K

k¼1

Gtk"1;tk . (17)

A dynamic programming algorithm can recur-
sively compute the optimal paths ðŝK ; 1pKMAXÞ,
see [10]. This algorithm requires Oðn2Þ operations
(size of the matrix G).
Then, let

JK ¼ JðŝK ; yÞ, ð18Þ
pK ¼ penðsÞ; 8s 2 TK ð19Þ

(as mentioned above, we suggest to use pK ¼ K).
Thus, for any penalization parameter b40, the

solution ŝðbÞ minimizes the penalized contrast:

ŝðbÞ ¼ arg min
s
ðJðs; yÞ þ bpenðsÞÞ ð20Þ

¼ ŝK̂ðbÞ, ð21Þ

where

K̂ðbÞ ¼ arg min
KX1

fJK þ bpKg. (22)

The way the solution K̂ðbÞ varies with the
penalization parameter b is given in the following
proposition:

Proposition 2.1. There exists a sequence K1 ¼
1oK2o . . ., and a sequence b0 ¼ 14b14 . . .,
with

bi ¼
JKi " JKiþ1

pKiþ1
" pKi

; iX1 (23)

such that K̂ðbÞ ¼ Ki, 8b 2 ðbi;bi"1Þ.
The subset fðpKi

; JKi Þ; iX1g is the convex hull of
the set fðpK ; JK Þ;KX1g.
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Proof:. For any KX1, let K̂ðbÞ ¼ K. Then

JK þ bpKomin
L4K

ðJL þ bpLÞ, ð24Þ

JK þ bpKomin
LoK

ðJL þ bpLÞ. ð25Þ

Thus, b must satisfy

max
L4K

JK " JL

pL " pK
obomin

LoK

JL " JK

pK " pL
: & (26)

The estimated sequence ŝ should not strongly
depend on the choice of the penalization coeffi-
cient b. In other words, a small change of b should
not lead to a radically different solution ŝ. This
stability of the solution with respect to the choice
of b will be ensured if we only retain the largest
intervals ð½bi;bi"1*; iX1Þ.

In summary, we propose the following proce-
dure:

1. For K ¼ 1; 2; . . . ;KMAX, compute ŝK , JK ¼
JðŝK ; yÞ and pK ¼ penðŝK Þ,

2. compute the sequences ðKiÞ and ðbiÞ, and the
lengths ðliÞ of the intervals ð½bi; bi"1*Þ,

3. retain the greatest value(s) of Ki such that liblj,
for j4i.

Remark 1. Choosing the largest interval usually
under-estimates the number of changes. Indeed,
this interval usually corresponds to a very small
number of change points and we only detect the
most drastic changes with such a penalty. This
explains why we should better look for the highest
dimension Ki such that liblj, for any j4i, to
recover the smallest details.

Remark 2. A classical and natural graphical
method for selecting the dimension K can be
summarized as follows: (i) examine how the
contrast JK decreases when K (i.e., pK ) increases;
(ii) select the dimension K for which JK ceases to
decrease significatively. In other words, this
heuristic approach looks for maximum curvature
in the plot ðpK ; JK Þ. Proposition 2.1 states that the
second derivative of this curve is directly related to
the length of the intervals ð½bi;bi"1*; iX1Þ. Indeed,
if we represent the points ðpK ; JK Þ, for
1pKpKMAX, bi is the slope between the points

ðpKi
; JKi Þ and ðpKiþ1

; JKiþ1
Þ. Thus, to look for

where JK ceases to decrease means to look for a
break in the slope of this curve. Now, the variation
of the slope at the point ðpK ; JK Þ is precisely the
length li of the interval ½bi;bi"1*.

2.4. An automatic procedure for estimating K

For a practical purpose, it can be useful to
perform automatically the step 3 of our procedure.
We propose the following algorithm for estimating
the dimension K:

1. For any 1pKpKMAX, let

~JK ¼
JKMAX

" JK

JKMAX
" J1

ðKMAX " 1Þ þ 1. (27)

The new sequence ð ~JK Þ is normalized such that
~J1 ¼ KMAX and ~JKMAX

¼ 1. This sequence
decreases with an average slope equal to "1.

2. For any 2pKpKMAX " 1, let DK ¼ ~JK"1 "
2 ~JK þ ~JKþ1 and D1 ¼ 1. Then, the minimum
penalized contrast (MPC) estimate of K is

K̂MPC ¼ max 1pKpKMAX " 1f
such that DK4Sg. ð28Þ

K̂MPC is defined as the greatest value of K such
that the second derivative of J is greater than a
given threshold S. If no second derivative is
greater than S, we consider that there are no
changes and K̂MPC ¼ 1.

Unfortunately, the probability distribution of the
statistics maxK DK cannot be obtained in a closed
form and the threshold S cannot be computed as a
quantile of this distribution. Nevertheless, many
different numerical experiments led us to propose
S ¼ 0:75. Indeed, we have noticed that smallest
values of S usually over-estimate the number of
segments, while larger values under-estimate this
number.

3. A Bayesian approach

The minimization of a contrast of the form
Jðs; yÞ þ bpenðsÞ, for a given value of b, produces
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only one solution ŝK̂ðbÞ, but the description of the
‘‘energy landscape’’ J is to construct. Indeed, it can
be interesting to see how J varies when we slightly
modify ŝK̂ðbÞ. In the case of change points, what
happens if we move a change point, or if we add or
remove a segment?

An easy way to describe this energy landscape J
consists in constructing the following posterior
distribution:

pðsjy; a; bÞ ¼ Dðy; a;bÞe"aðJðs;yÞþbpenðsÞÞ, (29)

where Dðy; a;bÞ is a normalizing constant, and
where a40. Thus, the mode of this posterior
distribution is the minimum contrast estimate of s.
This posterior distribution depends on two un-
known parameters a and b that should be
estimated.

Lavielle and Lebarbier consider in [11] the
problem of detecting changes in the mean of a
sequence of random variables. They use an
MCMC procedure for estimating the posterior
distribution pðsjy; a; bÞ. They also use the SAEM
algorithm proposed by Delyon et al. [9],
for computing the maximum likelihood estimate
of ða;bÞ.

We propose to adopt the same approach in a
more general context. We present here this
methodology without giving any more details.
The description of the MCMC procedure and the
SAEM algorithm can be found in [11].

1. Estimate ða;bÞ using SAEM.
2. For different values of T, with 0oTp1,

+ use the MCMC algorithm to sample the
conditional distribution pðsjy; â=T ; b̂Þ,
(a) estimate and plot the marginal condi-

tional probabilities P(‘‘There is a change-
point at ti’’jy; â=T ; b̂Þ, for 1pipn" 1,
where ti is the ith instant of observation.

(b) estimate and plot the conditional prob-
ability PðKðsÞ ¼ kjy; â=T ; b̂Þ,

+ compute the maximum a posteriori (MAP)
estimate of s by minimizing Jðs; yÞ þ b̂penðsÞ.

The ‘‘tuning’’ parameter T is usually called
‘‘temperature’’. This parameter controls how the
distribution p is concentrated around its mode. It
should be chosen small enough to neglect the

models s having a low posterior probability and to
increase the probability of the most likely models.
Here, the MCMC algorithm creates an homo-
geneous Markov chain since the temperature
parameter remains constants. Maximization of
the conditional distribution could be achieved
using a simulated annealing procedure. In this
case, the temperature is not constant but decreases
slowly to zero. Simulated annealing is very slow
and the dynamic programing algorithm described
above should be preferred for computing the mode
of this distribution.
We will denote ŝMAP the MAP estimate of s and

K̂MAP ¼ KðŝMAPÞ the MAP estimate of K. Here,

K̂MAP ¼ arg min
K

ðJK þ b̂pK Þ. (30)

4. Application to EEG segmentation

It is well known that EEG recordings present
abrupt changes in its spectrum. Indeed, epilepto-
genic transients can produce changes in the
following frequency bands: d (1.5–3.5Hz), y
(3.5–7.5Hz), a (7.5–12.5Hz), and b (12.5–
19.5Hz). A EEG recording is displayed in Fig. 1.
We clearly see several changes in the spectral
characteristics of the series. In particular, a very
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strong a-activity appears between 3.5 and 4.5 s. We
shall see that our procedure is very efficient for
detecting automatically this kind of changes.

For any k and any u 2 ½0;p*, let

IkðuÞ ¼
1

2pnk

X

tk

j¼tk"1þ1

Yje
iju

#

#

#

#

#

#

#

#

#

#

2

(31)

be the periodogram of the sequence ðYjÞ computed
in segment k at frequency u. Assume that the
energy of the process in some frequency bands
½lj ;mjÞ, 1pjpJ, of ½0; p* changes abruptly at some
unknown instant. Then, let

Fkj ¼
Z mj

lj
IkðuÞdu (32)

be the energy of ðY tk"1þ1; . . . ;Y tk Þ in the fre-
quency band ½lj ;mjÞ. We suggest in [6] to use the
following contrast for detecting the changes:

Jnðs; yÞ ¼ "
1

n

X

K%

k¼1

nk
X

J

j¼1

F 2
kj

 !

. (33)

Fig. 2 represents the points ðK ; JK Þ,
1pKpKMAX ¼ 25 obtained from the EEG re-
cording in Fig. 1, with the contrast function
proposed in (33). We can easily see two breaks in
the slope at K ¼ 5 and 3.

The lengths ðliÞ and the second derivatives ðDKi Þ
are displayed in Table 1. We clearly see that these
two dimensions, and especially K ¼ 5, are the only
ones to be considered. Indeed, for 0:60obo1:62,
K̂ðbÞ ¼ 5. This interval is significantly larger than
any of the following ones (for K̂X7). The second
important interval is ½1:62; 4:22*, related to K̂ ¼ 3.
The corresponding change points are displayed in
Fig. 3. The brain activity (a-activity) between 3.5
and 4.5 s is always well detected. On the other
hand, there may be a little doubt concerning the
activity detected around 1.5 s, detected only in the
first solution. The procedure described in Section
2.4 automatically detects the five segments with the
threshold S ¼ 0:75. Indeed, we obtain from (28)
that K̂MPC ¼ 5 since D54S and DKoS for any
K45.
The SAEM algorithm has been used with the

EEG recording proposed above. We obtained â ¼
5:35 and b̂ ¼ 1:34. Then, it is interesting to remark
that K̂MAP ¼ K̂MPC ¼ 5. Indeed, this value of b̂
belongs to the interval ½0:60; 1:62*. For this value
of b, the MAP estimate of s is the minimum
contrast estimate displayed in Fig. 3a, having 5
segments. On the other hand, this value of b is not
very far from the next interval, ½1:62; 4:22*,
associated with three segments (see Fig. 3b).
The marginal posterior distributions P ‘‘There is

a change at i’’ jy; â=T ; b̂ and the posterior
distribution of the number of segments PKðsÞ ¼
kjy; â=T ; b̂ are displayed in Fig. 4.
We can see that change points are not always

located exactly at the same instants. For example,
the event around 4 s is detected with a very high
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ones with a plus.

Table 1
Intervals of the penalization parameter and the second
derivatives

Ki bi bi"1 li DKi

2 4.22 5.66 1.44 2.28
3 1.62 4.22 2.60 5.36
5 0.60 1.62 1.02 1.13
7 0.51 0.60 0.09 0.17
9 0.48 0.51 0.03 0.16
11 0.40 0.48 0.08 0.013
13 0.35 0.40 0.05 0.03
15 0.29 0.35 0.06 0.06
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probability, but the end of this event (around 4.4 s)
fluctuates more than the beginning (around 3.4 s).
That shows that this instance of a-activity of the
brain begins suddenly, but the return to a normal
activity is more progressive. This feature cannot be
described if we just compute the most likely
change-point locations.

With T ¼ 1, many change points, with very low
probabilities, appear at any instant. This explains
why the number of segments is often greater than
5. These events are not significant and should be
removed. This is the role of a low temperature,
since all the minor events disappear for T ¼ 0:6.
The two main events (around 1.5 and 4 s) now
clearly appear. Both are well detected with
probability 0.67, while the first one is not detected
with probability 0.30. Indeed, although b̂ belongs
to the interval associated to five segments, the
probability of a model with only three segments is
not negligible.

5. Some simulations

The aim of this section is to compare the MPC
estimate K̂MPC proposed in Section 2 with the
MAP estimate K̂MAP proposed in Section 3 and
with some well-known estimators. The Matlab
programs are available at http://www.math.
u-psud.fr/&lavielle/programs.
For each of the two models we consider below,

the observed time series y has a length n ¼ 500 and
four change points are present at instants 100; 200;
300 and 400.
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Fig. 3. Two segmentations of the EEG recording obtained with
K ¼ 5 and 3 segments.
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Fig. 4. Estimation of the posterior distribution Pðsjy; â=T ; b̂Þ obtained with T ¼ 1 in (a) and (b); T ¼ 0:6 in (c) and (d). The marginal
posterior probabilities P(‘‘There is a change-point at ti’’jy; â=T ; b̂Þ, for 1pipn" 1 are displayed in (a) and (c); PðKðsÞ ¼ kjy; â=T ; b̂Þ
are displayed in (b) and (d).
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For the two parametric models considered
below, the AIC and BIC criteria can be computed,
assuming a Gaussian distribution.

5.1. Changes in the mean

Following [5,11], a least-squares criteria can be
used for detecting changes in the mean:

Jnðs; yÞ ¼
1

n

X

K%

k¼1

X

tk

i¼tk"1þ1

ðYi " YkÞ2, (34)

where Yk is the empirical mean of
ðY tk"1þ1; . . . ;Y tk Þ.

Here, the simulated series y are sequences of 500
independent Gaussian random variables of var-
iance s2 ¼ 1. The means in the five segments are
ð0; a; 0; 2a; 0Þ.

We simulated 100 series with a ¼ 0:5 and 100
series with a ¼ 1. For each of these series, we
computed K̂MPC using the procedure described in
Section 2 and (28) with S ¼ 0:75. We also
computed K̂MAP using (30). The results are
summarized in Table 2. Of course, the smallest
jump (a ¼ 0:5) is not always detected since K̂MPC

(resp. K̂MAP) detects five segments 65 times (resp.
49 times) and three segments 27 times (resp. 43)
times.

Recall that b̂ is the maximum-likelihood esti-
mate of b for this model. Then, it is interesting to
remark that the two estimates K̂MPC and K̂MAP

give very similar results. That means that max-
imum-likelihood estimation of the parameters of

the model is a good criteria for a model selection
purposes in these particular experiments.
Here, AIC and BIC both strongly overestimate

the number of change-points.

5.2. Changes in the variance

For the detection of changes in the variance of a
sequence of random variables, the following
contrast, based on a Gaussian log-likelihood, can
be used:

Jnðs; yÞ ¼
1

n

X

K

k¼1

nk logðŝ2kÞ, (35)

where nk ¼ tk"1 " tk is the length of segment k,
ŝ2k ¼ ð1=nkÞ

Ptk
i¼tk"1þ1ðYi " Y Þ2 is the empirical

variance computed on segment k, and Y the
empirical mean of Y 1; . . . ;Yn. It was shown in [5]
that this estimate possesses very good asymptotic
properties (see Section 2).
Here, the simulated series y are sequences of

independent zero-mean Gaussian random vari-
ables. The variances in the five segments are
ð1; 1þ a; 1; 1þ 2a; 1Þ. The results obtained with
a ¼ 1 and 2 are summarized in Table 3. As before,
the number of change-points is overestimated
using AIC or BIC.

6. Conclusion

We have shown in this paper that penalized
contrasts are powerful tools for the detection of
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Table 2
Changes in the mean. Estimated number of segments

K 1 2 3 4 5 6 7 8 X9

a ¼ 0:5 K̂MPC 0 0 27 2 65 4 2 0 0

K̂MAP 1 0 43 5 49 2 0 0 0

K̂BIC 0 0 0 1 20 17 21 16 25

K̂AIC 0 0 0 0 0 0 0 0 100

a ¼ 1 K̂MPC 0 0 0 0 100 0 0 0 0

K̂MAP 0 0 0 0 99 1 0 0 0

K̂BIC 0 0 0 0 20 12 20 15 33

K̂AIC 0 0 0 0 0 0 0 0 100

Table 3
Changes in the variance. Estimated number of segments

K 1 2 3 4 5 6 7 8 X9

a ¼ 1 K̂MPC 2 0 26 5 54 5 7 1 0

K̂MAP 26 0 28 4 35 6 1 0 0

K̂BIC 1 0 6 1 24 16 13 7 32

K̂AIC 0 0 0 0 0 0 0 4 96

a ¼ 2 K̂MPC 0 0 5 0 94 1 0 0 0

K̂MAP 2 0 16 0 81 1 0 0 0

K̂BIC 0 0 1 0 45 19 15 5 15

K̂AIC 0 0 0 0 0 0 1 2 97
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abrupt change points. Using a model selection
approach, an efficient procedure provides an
automatic choice of the penalization parameter.
On the other hand, an MCMC procedure allows
us to estimate this penalization parameter and to
sample a conditional distribution based on the
penalized contrast function. The two proposed
algorithms give very good results for the change-
point problem. It should be now interesting to
extend this approach to a more general context of
model selection.
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