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Hepatocellular carcinoma (HCC) is one of the most common human malignancies in
the world. To identify the histological subtype-specific genes of HCC, we analyzed the
gene expression profile of 10 HCC patients by means of cDNA microarray. We proposed
a systematic approach for determining the discriminatory genes and revealing the
biological phenomena of HCC with cDNA microarray data. First, normalization of
cDNA microarray data was performed to reduce or minimize systematic variations.
On the basis of the suitably normalized data, we identified specific genes involved in
histological subtype of HCC. Two classification methods, Fisher’s discriminant analysis
(FDA) and support vector machine (SVM), were used to evaluate the reliability of the
selected genes and discriminate the histological subtypes of HCC. This study may
provide a clue for the needs of different chemotherapy and the reason for heterogeneity
of the clinical responses according to histological subtypes.

Introduction

Hepatocellular carcinoma (HCC) is one of the most
common human malignancies in the world, and it usually
develops in association with hepatitis B or C viral
infection and cirrhosis (1, 2). Development of HCC is
associated with mutations in tumor suppressor genes,
AXIN1 and â-catenin genes, as well as over- or under-
expression of certain oncogenes (3, 4). Although molecular
analysis of individual candidate genes has revealed the
biological nature of HCC and explained some causes of
poor clinical response, the general characteristics and
molecular mechanisms of HCC remain unknown (4). The
recent introduction of microarray technology has allowed
researchers to compare tens of thousands of genes from
tumor tissues with corresponding genes from non-tumor
tissues. This technique has been used in other cancers
to elucidate the clinical heterogeneity of the disease,
understand the basic biochemical processes, and identify
new cancer-related genes (5-11). In particular, research-
ers are now focusing on class discovery and predicting
the class of human malignancies, which is directly related
to the efficacy of tumor therapy (12).

Recently, microarray technology has been used to
examine the nature of HCC. Waring et al. (13) identified
the relationship between clinical chemistry and histopa-
thology based on cluster analysis and gene expression
data. By comparing gene expression of noncancerous liver
and HCC, Xu et al. (14) reported the characteristics of

hepatitis B virus positive HCC and the cause and effect
of the gene expression level involved in cell cycle regula-
tion. Okabe et al. (4) reported the genetic mechanism in
HCC with gene expression profiles. Also, they selected
genes related to Edmonson grade using the Mann-
Whitney test and then performed cluster analysis to
evaluate them. These studies have shown the usefulness
of the microarray technology in understanding the bio-
logical nature of HCC.

Here, we report on a new method for using microarray
technology to determine discriminatory genes and HCC
histological serotypes. Using the DNA microarray gene
expression profiles of 10 HCC patients, we first normal-
ized the cDNA microarray data to reduce systematic
variations and then identified a number of genes involved
in two histological subtypes of HCC. Two classification
methods, Fisher’s discriminant analysis (FDA) and sup-
port vector machine (SVM), were used to evaluate the
selected genes and determine the histological subtypes.
This new method provides yet another way in which DNA
microarray technology is invaluable for cancer research.

Materials and Methods
Patients and Tissue Samples. Primary HCC and

corresponding nontumorous liver specimens were ob-
tained from 10 patients. According to pathological data,
six patients suffered from poorly differentiated solid
(compact) type HCC and four had the moderately dif-
ferentiated pseudo-glandular type. In patients 5 and 7,
the background disease was alcoholic cirrhosis. All others
had HBV-related chronic hepatitis.

Preparation of Total RNA. Human 3.1 k cDNA
clones were obtained from The Human Stromal Cells
cDNA Bank at Kyungpook National University. Total
RNA was isolated from liver tissues by a modified
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guanidine isothiocynate-phenol/chloroform extraction
method using a MicroRNA isolation kit (Stratagene).
After adding the denaturation solution and â-mercapto-
ethanol, tissue samples were homogenized with a Dounce
homogenizer and the homogenate was transferred to a
new tube. The homogenate was mixed with 0.1 vol of 2
M sodium acetate and an equal volume of a phenol,
chloroform, and isoamylalchol mixture and then placed
on ice for 15 min. Samples were centrifuged at 13,000
rpm for 15 min at 4 °C, and then the aqueous phase
containing RNA was carefully transferred into a new
tube.

RNA Amplification Using in Vitro Transcription
Method. Messenger RNA was mixed with T7-Oligo (dT)
primer and was heated at 70 °C for 10 min. First strand
cDNA synthesis was carried out by icing the mixture and
adding the first strand buffer, DTT and dNTPs. The
mixture was prewarmed at 42 °C for 2 min, and Super-
script II reverse transcriptase was added and incubated
at 42 °C for 50 min. The resulting first strand product
was then mixed with second strand buffer, dNTP, E. coli
DNA ligase, E. coli DNA polymerase, and E. coli RNase
H, and the mixture was incubated at 16 °C for 2 h. T4
DNA polymerase was then added, followed by incubation
at 16 °C for 5 min. The double-stranded cDNA product
was then purified with phenol/chloroform extraction,
resuspended in DEPC-treated water, and amplified using
the Ampliscribe T7 transcription kit, according to the
manufacturer’s protocol. The quality and quantity of the
double-stranded cDNA was checked by measurement of
absorbance at 260 and 280 nm with a UV spectropho-
tometer (Pharmacia Biotech).

Preparation of Fluorescent DNA Probes from
mRNA. Reverse transcription was used to label mRNA
extracted from HCC and nontumor liver tissue with
either fluorescent Cy3- or Cy5-dCTP. The fluorescent
targets were hybridized to the microarrays under strin-
gent conditions, and laser excitation of the microarrays
yielded a characteristic emission spectrum that was
measured with a confocal laser microscope. Data from
the hybridization experiment were viewed as a normal-
ized ratio (Cy5/Cy3).

Normalization. Normalization of cDNA microarray
data is needed to reduce or minimize systematic varia-
tions. Several normalization techniques have been de-
veloped in recent years to minimize the system variation
and fluctuation (16, 17). Here, we used a slight modifica-
tion of the normalization method proposed by Yang et
al. (17). Instead of producing a (log R vs log G) plot, where
R and G denote the measured fluorescent intensities for
the red and green dyes, respectively, we used an MA plot
in which M ) log2(R/G) is plotted against A ) log2(RG),
since this more accurately reflects the intensity-depend-
ent pattern of M. Then, the normalized fold difference
was obtained by Mnor ) M - f(M,A), where f(M,A) is a
locally weighted linear regression model (18). This locally
weighted regression (LOESS) fitting gives a basis for zero
fold difference between the intensities of the two dyes
and is robust enough to resist the effect of differentially
expressed patterns. Therefore, after normalization, we
were able to more confidently identify differentially
expressed genes.

Fisher’s Discriminant Analysis (FDA). FDA finds
the best line that separates two predefined classes by
determining the best set of discriminant vectors. In
particular, when compared to principal component analy-
sis (PCA), FDA is more efficient from a classification
viewpoint, since it uses data with class identification,
whereas PCA does not. The difference between PCA and

FDA can be represented by the following two generalized
eigenvalue problems, respectively:

Here, ST is total scatter, SW is within-class scatter, and
SB is between-class scatter, and they satisfy ST ) SW +
SB. Also, (λi,vi) and (γi,wi) are eigenvalue-eigenvector
pairs of PCA and FDA, respectively. PCA provides the
orthogonal vector yielding the maximum total scatter,
whereas FDA provides discriminant vectors yielding the
maximum ratio of between-class scatter to within-class
scatter. A proper number of transforming vectors wi can
be determined by various criteria such as Akaike infor-
mation criterion (AIC), minimum description length
(MDL) criterion (19), or cross-validation. There exist k
- 1 eigenvectors for k predefined classes, which are
obtained from eq 2. The FDA of histological subtypes of
HCC is calculated by the abovementioned procedure.
However, it may require enormous computation time and
causes a singularity problem when the discriminant
function includes all variables (genes). Therefore, we used
gene selection (discussed below) to choose 59 informative
genes for FDA calculations (Figure 1). For more details,
refer to Cho et al. (11) and Duda et al. (20).

Gene Selection. Proper gene selection is crucial for
successful identification of HCC histological subtypes and
better understanding of the underlying causes of HCC.
To determine the histological subtype-specific genes, we
used Wilks’ λ ratio to assess the discrimination power of
individual genes. Here, the Wilks’ λ represents the ratio
of the within-group sum of squares to the total sum of
squares:

The above equation can be transformed as follows (21):

where n and c denote the number of samples and the
known number of classes.

Informative genes are determined by F-distribution
using the level of significance (R ) 0.003). However, this
test is not a good measurement for gene selection because
it can be degraded by spike-like noise. To avoid this
unusual situation, we introduced a sample leave-one-out
procedure (9). After the sample leave-one-out procedure,
we were able to obtain informative genes with an
inherent level of significance. On the basis of those, we
constructed the FDA classifier and evaluated it using two
test samples.

Support Vector Machine (SVM). The linear dis-
criminant introduced above presents linear decision
boundaries for pattern classification. As a generalized
concept, SVM produces nonlinear boundaries by generat-
ing linear boundaries in the high feature space formed
by nonlinear transformation. SVM finds function param-
eters to realize the maximal margin hyperplane con-
struction. Here, not all training data samples are used
to define the resulting decision boundary in finding the
maximal margin. Model-based classifiers such as neural
networks and fuzzy inference systems use all training
data samples to construct a classifier. On the other hand,
a decision function in SVM is built on the support vectors

STvi ) λivi (1)

SWwi ) γiSBwi, (2)

Λ )
SW

ST
(3)

F )
(1 - Λ)

Λ
(n - c)
c - 1

∼ FR(c - 1, n - c) (4)
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that are a small fraction of training data samples, and
so it is not affected by other samples. SVM is trained by
two sequential steps: extension to feature space and
function building. If the raw input dimension is nonlin-
early transformed into a feature space of sufficiently high
dimension, the patterns are linearly separable (Cover’s
theorem). In this respect, if raw data patterns are not
linearly separable, a proper nonlinear transformation of
raw space into a higher feature space is required. Then,
a decision boundary in the feature space is constructed
on the basis of support vectors maximizing the margin
hyperplane. The SVM solution corresponds to structural
risk minimization, thus making the learning procedure
deterministic, not stochastic (22). For a more detailed
description, refer to refs 23-26.

Results and Discussion
We used two methods, FDA and SVM, to classify

microarray data from tissue samples of either solid or
pseudo-glandular types of HCC. Prior to this, we used
Wilks’ λ values to determine the HCC subtype-specific
genes and applied an F-test to the gene selection. Then
we performed FDA with the selected genes and guarded
against misclassification through leave-one-out cross
validation. Figure 2 shows discriminant scores of the
training and test (prediction) sets. In the training set,
patients 1-4 (solid HCC) had negative scores, whereas
patients 5-8 (pseudo-glandular HCC) had positive scores,
showing that we could easily discriminate between solid
and pseudo-glandular tumors using FDA with the mi-
croarray data. In the prediction set, patients 9 and 10
were correctly classified as solid types. More patient data
could allow determination of credible and robust trans-
formation axes, but with only four samples for each case,
we had some difficulty in finding consistent estimates
for the transformation axes. However, we were clearly
able to differentiate between the two different types of
HCC with our technique. Similar results were obtained
using SVM. Figures 3 and 4 depict classification results
in the three-dimensional space spanned by the first three
scores and the two-dimensional space spanned by the

first two scores, respectively. As shown in these figures,
patients 9 and 10 were closer to the cluster of patients
1-4, resulting in their classification as solid types.

Cytogenetic Effects of the Selected Genes in
HCC. We mainly focused on selecting genes associated
with induction of tumor-related morphogenic processes,
since our goal was to construct a biologically meaningful
classifier that could reveal histological divergence. Clas-
sifying HCCs according to histological morphology is
clinically relevant in understanding the tumor’s type-
specific characteristics, although it is not a critical
problem for surgical treatments. Hepatic cells alter their
gene expression patterns to overcome various extrinsic
and intrinsic stresses and maintain homeostasis. In
general, most carcinogenesis in liver is associated with
the following steps: cell injury by exposure to various
extrinsic and intrinsic stresses, inflammation, activation
of extracellular matrix (ECM)-producing cells, over-
production of ECM, and irreversible cellular damage
(apoptosis or carcinogenesis). This progression leads to

Figure 1. Expression profiles of important parts of the selected genes.

Figure 2. Discrimination result of the subtypes of HCC using
FDA.
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remarkable changes in the ECM proteins of the stroma
of HCC (27). Therefore, it is reasonable to hypothesize
that some of the genes relevant to the classification of
HCC will be related to both the regulation of cellular
stress response and synthesis of ECM, since HCC mainly
occurs after fibrosis (28). In that regards, we examined
DUSP1 (Hs.171695), as it is known to reflect the presence
of myofibroblasts in breast cancer stroma (29). Dual
specificity phosphatase 1, the product of DUSP1, sup-
presses the activation of MAP kinase by dephosphory-
lating MAP kinase erk2 on both thr-183 and tyr-185 and
plays an important role in the regulation of cell cycle and
signaling pathways mediated by MAP kinase (30, 31).
ADAMTS2 (Hs.120330) encodes a disintegrin and met-
alloproteinase with thrombospondin motifs-2, the latter
being one member of the extracellular matrix protease
family. This protease is needed to assemble collagen
fibrils in the ECM (32). Feng et al. (33) reported that
Fn14 (Hs.10086), which encodes type I transmembrane
protein Fn14, is overexpressed in many HCC specimens.
The continuous expression of this protein decreases
cellular adhesion of ECM with fibronectin or vitronectin
(34), which may account for histopathological differences
of cellular growth and migration (motility) in HCC.

Next, we investigated whether a divergence in ECM
synthesizing or cellular growth genes might reflect the

morphological type of HCC. Hadari et al. (35) has shown
that LGALS8 (Hs.4082, galectin 8) is related to cell
adhesion, cell growth regulation, inflammation, apopto-
sis, and metastasis by interacting with several intergrins.
FSTL1 (Hs.296267) binds heparin by secretion and
modulates the action of some growth factors on cell
proliferation and differentiation. The follistatin-related
protein 1 encoded by FSTL1 may function as a negative
regulator of cell growth (36). CTGF (Hs.75511) encodes
a connective tissue growth factor that is well-known to
promote fibrosis during pathogenesis and wound healing
in liver (37) and may be involved in regulating normal
and neoplastic cell growth related to the action of tumor
growth factor â (38). In addition to the abovementioned
genes, many other genes may be involved in the discrimi-
nation between solid and pseudo-glandular tumors,
including genes involved in such mechanisms as fibrillar
synthesis of specific types of collagen (Hs.5086: collagen
alpha 1(III) chain, Hs.59384: collagen alpha 1(I) chain
precursor), vesicular protein traffic as a member RAS
oncogene family (Hs.5807: RAB14), galactose metabolism
(Hs.76057: Galectin-8), and so on. Consequently, the
selected type-specific genes included several informative
ones that can mirror the principal cellular phenomena
in the various HCC serotypes, such as extrinsic or
intrinsic stress response, cellular signaling, ECM-related
fibrogenesis, inflammation, proliferation and differentia-
tion, and cellular adhesion to the ECM. This attempt to
identify important genes on the basis of the molecular
monitoring may one day lead to new therapeutic methods
for overcoming HCC by altering type-specific mecha-
nisms.

Conclusion

The purpose of this study was to identify genes that
may be used to identify and predict two histological
subtypes of hepatocellular carcinoma, solid and pseudo-
glandular. We created a systematic approach for the
revelation of the biological phenomena involved in the
divergence of HCC with gene expression profiles of 10
HCC patients using cDNA microarray analysis. On the
basis of normalized data, we identified a number of genes
that could be used to discriminate the histological
subtypes. The two classification methods, FDA and SVM,
were used to evaluate the selected genes, and we found
that they were able to effectively discriminate and predict
the histological subtypes. Therefore, these methods and
genes may be used as markers for classification of these
two HCC subtypes and may provide insight into the
cytogenetics of HCC, leading to new, improved therapies.
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