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Abstract

Since most classi%cation articles have applied a single technique to a single gene expression
dataset, it is crucial to assess the performance of each method through a comprehensive com-
parative study. We evaluate by extensive comparison study extending Dudoit et al. (J. Amer.
Statist. Assoc. 97 (2002) 77) the performance of recently developed classi%cation methods in
microarray experiment, and provide the guidelines for %nding the most appropriate classi%cation
tools in various situations. We extend their comparison in three directions: more classi%cation
methods (21 methods), more datasets (7 datasets) and more gene selection techniques (3 meth-
ods). Our comparison study shows several interesting facts and provides the biologists and the
biostatisticians some insights into the classi%cation tools in microarray data analysis. This study
also shows that the more sophisticated classi%ers give better performances than classical meth-
ods such as kNN, DLDA, DQDA and the choice of gene selection method has much e>ect
on the performance of the classi%cation methods, and thus the classi%cation methods should be
considered together with the gene selection criteria.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The recent development of microarray technologies to monitor gene expression in
model organisms, cell lines, and human tissues has become an important part of biolog-
ical research over the last several years. Microarrays allow the monitoring of expression
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levels of thousands to tens of thousands of genes simultaneously in a given cell type
(Brown and Borstein, 1999; Lander, 1999). The cDNA microarray production process
involves taking samples of messenger RNA(mRNA) from two distinct tissue sam-
ples, reverse-transcribing the mRNA into complementary DNA (cDNA), dye-labeling
with di>erent Fours (Cy 3 and Cy 5) and hybridization onto each arrayed gene in a
microarray slide. For oligonucleotide array, oligos are synthesized on the chip using
a photolithography process similar to that used for making semiconductor chips. The
relative Fuorescence signal of the two dyes at a spot is a measure of the relative
expression levels of the corresponding gene in the two samples of mRNA.

Any microarray experiment involves a number of stages such as design of exper-
iment, image processing, normalization of red=green ratios, selection of di>erentially
expressed genes, clustering of genes with similar expression pro%les and classifying
the di>erent RNA sources. Numerical statistical issues are raised at each stage of the
microarray data analysis, and we focus on the classi%cation issues here. Classi%cation
is known as discrimination in the statistical literature and as supervised learning in
the machine learning literature, and it generates gene expression pro%les which can
discriminate between di>erent known cell types or conditions. There is a distinction
between classi%cation (or discrimination, supervised learning) and clustering (or unsu-
pervised learning). If the classes are pre-existing, then classi%cation analysis is more
appropriate than clustering analysis.

While many authors have proposed the classi%cation methods based on global gene
expression analysis (Golub et al., 1999; Alizadeh et al., 2000; Ross et al., 2000), no
systematic comparison of statistical methods with di>erent pre-processing strategies is
available yet for %nding the most appropriate classi%cation tool once the speci%c type
of data is given. Since most classi%cation articles have applied a single technique to a
single gene expression dataset, it is crucial to assess the performance of each method
through a comprehensive comparative study. Dudoit et al. (2002) have recently com-
pared the performance of various classi%cation methods for classifying tumors based on
gene expression pro%les. Nine methods were applied to three well-known datasets in
their comparison, but these methods and datasets do not suJciently cover the various
situations in microarray experiments. For example, all the subjects in three datasets are
cancer patients, and also more sophisticated classi%cation methods have been recently
proposed in microarray data analysis and need to be evaluated. Thus, more extensive
comparative study is essential to provide the researchers a considerable insight for
choosing the most appropriate classi%cation methods in a given situation.

In this paper, we evaluate by extensive comparison study the performances of
recently developed classi%cation methods in microarray experiment, and provide the
insights for %nding the most appropriate classi%cation tools in various situations. We
extended the comparison by Dudoit et al. (2002) in three directions: more classi%ca-
tion methods, more datasets and more gene selection techniques. In our comparison
study, we applied 21 classi%cation methods to seven various types of datasets. We also
tried three di>erent methods for selecting gene subset which are used for classi%cation
because some classi%cation tools seem to be quite sensitive to the gene subset selection.

The paper is organized as follows. Section 2 brieFy describes the recently developed
classi%cation tools in microarray data analysis, and explains some backgrounds on
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the datasets. Pre-processing scheme including gene selection, imputation of missing
data, and standardization is also discussed in Section 3. In Section 4, we present and
discuss the results, and compare the performances of the classi%cation tools. Finally,
we summarize and discuss our major %ndings in Section 5.

2. Classi�cation methods and datasets

2.1. Classi8cation methods

We brieFy describe almost all currently available classi%cation methods (21
methods) based on the gene expression pro%les in microarray experiment. Included
are (1) classical methods such as linear discriminant analysis, diagonal linear and
quadratic discriminant analysis, k nearest neighbor, logistic regression and generalized
partial least square method %tting logit models, (2) classi%cation trees and aggrega-
tion classi%ers such as CART, bagging, boosting, logit boosting and random forest,
(3) machine learning approaches such as neural network algorithms and support vector
machine, and (4) some generalized algorithms such as Fexible discriminant analysis,
penalized discriminant analysis, mixture discriminant analysis and shrunken centroid
methods. A brief introduction of each method is given as follows:

1. Fisher’s linear discriminant analysis (FLDA)
FLDA is a classi%cation method that projects high-dimensional data onto a line and

performs classi%cation in this one-dimensional space. The projection maximizes the
distance between the means of the two classes while minimizing the variance within
each class. Maximizing this criterion yields a closed form solution that involves the
inverse of a covariance-like matrix. FLDA assumes (1) a normal (Gaussian) distribution
of observations and (2) “equal group covariance”. Additionally, variables cannot form
linear expressions of one another. That is, they may not be perfectly correlated.

2 and 3. Diagonal linear and quadratic discriminant analysis (DLDA, DQDA)
DLDA and DQDA are simple Gaussian maximum likelihood discriminant rules

for diagonal class covariance matrices with linear (DLDA) or quadratic (DQDA)
discriminant function.

4. Logistic regression (LOGISTIC)
Logistic regression is a supervised method for the two- or multi-class classi%cation

problem (Hosmer and Lemeshow, 1989). Though a di>erent model is used, it can
be shown that logistic discrimination and Fisher discrimination are the same when
the predictors are sampled from multivariate distributions with common covariance
matrices.

5. Generalized partial least squares (GPLS)
Ding and Gentleman (2003) applied generalized partial least squares approaches.

Their functionalties are based on and extended to Iteratively ReWeighted Least Squares
(IRWPLS) by %tting logit models for all C classes vs. baseline class separately with an
option of Firth’s bias reduction procedure for two-group and multi-group classi%cation
proposed by Marx (1996).
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6. k nearest neighbor (kNN)
For each feature in the input case, kNN is an intuitive method that classi%es unlabeled

examples based on their similarity with examples in the training set. It %nds the k
closest features in the training set and assigns to the class that appears most frequently
within the k-subset.

7–11. CART and aggregating classi%ers (BAG, BOOST, LogitBOOST,
RandomForest)

Classi%cation and regression tree (CART) is a tree-building technique which is un-
like traditional data analysis methods (Breiman et al., 1984). CART analysis is a form
of binary recursive partitioning. Aggregating means combining classi%ers to improve
accuracy of class prediction. In this study we consider CART based classi%cation and
CART with two aggregating systems: bagging (BAG) and boosting (BOOST) (Freund
and Schapire, 1997). Recently Dettling and Buhlmann (2003) demonstrated that the
generic boosting algorithm needs some modi%cation to become an accurate classi%er in
the context of gene expression data. They built on the LogitBOOST which %ts an addi-
tive logistic regression model by stagewise optimization of the binomial log-likelihood.
Details can be found in Friedman et al. (2000). Random forests is a combination of
tree predictors such that each tree depends on the values of a random vector sampled
independently and the distributions are the same for all the trees in the forest (Breiman,
2001). Its accuracy is as good as that of Adaboost (Breiman, 1998) and is sometimes
better. It is also relatively robust to outliers and noises and faster than bagging or
boosting.

12 and 13. Single & multi layer neural network (NN-1, NN-3)
Arti%cial neural network is a well-known tool for unsupervised and=or supervised

learning application (Zuruda, 1992). We performed neural network classi%ers with both
single and three layers.

14 and 15. Support vector machine (SVM-linear, radial)
Support vector machine is based on the structural risk minimization principle from

statistical learning theory (Vapnik, 1998). It can be applied to regression, classi%cation,
and density estimation problems. The idea of structural risk minimization is to %nd a
hypothesis for which one can guarantee the lowest probability of error. For SVM,
Vapnik (1998) showed that this goal can be translated into %nding the hyperplane with
maximum margin for separable data. In this study, we used linear and radial kernel
methods.

16 and 17. Flexible discriminant analysis (FDA-POL, FDA-MARS)
FDA is a generalization of linear discriminant analysis that casts the classi%cation

problem (Hastie et al., 1994) as one involving nonparametric regression procedures
such as MARS (multivariate adaptive regression splines, FDA-MARS, Friedman, 1991)
and polynomial regression model (FDA-POL, Hastie et al., 1994).

18. Penalized discriminant analysis (PDA)
PDA is a form of penalized LDA. It is designed for situations in which there are

many highly correlated predictors (Hastie et al., 1995).
19 and 20. Mixture discriminant analysis (MDA-Linear, MDA-MARS)
MDA is a generalized LDA assuming that each observed class is a mixture of un-

observed subclasses (Hastie and Tibshirani, 1996). MDA can be viewed as a smooth
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version of learning vector quantization (LVQ) which generalizes clustering to classi%-
cation problems.

21. Shrunken centroids method (or Predictive Analysis of Microarrays (PAM))
PAM is an enhancement of nearest prototype (centroid) classi%er whose prototype

is shrunken by the method proposed by Tibshirani et al. (2002).

2.2. Datasets

All the twenty-one classi%cation methods described above are applied to various
types of datasets. Note that Leukemia, Lymphoma and NCI 60 data were applied in
Dudoit et al. (2002).

1. Leukemia (LEU)
Leukemia dataset composed of 3571 gene expressions in three classes of leukemias:

B-cell and T-cell acute lymphoblastic leukemia (B-cell ALL-38 patients, T-cell ALL-9
patients) and acute myeloid leukemia (AML-25 patients) (Golub et al., 1999). The data
were obtained after three pre-processing (thresholding, %ltering and logarithm transfor-
mation and standardization) described in Dudoit et al. (2002).

2. Lymphoma (LYM)
In order to examine the extent to which genomic-scale gene expression pro%ling can

help our understanding of B cell malignancies of lymphoma, Alizadeh et al. (2000)
studied gene expression of three prevalent adult lymphoid malignancies: B-cell chronic
lymphocytic leukemia (B-CLL), follicular lymphoma (FL) and di>use large B-cell
lymphoma (DLBCL). Among 96 samples, we took 62 samples of 4026 genes in three
classes (B-CLL-11, FL-9, and DLBCL-42).

3. NCI 60 (NCI60)
This dataset was produced by The National Cancer Institute’s anti-cancer drug screen

project. The cell lines were derived from various tumor tissues: 7 breast, 5 central ner-
vous system (CNS), 7 colon, 6 leukemia, 8 melanoma, 9 nonsmall cell lung carcinoma
(NSCLC), 6 ovarian, 2 prostate, 9 renal and 1 unknown. The full dataset composed
of 60 samples and 9703 genes. Because the size of some classes was too small to
perform discriminant analysis, we used a subset with 1375 genes and six classes which
was also used in Ross et al. (2000). Based on hierarchical clustering depicted in
Fig. 2 of Scherf et al. (2000), we assigned 6 classes and the size of each class is 8,
13, 9, 11, 10 and 8, respectively. Most of the samples in class 1 are leukemia patients,
and CNS is predominant in class 6.

4. Colon cancer (COLON)
This dataset comes from a gene expression study of 40 tumor and 22 normal colon

tissue samples which were analyzed with an A>ymetrix oligonucleotide array comple-
mentary to more than 6500 human genes (Alon et al., 1999). A selection of 2000
genes with highest minimal intensity across the samples has been made by Table 1
of Alon et al. (1999). We used this gene expression data collected with size of 62
samples and 2000 genes.

5. Lung cancer (LUNG)
This dataset comes from gene expression study to %nd evidence that analysis of gene

expression patterns can provide a basis for classi%cation of lung cancer that recapitulates
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and extends the conventional division of lung tumors into four morphological subtypes
(Garber et al., 2001). We selected 73 samples (Adeno-41, Normal-6, and Squamous-17,
Small cell-5, Large cell-4) and 918 genes.

6. Small round blue cell tumor (SRBCT)
This dataset comes from SRBCT study of childhood (Khan et al., 2001). The data,

consisting of expression measurements on 2308 genes, were obtained from glass-slide
cDNA microarrays, which were prepared according to the standard of National Human
Genome Research Institute. The tumors are classi%ed as Burkitt lymphoma (BL): 22,
Ewing sarcoma (EWS): 20, neuroblastoma (NB): 12, or rhabdomyosarcoma (RMS):
8. Since this data did not make public, we used training set of Tibshirani et al. (2002)
with size of 63 samples and 2308 genes.

7. Yeast
Gene expression in the budding yeast Saccharomyces cerevisiae was studied during

the diauxic shift, the mitotic cell division cycle, sporulation and temperature and re-
ducing shocks by Eisen et al. (1998). The data matrix consists of 2467 genes by 79
slides. We assigned 8 classes to 79 slides according to the results of clustering analysis
depicted in Fig. 2 of Eisen et al. (1998).

3. Data processing for classi�cation analysis

After data processing described as follows, we performed 2 :1 cross-validation
(training set:test set) and observed classi%cation error rates for seven standardized and
imputed datasets (COLON, LEU, LYM, NCI60, LUNG, SRBCT and YEAST). This
procedure was repeated 200 times.

3.1. Gene selection

To investigate the e>ect of gene selection methods, we applied BSS=WSS
criterion (Dudoit et al., 2002), Wilcoxon rank-based statistics and soft-thresholding
method (Tibshirani et al., 2002) to each data set. BSS=WSS method selects genes which
maximize the ratio of between-group to within group sum of squares. For a gene j,
the ratio is

BSS(j)
WSS(j)

=
∑

i

∑
k I(yi = k)(Sxkj − Sx∗j)2

∑
i

∑
k I(yi = k)(Sxij − Sxkj)2 ;

where Sx∗j denotes the mean expression level of gene j across all the samples and Sxkj
denotes the mean expression level of gene j across the samples belonging to class k.
In our study, top 50 genes are selected in each data.

In order to apply the rank-based approach in gene selection, we compared each re-
sponse class separately against all other classes and measure Wilcoxon statistic between
one and all other groups. For K classes, the OVA (One vs. All) approach is used to
form 2K sets of top-ranked genes based on Wilcoxon statistic to cover multi-group
cases.
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The third method used here is so-called ‘soft-thresholding’ method which was used
in PAM (Tibshirani et al., 2002). It shrinks the class centroids toward the overall
centroid after standardizing by the within-class standard deviation for each gene. This
standardization has the e>ect of giving higher weight to genes whose expression is sta-
ble within samples of the same class. Let djk denote a t-statistic for gene j, comparing
class k to the overall centroid, and each djk is reduced by the amount � in absolute
value. Soft-thresholding is de%ned by

d′
jk = sign(djk)(|djk | − �)+;

where + means positive part. We used soft-thresholding method for gene selection by
choosing the optimal amount of shrinkage which minimizes test error rates under the
restriction that the maximum number of selected genes is less than 200.

3.2. Missing values and standardization

All the datasets were standardized so that the observations (arrays) have mean 0 and
variance 1 across genes. For the Lymphoma data, missing values of some arrays are
imputed by k-nearest neighbor method with k = 5 (Troyanskaya et al., 2001).

4. Comparison results

We evaluated the performance of twenty-one classi%cation methods applied to each of
the seven datasets. For simplicity of the tables, we divided these classi%cation methods
into four categories: classical methods, tree methods, machine learning methods and
recently proposed generalized LDA methods and PAM. For each category, we presented
and compared the test set error rates of the classi%cation method. Three di>erent gene
selection methods were also considered and compared in each category. Note that we
extended the comparison of discrimination methods of Dudoit et al. (2002) in three
directions: more classi%cation methods, more gene selection methods and more datasets.

Classical methods such as FLDA, DLDA & DQDA, kNN, LOGISTIC and GPLS
approach were evaluated. Table 1 displays the test set error rate of each classi%er. Upper
and middle table shows the results when the BSS=WSS and the rank-based selection
criterion is used for gene selection while lower table uses the soft-thresholding method.

Dudoit et al. (2002) have applied some methods to Leukemia, Lymphoma and NCI
60 data, and used the BSS=WSS criterion for gene selection. They claimed that simple
classi%ers such as linear discriminant analysis (LDA) and kNN performed remark-
ably well compared to more sophisticated methods, and the same pattern can also
be shown in Table 1. As stated by Tibshirani et al. (2003), in discriminating the
abnormal group from the normal group, the variability of the average gene expres-
sion may di>er between two groups. The variability in expression may be greater
in the abnormal group, due to heterogeneity in the abnormal group. Fig. 1 of
Tibshirani et al. (2003) showed that, in LYM data, the average expression of FL
and CLL subgroups are much more variable than that of DLCL. Therefore, in our
analysis both COLON and LYM data could be the good examples of heterogeneous



876 J.W. Lee et al. / Computational Statistics & Data Analysis 48 (2005) 869–885

Table 1
Mean test set error rates of classical methods in various datasets

Gene selection Methods Datasets

COLON LEU LYM SRBCT LUNG NCI60 YEAST
(C = 2) (C = 3) (C = 3) (C = 4) (C = 5) (C = 6) (C = 8)

BSS=WSS FLDA 0.30 0.21 0.18 0.24 0.33 0.31 0.27
DLDA 0.21 0.14 0.15 0.18 0.06 0.24 0.14
DQDA 0.14 0.15 0.14 0.19 0.12 0.32 0.18
kNN 0.26 0.12 0.12 0.17 0.16 0.26 0.24
LOG 0.29 0.21 0.22 0.37 0.31 0.46 0.40
GPLS 0.31 0.20 0.18 0.20 0.19 0.40 0.23

Rank-based FLDA 0.28 0.23 0.17 0.26 0.41 0.47 0.38
DLDA 0.14 0.07 0.09 0.11 0.10 0.38 0.24
DQDA 0.14 0.08 0.08 0.14 0.17 0.43 0.31
kNN 0.13 0.11 0.10 0.11 0.19 0.47 0.36
LOG 0.24 0.26 0.23 0.21 0.27 0.51 0.43
GPLS 0.28 0.18 0.23 0.19 0.19 0.43 0.34

Soft-thresholding FLDA 0.24 0.20 0.19 0.20 0.30 0.31 0.32
DLDA 0.16 0.15 0.14 0.18 0.08 0.23 0.13
DQDA 0.15 0.15 0.14 0.18 0.16 0.38 0.18
kNN 0.20 0.06 0.13 0.16 0.17 0.24 0.27
LOG 0.27 0.19 0.20 0.37 0.37 0.49 0.39
GPLS 0.26 0.08 0.18 0.19 0.18 0.42 0.19

case. In heterogeneous dataset like COLON and LYM data, DQDA performs bet-
ter than LDA and kNN. DLDA always performs better than FLDA in all the seven
datasets, and kNN performs well especially when the number of classes is moder-
ate as in LEU, LYM, SRBCT. DLDA has a good performance when the number of
classes is relatively large as in LUNG (5 classes), NCI60 (6 classes) and YEAST
(8 classes) data. Performance of most classical classi%cation methods improves with
the rank-based gene selection method when the number of classes is not large, whereas
in LUNG, NCI60, YEAST data, the rank-based method gives higher error rate than
the BSS=WSS method. The soft-thresholding method gives the similar pattern to the
BSS=WSS method.

Classi%cation trees and aggregating classi%ers such as CART, bagging (BAG), boost-
ing (BOOST), Logit boosting (LogitBOOST) and random forest (RandomForest) were
evaluated. Table 2 displays the test set error rate of each classi%er.

When the aggregating classi%ers are applied, the soft-thresholding method for gene
selection gives much better performances than the BSS=WSS selection method. The
improvement seems to be notable in most datasets. Note that, in Dudoit et al. (2002),
only the BSS=WSS criterion was used with BAG and BOOST.

It is also shown that the aggregating classi%ers such as bagging, boosting, improve
the performance of CART signi%cantly in all the datasets. However, RandomForest is
most excellent among the tree methods when the number of classes is moderate as in
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Table 2
Mean test set error rates of tree methods in various datasets

Gene selection Methods Datasets

COLON LEU LYM SRBCT LUNG NCI60 YEAST
(C = 2) (C = 3) (C = 3) (C = 4) (C = 5) (C = 6) (C = 8)

BSS=WSS CART 0.26 0.10 0.11 0.22 0.24 0.56 0.42
BAG 0.22 0.07 0.08 0.11 0.14 0.41 0.28
BOOST 0.21 0.12 0.21 0.09 0.13 0.43 0.26
LBOOST 0.16 0.37 0.26 0.07 0.06 0.33 0.23
RForest 0.16 0.04 0.04 0.01 0.12 0.32 0.19

Rank-based CART 0.26 0.18 0.15 0.37 0.28 0.51 0.49
BAG 0.19 0.10 0.13 0.21 0.18 0.47 0.39
BOOST 0.21 0.14 0.10 0.20 0.16 0.48 0.38
LBOOST 0.26 0.38 0.27 0.23 0.09 0.38 0.38
RForest 0.16 0.10 0.07 0.18 0.16 0.37 0.28

Soft-thresholding CART 0.33 0.15 0.08 0.20 0.29 0.53 0.42
BAG 0.16 0.08 0.08 0.06 0.20 0.37 0.26
BOOST 0.15 0.11 0.09 0.06 0.18 0.39 0.26
LBOOST 0.14 0.16 0.29 0.19 0.10 0.31 0.20
RForest 0.14 0.07 0.04 0.01 0.16 0.32 0.19

*LBOOST: LogitBOOST.
**RForest: RandomForest.

COLON, LEU, LYM, SRBCT data. Although LogitBOOST gives higher error rates
than BOOST in most cases, it surpasses BOOST when the number of classes is large.

Machine learning approaches such as neural network algorithms with single and three
layers (NN-1 & NN-3) and support vector machine (SVM-Lin and SVM-Rad) were
evaluated. Table 3 displays the test set error rate of each classi%er.

Among the four methods, the SVM classi%er performs the best in most datasets.
And the choice of kernel do not a>ect the performance of SVM except in COLON
data. The middle and lower table shows the similar pattern to the upper table which
means that the gene selection method has no much e>ect on the performance of SVM.

Some recently proposed generalized LDA algorithms such as Fexible discriminant
analysis (FDA-POL, FDA-MARS), penalized discriminant analysis (PDA), and mix-
ture discriminant analysis (MDA-POL, MDA-MARS) together with shrunken centroid
method like PAM were evaluated. Table 4 displays the test set error rate of each classi-
%er. Note that PAM internally uses the soft-thresholding gene selection technique only.

FDA-MARS performs much better than FDA-POL, but performs worse than PDA.
There seems to be no preference between PDA and PAM when the soft-thresholding
technique is used. PDA performs better than PAM in COLON, LEU and LYM data
while it does worse in LUNG (5 classes), NCI 60 (6 classes) and YEAST (8 classes)
data, and it seems that PDA is getting worse when the number of classes is get-
ting larger. There seems to be no di>erence between these two methods in SRBCT
data. However, the performance of generalized LDA is improved when the BSS=WSS
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Table 3
Mean test set error rates of machine learning methods in various datasets

Gene selection Methods Datasets

COLON LEU LYM SRBCT LUNG NCI60 YEAST
(C = 2) (C = 3) (C = 3) (C = 4) (C = 5) (C = 6) (C = 8)

BSS=WSS NN1 0.28 0.23 0.23 0.41 0.32 0.67 0.44
NN3 0.22 0.07 0.15 0.12 0.20 0.47 0.25
SVM-Lin 0.22 0.04 0.02 0.01 0.09 0.43 0.11
SVM-Rad 0.14 0.05 0.02 0.01 0.11 0.46 0.10

Rank-based NN1 0.21 0.18 0.22 0.29 0.31 0.60 0.45
NN3 0.21 0.10 0.11 0.20 0.22 0.61 0.34
SVM-Lin 0.22 0.06 0.06 0.08 0.13 0.44 0.28
SVM-Rad 0.14 0.08 0.06 0.11 0.16 0.48 0.21

Soft-thresholding NN1 0.17 0.22 0.23 0.37 0.29 0.67 0.45
NN3 0.20 0.06 0.15 0.12 0.19 0.50 0.24
SVM-Lin 0.19 0.05 0.03 0.01 0.12 0.45 0.13
SVM-Rad 0.12 0.05 0.03 0.01 0.12 0.49 0.10

Table 4
Mean test set error rates of generalized LDA methods and PAM in various datasets

Gene selection Methods Datasets

COLON LEU LYM SRBCT LUNG NCI60 YEAST
(C = 2) (C = 3) (C = 3) (C = 4) (C = 5) (C = 6) (C = 8)

BSS=WSS FDA-POL 0.46 0.63 0.69 0.69 0.54 0.80 0.15
FDA-MARS 0.23 0.09 0.07 0.09 0.13 0.43 0.43
PDA 0.18 0.05 0.04 0.01 0.12 0.31 0.12
MDA-POL 0.24 0.09 0.12 0.23 0.39 0.49 0.22
MDA-MARS 0.22 0.09 0.11 0.11 0.38 0.53 0.43

Rank-based FDA-POL 0.42 0.66 0.32 0.64 0.55 0.67 0.28
FDA-MARS 0.23 0.12 0.10 0.22 0.21 0.56 0.46
PDA 0.19 0.08 0.07 0.09 0.17 0.47 0.23
MDA-Pol 0.42 0.32 0.32 0.48 0.48 0.51 0.37
MDA-MARS 0.24 0.47 0.15 0.15 0.18 0.44 0.49

Soft-thresholding FDA-POL 0.40 0.54 0.62 0.46 0.49 0.81 0.21
FDA-MARS 0.21 0.15 0.07 0.10 0.14 0.47 0.45
PDA 0.16 0.06 0.04 0.01 0.13 0.40 0.23
MDA-Pol 0.25 0.32 0.13 0.28 0.38 0.46 0.33
MDA-MARS 0.22 0.28 0.13 0.18 0.38 0.46 0.45
PAM 0.18 0.07 0.16 0.01 0.08 0.32 0.10

criterion is used. PAM performs the best in LUNG, SRBCT and YEAST data, but
does not seem to be always good even with using the soft-thresholding gene selection
technique.



J.W. Lee et al. / Computational Statistics & Data Analysis 48 (2005) 869–885 879

5. Conclusion and discussion

In the previous section, we presented and compared the performances of the clas-
si%cation methods for each of the four categories. As mentioned above, we extended
the comparison of discrimination methods of Dudoit et al. (2002) in three directions:
more classi%cation methods, more gene selection methods and more datasets. We now
summarize the results and provide the guideline for choosing the most appropriate clas-
si%cation method in a given situation. Here we also summarize and discuss the major
%ndings in our comparative study.

5.1. Most recommendable methods

Fig. 1 shows the test error rates of the most recommendable methods in each dataset.
Fig. 1(a) shows the best methods when the BSS=WSS selection criterion is used, and
Fig. 1(b) and Fig. 1(c) depicts the minimum error rate method when the rank-based
method and the soft-thresholding method is used, respectively. The best classi%er in
each dataset from our comparison study can be summarized as follows:

• Colon cancer (COLON): SVM-Rad with soft-thresholding, test error rate=0.12
• Leukemia (LEU): SVM-L with BSS=WSS criterion, test error rate=0.04
• Lymphoma (LYM):

SVM-Lin & Rad with BSS=WSS criterion, test error rate=0.02
• Small round blue cell tumor (SRBCT):

RandomForest, PDA, SVM-Lin & Rad with BSS=WSS and soft-thresholding,
PAM with soft-thresholding, test error rate=0.01

• Lung cancer (LUNG): PAM with soft-thresholding, test error rate=0.08
• NCI 60 cells (NCI 60): DLDA with soft-thresholding, test error rate=0.23
• Yeast Saccharomyces cerevisiae (YEAST):

SVM-R with BWSS=WSS and soft-thresholding, test error rate=0.10
PAM with soft-thresholding, test error rate=0.10

5.2. Summary of major 8ndings

Here we summarize the major %ndings in our comparative study as follows:

• Linear discriminant analyses (FLDA, DLDA) and kNN perform well compared to
more sophisticated methods in homogeneous dataset, but DQDA performs better in
heterogeneous dataset.

• DLDA always performs better than FLDA in all the seven datasets, and kNN per-
forms well especially when the number of classes is moderate. DLDA performs well
with large number of classes.

• Most classical classi%cation methods perform better with the rank-based gene selec-
tion method compared to the BSS=WSS and the soft-thresholding method.

• Aggregating classi%ers such as bagging, boosting and RandomForest improve the
performance of CART signi%cantly.
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Fig. 1. Mean test set error rate of the best method in each of the four categories: (a) when the BSS=WSS
criterion is used; (b) when the rank-based criterion is used; (c) when the soft-thresholding criterion is used.
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• RandomForest is the most excellent method among the tree methods when the num-
ber of classes is moderate.

• SVM gives the best performance among the machine learning methods in most
datasets regardless of the gene selection.

• The performance of PDA and PAM are comparable, but PDA with the BSS=WSS
criterion seems to perform better than PAM in most cases.

Now let us discuss our comparison results in more detail. Classical methods con-
sidered here are easily applicable in many softwares and have no strong theoretical
restrictions. However, we observed the more sophisticated classi%ers give better per-
formances than these classical methods in many cases. kNN performs quite well among
the classical methods in most datasets, but when the number of classes in the dataset
is getting large, there are many other classi%ers that perform better. We also found
that both the number of classes and the variance–covariance structure of the dataset
are important factors to consider for evaluating some classical methods such as kNN,
DLDA, DQDA etc..

As stated by Dudoit et al. (2002), aggregating methods such as BAG and BOOST
improve the accuracy of classi%cation compared to the unstable single tree method.
Among the aggregating methods considered here, RandomForest with 50 selected genes
performs the best. It is known that RandomForest tends to work poorly when the size
of subgroups is di>erent, but we could not observe its weakness even when the size
of the subgroups is quite di>erent in our microarray data. In general, logitBOOST is
expected be more robust than BOOST to the presence of mislabeled observations and
heterogeneity of the learning dataset, but logitBOOST does not seem to be robust to the
gene selection and the datasets in our study. Dettling and Buhlmann (2003) used the
leave-one-out-cross-validation (LOOCV) to compare BOOST with logitBOOST, and
claimed that logitBOOST is more accurate than BOOST. We used 2:1 cross-validation
in our study, however, and showed that LogitBOOST gives higher error rates than
BOOST in most cases and surpasses BOOST when the number of classes is large. It
shows the possibility that the choice of cross-validation methods may have e>ect on
performance of these classi%ers.

Furey et al. (2000) demonstrated SVM for classifying microarray data had a good
performance in COLON and LEU. When SVM was applied to the multi-class case,
the error rates were quite low and similar to the results of Furey et al. (2000). We
used the “libsvm” module (Chang and Lin, 2001) of R-library e1071, and it applied
one-against-one technique by %tting all the binary sub-classi%ers and %nding the correct
class by a voting mechanism for allowing for multi-class situation. Another strength of
SVM is its robustness to gene selection methods, and we also observed that the choice
of kernel has negligible e>ect in all the seven datasets.

For generalized LDA, all the methods except PDA are discouraged to use. PDA is
quite attractive for microarray data. First, there are high throughput gene expressions
produced by microarray experiments, which implies there are many predictor variables
we need to consider and the selected genes are highly correlated. Second, in class
prediction of microarray, the class boundaries in predictor space may not be always
simple or linear. So, PDA is recommendable as an alternative to the classical methods.



882 J.W. Lee et al. / Computational Statistics & Data Analysis 48 (2005) 869–885

In our analysis, PDA has better performance than the classical methods such as kNN,
DLDA or DQDA.

We applied 2:1 cross-validation (two thirds for learning, one third for testing) to
evaluate the performance of the classi%cation methods. Although not tabulated here,
we also tried to analyze the data based on LOOCV. In some cases, there were notable
di>erences in test error rates between 2:1 CV and LOOCV, but two methods selected
the same best classi%ers in most cases. LOOCV often works well for continuous error
functions such as the mean squared error, but it may perform poorly for discontinuous
error functions such as the number or percent of misclassi%ed cases. In our analysis,
test error rates using LOOCV are similar among the classi%ers, and thus it is diJcult to
%nd the best classi%ers in various situations. For example, in LEU data, the error rates
of most classical methods are 4.2% with BSS=WSS, and in SRBCT data, they are 0 ∼
1% regardless of the gene selection. A possible standard choice is 10-fold (9:1) CV.
However, in our study, test sets containing 10% of the data are not suJciently large to
provide adequate discrimination between the classi%ers. Thus, we applied 3-fold CV to
observe di>erent performances of each classi%er more clearly. In general, if n increases
in n-fold CV, the error rate tends to decrease proportionally in most classi%ers and the
variance of error rate is large. It is also important to be aware of the optimal number
of folds in practical analysis. Though there is a general strategy that the determination
of the number of fold depends on the size of dataset, the choice of fold number tends
to be determined empirically in practical analysis and the relationship between internal
and external CV has become one of the key issues in machine learning %eld (Ambroise
and McLachlan, 2002; McLachlan, 1992). One of the approaches is the introduction
of generalization error which is broken down into three additive parts: noise variance,
estimation variance, squared estimation bias (Nadeau and Bengio, 2003). But it is
beyond our purpose to discuss detailed approaches, and further study is worthwhile.

For choosing the gene selection methods, some classi%ers seem to %t well with spe-
ci%c gene selection method. For classical methods, the error rates based on the Wilcoxon
statistic is slightly lower than those from the BSS=WSS or the soft-thresholding method.
One possible interpretation of excellence in using the BSS=WSS method is due to the
correlation structure among the selected genes. Fig. 2 shows the absolute value of
the correlation matrix of LYM selected with (a) BSS=WSS and (b) Wilcoxon statistic
method. The brightest color (white) represents the perfect correlation and no correlation
is represented with the darkest color (red). By comparing two images, we can easily
%nd a higher correlation among the genes with BSS=WSS method than the Wilcoxon
statistic method. It implies that a higher correlation among the predictor variables plays
an important role in the performance of the classical methods. For tree methods, the
accuracies with the BSS=WSS method are better than those with the Wilcoxon statis-
tics method. In general, recursive partitioning methods with CART use F-statistic as
a measure of the separation when the predictor variables are continuous. In making a
tree, the most signi%cant gene satisfying the BSS=WSS criterion may contribute to a
root node, and it might imply that the gene selection system built in the tree method
seems to be theoretically similar to the BSS=WSS gene selection idea.

In applying BSS=WSS criterion for gene selection, we selected 50 most varying
genes. Our choice of the number of genes is a kind of arbitrary and based on the
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Fig. 2. Absolute value of correlation matrix in LYM with 50 selected genes: (a) BSS/WSS; (b) Wilcoxon
rank-based statistic.

previous studies. Golub et al. (1999) found that 50 genes are adequate for leukemia
data. Also, Dudoit et al. (2002) used BSS=WSS criterion and selected 50 genes for
lymphoma, 40 genes for leukemia and 30 genes for NCI 60. As discussed in Section
6.3 of Dudoit et al. (2002), for the lymphoma or leukemia datasets, increasing the
number of variables to 200 genes did not a>ect greatly the performance of the various
classi%ers. Throughout our study, we assumed that most of the classi%ers are not very
sensitive to the number of genes, although they improve slightly with the number of
genes. However, determination of the number of genes is a big issue, and further study
is also worthwhile.
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