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ABSTRACT

Motivation: Classification of proteins sequences into func-
tional and structural families based on sequence homology
is a central problem in computational biology. Discriminat-
ive supervised machine learning approaches provide good
performance, but simplicity and computational efficiency of
training and prediction are also important concerns.

Results: We introduce a class of string kernels, called
mismatch kernels, for use with support vector machines (SVMs)
in a discriminative approach to the problem of protein clas-
sification and remote homology detection. These kernels
measure sequence similarity based on shared occurrences
of fixed-length patterns in the data, allowing for mutations
between patterns. Thus, the kernels provide a biologically well-
motivated way to compare protein sequences without relying
on family-based generative models such as hidden Markov
models. We compute the kernels efficiently using a mismatch
tree data structure, allowing us to calculate the contributions
of all patterns occurring in the data in one pass while travers-
ing the tree. When used with an SVM, the kernels enable fast
prediction on test sequences. We report experiments on two
benchmark SCOP datasets, where we show that the mismatch
kernel used with an SVM classifier performs competitively with
state-of-the-art methods for homology detection, particularly
when very few training examples are available. Examination of
the highest-weighted patterns learned by the SVM classifier
recovers biologically important motifs in protein families and
superfamilies.

Availability: SVM software is publicly available at http://
microarray.cpmc.columbia.edu/gist. Mismatch kernel software
is available upon request.

Contact: cleslie@cs.columbia.edu

*To whom correspondence should be addressed.

INTRODUCTION

One of the central problems in computational biology is
the classification of protein sequences into functional and
structural families based on sequence homology. Approaches
based on pairwise similarity of sequences (Watermizad.,

1991; Altschulet al., 1990, 1997), profiles for protein fam-
ilies (Gribskovet al., 1987), consensus patterns using motifs
(Bairoch, 1995; Attwoockt al., 1998) and hidden Markov
models (Kroghet al., 1994; Eddy, 1995; Baldit al., 1994)

have all been used for this problem. Recent research suggests
that the best-performing methods are discriminative: protein
sequences are seen as a set of labeled examples—positive if
they are in the family and negative otherwise—and a learn-
ing algorithm attempts to learn a decision boundary between
the different classes. In this category, several successful tech-
niques (Jaakkolat al., 2000; Liao and Noble, 2002; Leslie

et al., 2002a) use protein sequences to train a support vector
machine (SVM) (Vapnik, 1998) classifier.

In this paper, we present a method for using SVMs for
remote homology detection, based on a family of kernel func-
tions called mismatch kernels. A kernel function measures
the similarity between a pair of inputs, and defines an inner
product in an implicit feature space for the SVM optimiz-
ation problem. The features used by our mismatch kernel
are the set of all possible subsequences of amino acids of
a fixed lengthk. If two protein sequences contain many
k-length subsequences that differ by at masmismatches,
then their inner product under the mismatch kernel will be
large. More precisely, the mismatch kernel is calculated based
on shared occurrences ¢f, m)-patterns in the data, where
the (k, m)-pattern generated by a fixédength subsequence
consists of alk-length subsequences differing from it by at
mostm mismatches. Thus, the mismatch kernel extends the
computationally simpler spectrum kernel presented in Leslie

TFormerly William Noble Grundy, see WWW.gs.washington.edu/noble/(at al. (2002b)’ adding the biOIOQica”y important notion of
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We also describe the mismatch tree data structure that we ugetest examplex is then classified as positive (negative) if
to compute the mismatch kernel. We can efficiently computef(x) > 0 [f(X) < 0]. Such a classification rule corres-
the contributions of all instances ¢f, m)-patterns occurring ponds to a hyperplane decision boundary between positive
in the data to all entries of the kernel matrix in one pass whileand negative points with normal vecterand bias ternb.
traversing the tree. Faik, m)-parameters that are useful in A key feature of the SVM optimization problem is that it
applications, the compute time to generate the kernel is fastepends only on the inner produdps, x;) of the training
enough for practical use on real datasets. Moreover, whewectors, allowing us to use kernel techniques. To intro-
mismatch kernels are used with SVMs, we can implement theluce a kernel, we now suppose that our training data are
classification to make linear-time prediction on test sequencesimply labeled example&;, i), where thex; could belong

We report results for two sets of experiments over the structo a vector space or to a space of discrete structures like
tural classification of proteins (SCOP) database (Muszah.,  sequences of characters from an alphabet. Given any feature
1995). In the first set of experiments, we test our method omap® from the input space into a (possibly high-dimensional)
the benchmark dataset assembled by Jaaldtadh (2000), vector space called the feature space, we obtain a kernel
where SCOP sequences are augmented by domain homologsfined byK (x,y) = (®(x), ®(y)). By replacing(x;, x;) by
of positive training sequences in order to assist HMM-based (x;, x;) in the dual SVM optimization problem, we impli-
methods. We show that our mismatch kernel, in conjunctiortitly train in feature space. Moreover, if we can directly
with an SVM classifier, performs competitively with state-of- and efficiently compute the kernel valués(x,y) without
the-art methods such as the the SVM-Fisher method on thiexplicitly representing the feature vectors, we gain tremend-
dataset. Inthe second set of experiments, we perform a simil&@us computational advantage for high-dimensional feature
set of experiments on a newer version of the SCOP databaspaces.

(Liao and Noble, 2002); however, in this second test, we limit
the training examples to proteins in the original SCOP datas
In the absence of additional domain homologs for training th HE MISMATCH KERNEL

hidden Markov models, SVM-Fisher and other HMM-basedBelow we introduce a class of string kernels, called mismatch
approaches exhibit poorer performance than our mismatctkernels, that can be used on biological sequence data with
SVM approach. However, mismatch-SVM performs as wellvarious kernel-based machine learning methods. Our even-
as SVM-pairwise, the best-performing method reported ifual goal is to use these kernels to train SVMs for protein
Liao and Noble (2002) for this benchmark. classification: we outline the use of kernels in SVM training,

The current work is an expanded version of Lestiel. describe how to compute the kernel efficiently, and apply our
(2002b), which defined the mismatch kernel and presentethismatch kernels in an SVM approach to remote homology
results on the Jaakkolet al. dataset. Here, in addition to detection.
reporting experiments on the second benchmark dataset andn this section, we define the mismatch kernels and provide
comparing with the SVM-pairwise method, we present furthersome intuition for why they capture meaningful sequence sim-
results that give biological motivation for use of our method.ilarity information. For motivation, we interpret the mismatch
First, we show that the mismatch kernel captures a biolovalue for a pair of protein sequences as a sequence similarity
gically meaningful notion of sequence similarity by using Score, and as a simple application, we show that this score can
the kernel values in an unsupervised setting for family-levebe used directly for protein classification.
and superfamily-level homology detection and for fold recog- ) )
nition. Second, we describe how to extract from a trained!@PPiNg protein sequencesto k-mer feature space
mismatch-SVM classifier the most informative subsequenceRecall that, given a numbér > 1, the k-spectrum of a
in the training set. These sequences typically correspond tbiological sequence is the set of @llength (contiguous)
highly conserved, motif regions in the positive sequence classubsequences that it contains; we refer to sudhlength
Thus, while we do not use a multiple alignment or HMM as ansubsequence agamer. In order to capture significantinform-
input to our method, we can recover conservation informatioration from sequence data without first building a generative
as an output of our training. model, we represent the spectrum information in a sequence

as a vector ink-mer feature space’.
If we are dealing with sequences of characters from an

SVMS AND KERNELS alphabetA of size | A| = [ (I = 20 for the alphabet of
Support Vector Machines are a class of supervised learningmino acids), we represent the sequences as vectors in an
algorithms first introduced by Vapnik (Boset al., 1992; [*-dimensional vector space, or feature space, where the
Vapnik, 1998). Given a set of labeled training vectoss y; ), coordinates are indexed by the set of all possibheers. For a

i = 1,...,m, where thex; are real vectors angl are+1, verysimplefeature map, we canassign to a sequeagector
training an SVM amounts to solving an optimization problemgiven as follows: for eack-merq, the coordinate indexed by
that determines a linear classification rylec) = (w, X) + b. a will be the number of times occurs inx. This gives the
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k-spectrum feature map defined in Les#eal. (2002a): A simple application: ROC analysis of protein
classification
Dr(X) = (P (X)) et As a simple application to demonstrate that our kernels
where ¢,(X) = no. of occurrences of in x. Now the capture useful biological information about sequence sim-
k-spectrum kernelk (x,y) for two sequencex andy is ilarity, we use the spectrum kernél (x,y) and mismatch

obtained by taking the inner product in feature space: kernel K «m)(X,y) to derive distance measures between pro-
tein sequencex andy, and we use these kernel-derived
Ki(X,y) = (D (X), Di(Y))- distances for homology detection. A receiver operating char-

_ _ _ _ __acteristic (ROC) analysis shows favorable comparison with
N(_)te that this kernel gives a simple notion of sequence similg| AST (Altschulet al., 1997) for certain homology detection
arity: two sequences will have a largespectrum kernel value - proplems in terms of overall ROC score. Here, our purpose is
!f they sharg many of the santemers. One can extend t_hlS simply to motivate our use of mismatch kernels in the SVM
idea by taking weighted sums bispectrum kemels for dif- = experiments described later in the paper; we do not claim
ferent values ok, as described in (Vishwanathan and Smola,ihat mismatch kernels are more appropriate or effective than

2002). N o . BLAST for measuring sequence similarity.
For a more sensitive and biologically realistic kernel, we \yse first normalize the kernels via

wantto allow some degree of mismatching in our feature map.

That is, we want the kernel value between two sequences K(Xy) < Kx.y) ] )
x andy to be large if they share many similarmers. For VKX X)VK(Y,Y)

a fixedk-mera = a1,a,...,ar, with eacha; a charac-

ter in A, the (k,m)-pattern generated hy is the set of all

k—!ength sequencesfrom A.that differ froma by at mostn dx,y) = VKX, X) — 2K(X,y) + K(Y,y)

mismatches. We denote this set By, ) («), the ‘mismatch

neighborhood’ around. Intuitively, when we see an instance between pairs of protein sequenceandy. We wish to see

of ak-mera in our input sequence we would like it to con- ~ whether the kernel-induced pairwise distadgg, y) can be

tribute not only to thex-coordinate in feature space but also used directly to predict whetherandy belong to the same

to all coordinates corresponding kemers in the mismatch protein family, superfamily or fold.

neighborhood of:. We evaluate the performance of this distance for homology
We can now define our feature map into thelimensional ~ detection and compare with the performance of Smith—

feature space, indexed as before by the set of all possibM/aterman and BLAST over the same dataset using default

k-mers. If« is a fixed k-mer, we first define theby,,  parameters. Sequences for these experiments were extrac-

ona by: ted from the SCOP (Murziret al., 1995) version 1.53

D) (@) = (Pp(@)) pear, using the Astral database (http://astral.stanford.edu/, Brenner

et al., 2000), removing similar sequences usingRwalue

threshold of 1025, This procedure resulted in 4352 distinct

sequences, grouped into families, superfamilies and folds. All

pairwise E-values are computed by querying the database of

4352 iteratively with each sequence.

D ey (X) = Z ® ey (@0). 1) We perform separate experiments to detect family-level

and superfamily-level homology and fold-membership using

Smith—Waterman, BLAST, the spectrum kernel with= 4

Note that® o coincides with the spectrum kernel feature and the mismatch kernels with the following,m) para-

map &, defined above. Thék, m)-mismatch kernel is once meters(6, 1) and(8, 2). In experiments using kernel-derived

We then consider the induced distance

wheregg (o) = 1 if g belongs toN ) («) [or equivalently,
if o belongs taV,.)(8)], and otherwisepg («) = 0.

We define the feature map on an input sequeqiteX’ is
as the sum of the feature vectors for fheers inx:

k-mersa in X

again just the inner product in feature space distances, we compute ROC curves by varying the distance
threshold: a pair of homologous proteins that is below the
K tem) X ¥) = (@ ey (%), P ey () threshold is considered a true positive, while a pair of non-

These kernels measure sequence similarity based on shard@mologous proteins below the threshold is considered afalse
occurrences ofk, m)-patterns in the data: the kernel value POSitive. We also compute an ROC curve for Smith—\Waterman
Ko (%, y) will be large if the sequencesandy share many ~and BLAST usingE-value thresholds.

k-length subsequences differing by at masmismatches. Figure 1 shows ROC curves for all 'methods in the super-
family task. ROC curves for the family and fold tasks are

INote that since we have definét .,y from an explicit feature map, it is available on the_ supplementgl da_ta website for this paper
automatically a valid kernel function, and there is no need, e.g. to show thaﬁWW_VV-CS-COlumb|a-edU/Compb|O/m|smatCh)- Table 1 sum-
the conditions of Mercer's Theorem apply. marizes the ROC scores for all methods at each task. The
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Superfamily Mismatch tree data structure
! ‘ ‘ ‘ The mismatch tree data structure is similar to a trie or suffix
s | = tree (Gusfield, 1997). We use the mismatch tree to repres-
L T ent the feature space (the set of laliners) and to organize
E 06 | e == | a lexical traversal of all instances bfmers that occur (with
2 mismatches) in the data. The entire kernel matrix is com-
g oa 2 | puted in one traversal of the tree. Our algorithm is similar to
g swo the approach presented in (Sagot, 1998; Pastedli, 2001)
= o2 L/ . BLtAST e for finding subsequence patterns that occur with mismatches.
Bl (6.1)-mismatch A related data structure was also used for sparse prediction
0 ‘ (8,2)-mismatch ------- trees (Eskiret al., 2000; Pereira and Singer, 1999).
0 0.2 0.4 0.6 0.8 1 A (k,m)-mismatch tree is a rooted tree of depthwhere
False positive rate each internal node has 20 (more genergllgranches, each

labeled with an amino acid (symbol from). A leaf node
Fig. 1. ROC curves comparing mismatch kernels with Smith—epresents afixekdmer in our feature space, obtained by con-
Waterman (SW) and BLAST for unsupervised homology detection catenating the branch symbols along the path fromroot to leaf.
‘True’ relationships are defined by SCOP superfamilies. An internal node represents the prefix for thbgmer features
_ _ _ that are its descendants in the tree. We perform a depth-first
Table 1. ROC scores for homology experiments comparing kernels W'thtraversal of the data structure and store, at a node of dﬂepth

BLAST pointers to all substrings*mer instances’) from the sample
datasetwhosé-length prefixes are withilm mismatches from
Sw BLAST  Spectrum  Mismatch ~ Mismatch  the 4-length prefix represented by the path down from the
k=4 =0 k=8 root; this set of substrings represents the valid instances of the
"= "= d-length prefix in the data. We also keep track, for each valid
Fold 0713 0.619 0.623 0.623 0.621 mstancg, of how many mlsmatche§ |t.has when compared YVIth
Superfamily  0.679  0.660 0.702 0.704 0.695 the prefix. Note that the set of valid instances for a node is a
Family 0.820 0.737 0.741 0.784 0.708 subset of the set of valid instances for the parent of the node;
when we descend from a parent to a child, each instance is
The ROC score is the area under the ROC curve. either passed down (with O or 1 additional mismatch), or it is

eliminated because it has exceededismatches. When we
ROC score is the area under the ROC curve: perfect discrimencounter a node with an empty list of pointers (no valid occur-
ination between positives and negatives gives an ROC scorences of the current prefix), we do not need to search below
of 1, while a random classifier has an expected score clogéin the tree. When we reach a leaf node—corresponding to
to 0.5. We first note that in this unsupervised setting, neithe# particular featuré-mero—we have pointers to all instance
the kernel-induced distances nor tBevalues from BLAST  k-mers occurring in the source sequences that are up to
and Smith—Waterman gave very strong performance in any ghismatches fromx. Because for a source sequencethe
the homology/fold detection tasks. However, for family-level instances with mismatches@fin x—thek-mers inx belong-
homology detection, the best mismatch kernel performs bettdng to N . («)—are exactly the ones that contribute to the
than BLAST. For the superfamily homology and fold recog- «-coordinate of the feature vectdr(x), we can now sum
nition tasks, the mismatch kernels outperform both BLASTthe contributions of all instances occurring in each source
and Smith-Waterman at low false positive rates, thougtsequence and update the kernel matrix entkgs,y) for
Smith—Waterman is more sensitive at fold detection at highethose source sequencesindy having non-zera-features.
false positive rates. In all tasks, the mismatch-induced disThat is, if n,(x) and n,(y) are the number of instances
tance gives stronger performance than the spectrum-inducdwith mismatches) ok-mer « in x andy, respectively, at

distance at low false positive rates. the leaf node, we perform the updaex,y) < K(X,y) +
ne(X) - ny (y). Figure 2 gives an example of the mismatch tree

EFFICIENT COMPUTATION OF KERNEL traversal.

MATRIX Efficiency of kernel computation

Because our feature vectors are sparse vectors in a very higburing the kernel computation, we need only search down
dimensional feature space, we do not compute and store thgaths corresponding tomers that occur (with mismatches)
feature vectors for our input sequences. Instead, we directlin the data. The number @ mers withinm mismatches of
and efficiently compute the kernel matrix using adata structurany given fixedk-mer is p(k,m,l) = Y1, (’lf)(l -1 =
called a mismatch tree. O (k™I™). Thus, the effective number éfmer instances that
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2\98 FAST PREDICTIONWITH SVMS
A Y I&IE Mismatch kernels provide an additional advantage when used

© kA with SVMs: the particular form of the SVM solution combined
VA N with the definition of the mismatch feature map allow us to
NN . VILL implementfast prediction on test sequences. The learned SVM
LIKIG classifier is given by
AV L
VIL L

O

FOO =" 3iai (P (%), gy (X)) + b,
i=1

wherex; are the training sequences that map to support vec-
) ] tors, y; are labels 1), anda; are weights obtained from
Fig. 2. An (8, )-mismatch tree for a sequenB¥LALKAVLL used o a1 SVM optimization problem. Note that the classific-
for computing the kernel matrix with-mers of length 8 allowing ation function evaluated on the test sequeni@the sum of

1 mismatch. The path from the root to the node is the ‘prefix’ of a lassification * ) for the k it tai Wi
particulark-mer feature. The leaf node stores the number of mis-ctassthication scoresf (a) for thek-mersa it contains. We

matches between the prefix okamer instance and the prefix of a can therefore precompu?e and store all the non-_kelrfn:er
feature and a pointer to the tail of ttiemer. The figure shows the Scores. Then the predictiofix) can be calculated in linear
tree after expanding the patL. time [i.e. O(|x|)] by scanning through thé-mers inx and
looking up the precomputgdmer scores.
One way to compute thiemer scores is to use two passes
of the mismatch tree data structure. In the first pass, we com-

mjim i
we need to traverse grows @(Nk™I™), whereN is the pute the non-zero coordinates of the normal veator=

total length of the sample data. If we are computing the ker~r ,
nel valueK (x,y) for a single pair of sequences, we makez":1 Yidi g (). We traverse the support sequengss
. Y ge p q ’ and at leaf node correspondingkemer 8, we compute the

| and eack- st that i tod at a leaf dE\'K/eighted sum of valid instances to obtain the coordinaje
versal, and eackrmer Instance thal 1S counted at a leal N0A€ ¢ v 1yorma vector. In the second pass, we use the normal

is processed times as it IS passed down the path from th.ecoordinateauﬁ to obtain thek-mer scores. We traverse the
root. Thus to calculate a single kernel value, the complexit

. 1 Yset ofk-mersg having non-zeravg, and at leaf node corres-
is O[k"+1™ (1X| + [y)]. :
. ponding tok-mera, we compute the SUR 4 iy v, . @) W5 1O
To compute the kernel matrix fab4 sequences each of ; tkimy
i .~ Obtain the score fox.
length n (total length N = nM), the traversal time is
m+1ym i H H H _

_O(an ™), but the running time of the algorithm is dom FXPERIMENTS: PROTEIN CLASSIFICATION
inated by the kernel updates made at the leaf nodes. If exact ] ) i
¢ input sequences contain valid instances of the cufkrenér OP experiments with domain homologs
at a particular leaf node, one perfornfaupdates to the kernel We first test the mismatch SVM method using the SCOP
matrix. One can show that the worst case for the kernel compuMurzin et al., 1995, version 1.37) datasets designed by
tation occurs when th& feature vectors are all equal and have Jaakkolat al. (2000) for the remote homology detection prob-
the maximal number of non-zero entries, so that the worst cadem. In this test, remote homology is simulated by holding out
running time for the leaf updates (and hence the full kernebll members of a target SCOP family from a given superfam-
computation) isO[M2np(k,m,1)] = O(M?nk™I"™). Thus, ily. Positive training examples are chosen from the remaining
the kernel computation worst case running time grows withfamilies in the same superfamily, and negative test and train-
m, the number of mismatches, atthe same rate as the mismattig examples are chosen from disjoint sets of folds outside
neighborhood and scales linearly with the lengtlof the  the target family’s fold. The held-out family members serve
input sequences. For remote homology detection, small vaks positive test examples. Details of the datasets are available
ues ofim are most useful, and the kernel calculations are quitet www.soe.ucsc.edu/research/compbio/discriminative
inexpensive. Because Jaakkokhal. needed to train hidden Markov mod-

Another advantage of the mismatch algorithm is its efficientels for the protein families represented in the positive training
use of memory, which also leads to faster running time insets for these experiments, they used the SAM-T98 algorithm
practice. Because we perform a depth-first traversal, the onlto pull in domain homologs from the non-redundant protein
expanded nodes are along the current search path, and thdatabase. These additional domain homologs were added to
there is a maximum df stored nodes (counting the root node) the dataset as positive examples in the experiments.
atanytime. In fact, the kernel computation can be achieved by Because the test sets are designed for remote homology
a recursive function, without explicitly building and storing detection, we use small valuesiofWithout mismatches, the
the tree. only reasonable values ake= 3 andk = 4, sincek > 5
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Fig. 3. Comparison of three homology detection methods for theFig. 4. Family-by-family comparison of mismatch and Fisher ker-
SCOP 1.37 benchmark dataset. The graph plots the total number o&ls for SCOP 1.37 benchmark dataset. The coordinates of each point
families for which a given method exceeds an ROC score thresholdn the plots are the ROC scores for one SCOP family, obtained using
Each series corresponds to one of the homology detection methodide mismatch-SVM withk = 5, m = 1 (x-axis) and Fisher-SVM
described in the text. (y-axis). The dotted line is = x.

results in a spectrum kernel matrix that is almost everywhere ) ) i
0 off the diagonal (and < 3 is not informative). For the mis- adjustment to account for multiple comparisons, we find

match kernel, we were therefore interested in slightly longePnY the following significant differences: Fisher-SVM and
k and a very small number of mismatches for efficiency inMiSmatch-SVM perform better than SAM-T98 (withvalues

training. We testedk, m) = (5, 1) and(6, 1), where we nor- _6.7e— 03_ ar_u_j 1.3e—_ 02, respectively). There is no stat-
malized the kernel by Equation (2). Our results show thafstmally significant difference between the performance of

(k,m) = (5, 1) yields slightly better performance, though res- F1Sher-SVM and mismatch-SVM. _
ults for both choices were similar. [Data for,m) = (6, 1) Figure 4 shows a fam'lly-by—famlly comparison .of the
not shown.] We use a publicly available SVM software ROC scores of the5, I)-mismatch-SVM and SVM-Fisher.

implementation (http://microarray.cpmc.columbia.edu/gist/),| "€ Points fall ‘approximately evenly above and below
which implements the soft margin optimization algorithmthe diagonal, indicating little difference in performance
described in Jaakkolet al. (2000). Note that for this vari- PEtween the two methods, though there are a handful
ant of the SVM optimization problem, the bias tedmis of families on which SVM-Fisher has somewhat higher
fixed to 0. ROC scores.

For comparison, we include the original experimental Figure 5 shows the improvement provided by including mis-
results from Jaakkolat al. for two methods: the SAM-T9g Matches in the SVM kernel. The figure plots ROC scores for

iterative HMM, and the SVM-Fisher method. We note that, WO kernel SVM methods: using = 5, m = 1 mismatch

more recently, a newer version of the SAM HMM software KérMel, and using = 3 spectrum kemel (no mismatches),
has become available (Karples al., 2001), modifications the best-performing spectrum kernel reported in Lextlia.

to the Fisher kernel have been explored (Tsetda., 2002) (2002a). Most of the families perform better with mismatching

and other novel approaches to homology detection have bedf@n without, and in the cases where the 3-spectrum ker-
introduced (Spanet al., 2002). Figure 3 illustrates the mis- nel wins over the(5, 1)-mismatch kernel, the difference is
match kernel's performance relative to the profile HMMm usually small.

and SVM-Fisher homology detection methods. The figure . . .

includes results for all 33 SCOP families, and each serieSCOP experiments without domain homologs
corresponds to one homology detection method. Qualitatih order to investigate the performance of our method against
ively, the curves for SVM-Fisher and mismatch-SVM are competing methods in the more difficult setting of very lim-
quite similar. When we compare the overall performance ofted positive training data, we completed a similar set of
two methods using a two-tailed signed rank test (Henikoff an/SCOP experiments described in Liao and Noble (2002).
Henikoff, 1997; Salzberg, 1997), we find that almost none ofLiao and Noble developed this benchmark dataset (available
the differences between methods are statistically significanait www.cs.columbia.edu/compbio/svm-pairwise) to test their
Using ap-value threshold of 0.05 and including a Bonferroni SVM-pairwise method, which uses explicit feature vectors
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Fig. 5. Family-by-family comparisons mismatch and spectrum ker-Fig- 6. Comparison of homology detection methods for the SCOP
nels for SCOP 1.37 benchmark dataset. The coordinates of each poiht3 benchmark dataset. The graph plots the total number of families
in the plots are the ROC scores for one SCOP family, obtained usinfP" Which a given method exceeds an ROC score threshold for the

mismatch-SVM withk = 5, m = 1 (x-axis) and spectrum-SVM second set of remote homology detection experiments. Each series
with k = 3 (y-axis). The dotted line is = x. corresponds to one of the homology detection methods described in

the text.

based on Smith—Waterman alignment scores against the set |

of training sequences for SVM training. 005 | . corr |
These experiments are based on SCOP version 1.53 and * .t . :/,'} .
also test for remote homology detection, but the positive 091 st * T ’
training data is limited to the original SCOP sequences. In 085 | . T
particular, no method has the benefit of training on addi- 8 og| * y
tional homologs of the positive training sequences pulled in% 075 | .
from a large unlabeled protein database. For this more diffi-< . 7
cult discrimination problem, Liao and Noble found that their & [ -
SVM-pairwise method outperformed SVM-Fisher, SAM- 065 S .
T98 and PSI-BLAST; these methods could not successfully o6 | /
perform in the presence of so little positive training data g5 -
(Fig. 6). 05 . L
In our experiments, we find that the our SVM-mismatch 05 055 06 065 07 075 08 085 09 095 1
method performs as well as SVM-pairwise on this dataset: (5,1)-mismatch

Figure 7 shows the comparison of the (5,1)-mismatch kernel
against SVM-pairwise. A signed-rank test confirms that therd=ig. 7. Family-by-family comparison a5, 1)-mismatch-SVM with
is no significant difference between performance. Note, howSVM-pairwise for the SCOP 1.53 benchmark dataset. The coordin-
ever, that the mismatch method has the advantage that its kedtes of each pointin the plot are the ROC scores for one SCOP family,
nel is fast and efficient to compute, while the SVM-pairwise 0Ptained using the SVM-mismatch with= 5, m = 1 (x-axis) and
method requires expensive computation of Smith—-Watermanr YM-pairwise ¢-axis). The dotted line is = .
alignment scores for every pair of training sequences and
between each training and test sequence (computation of eagh in the SVM-Fisher approach, that had been trained on a
feature is quadratic in sequence length). Also, the computaimited and divergent set of positive examples. However, we
tion of the kernel matrix from the Smith—Waterman matrix is view these experiments as a demonstration of the power of
O (M?3) in the number of training examples. We did not testour model-independent discriminative approach in a difficult
SVM-pairwise on the Jaakkola dataset because the large nurgtassification problem with limited training data.
ber of experiments and training sequences make computation i i o
of the SVM-pairwise kernel prohibitively expensive. Extracting explanationsfor SVM predictions

One can argue that this set of experiments is an unrealn general, SVM classifiers do not easily yield explanations
istic comparison of methods, because one would generallfor the predictions that they make. In particular, when a kernel
not attempt to use hidden Markov models, either directlyfunction is used to map the data into a high-dimensional
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1cbl_4:78 saqg. . ---ksp. . ael ksi fek. .yaakeg....dpnglsk...eel........... kgligaef................. P
SWA: CA22_HUMAN_116: 179 snklh------ ..----fafrl..yd-1dk....d-ekisr...del........... lgvlirmmv. ... gvni sdeqgl gsi
SWA: S106_CHI CK_4: 82 maa. . pl dqai . . gl I vat f hk. . ysgkeg. ...dknslsk...gel ........... keligkelti............... [o TP
SW BTV3_BETVE_140: 197 sfggf------ ..----kvfd-..---edg....d-gyisa...rel........... qmvligk-1..... ... .. ... [o TP
SW CA22_RAT_116: 179 snkl h------ ..----fafrl..yd-1dk....d-dkisr...del........... lgqulirmv................. gvni sdeql gsi
*kkkkkkkkk
1cbl_4:78 (S I K.o..... [« PP prtiddl....fqeldkn...gdgevSFEEFQvI vkkisq......
SWA: CA22_HUMAN_116: 179 ---. . . e E T E ---adrt....igeadqd...gdsai SFTEFVkvI ----- ekvdv.
SWA: S106_CHI CK_4: 82 pkl ..o k..., d...... ae-iagl....nmedldrn...kdgeVNFQEyvtfl gal am ynea.
SW BTV3_BETVE_140: 197 L -fsegs.e......... idrvekm ...ivsvdsn...rdGRVDFFEFkdmmM - - - -rsvlv.
SW CA22_RAT_116: 179 T ERI e ---adrt....igeadqd...gdsai SFTEFVKvI ----- ekvdv.

Fig. 8. Mapping high-scoring-mers onto a multiple alignment. The figure shows the first five sequences from a profile HMM multiple
alignment of the EF-hand superfamily and its homologs. Thek20t@rs that receive the highest weights from a (5,1)-mismatch SVM have
been mapped onto the multiple alignment. Occurrences of thesers are indicated by uppercase letters. Periods (‘) in the alignment
correspond to insertions and hyphens (*-') correspond to deletions with respect to the HMM. The location of a motif-like region of clustered
k-mer occurrences is indicated by asterisks.

feature space, the hyperplane decision boundary located by
the SVM training algorithm is only implicitly defined by
dot products between images of data points in the feature
space. Most kernel functions make it very difficult to compute
explicitly the location of this hyperplane.

However, the mismatch kernel differs from most kernel
functions in that the mismatch kernel’s mapping into feature
space is explicit[as in Equation (1)]. Therefore, for this kernel,
the normal of the separating hyperplamean be represented
directly asw = Y _; yia; @ m) (%), where eachy; is a training
exampley; its training label, and; its corresponding weight
obtained by the SVM algorithm. Note that > 0 only for a
subset of training examples, which are referred to as support
vectors. The location of the hyperplaneis thus given by a
set of weights, one for eadhmer. Using the mismatch data
structure we can efficiently compute thdsener weights by
summing the support vector weights of all instances at eac
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ﬁig. 9. Schematic ok-mers mapped onto a multiple alignment. The
figure shows the first 150 sequences from the same alignment as

leaf node. - . . i . ; .
A that tai ith | it Figure 8, in schematic form. In the figure, insertions and deletions
sequence that contains makyners with large, positive are white, unmatched amino acids are gray, and amino acids that

weights is very likely to be a member of the positive classya, onto one of the top 206mers are black. The entire alignment
defined by the classifier. Therefore, in the case of proteifnot shown) contains 847 sequences.

classification, we expect these highly informativeners to

correspond to conserved regions in the protein family align-

ment. Figures 8 and 9 illustrate this phenomenon. We selected , i i
atrandom an experiment in which the SVM-mismatch methodnoWs @ larger portion of the same alignment, in schem-
performed well from the first set of SCOP experimentsat'c form. Here, th.e motif-like nature. of the clusters_ of
(Jaakkolaet al., 2000); the positive set for the chosen exper-k'_mer occurrences is apparent as vertical black bars in the
iment was the EF-hand superfamily. For this experiment, Wé\llgn_ment. ) )

computed the 200-mers that are assigned the highestweights | S @nalysis shows that, although the mismatch SVM does
by the (5,1)-mismatch SVM. Many of thesemers are over- not provide sequence alignmemes se, the classifier can be

lapping or slight variations of one another. The resulting set'Sed to identify sequence regions that are highly conserved in

of 200 k-mers was then mapped onto the positive trainingth€ POSitive class.

set. In Figure 8, five sequences from the multiple align-

ment for training sequences from this experiment are shown

in detail, with the high-scoring-mers indicated by upper- DISCUSSION

case letters. In these five sequences, the high-sckyingrs  We have presented a class of string kernels that measure
all appear within a nine-letter region of the alignment. Notesequence similarity without requiring alignment and without
that this is the only nine-letter block within the alignment depending upon a generative model. We have also presented a
that does not contain any insertions or deletions. Figure ®nethod for efficiently computing these kernels. For the remote
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homology detection problem, we are encouraged that our disnd Kuang (2003), kernels are obtained by allowtrgers

criminative approach—combining SVMs with the mismatchto occur with a restricted number of gaps, using features with

kernel—performs competitively in the SCOP experimentswildcards, or using substitution probabilities to score inexact

when compared with state-of-the-art methods. When we makenatches to a feature-mer, rather than counting instances

the discrimination problem more difficult by providing only of k-mers with mismatches. We note that in the case of

limited training data (in particular, when no domain homologsthe exact-matching spectrum kernel, suffix trees have been

of positive training sequences are used), our method pewused to eliminate the constant factorkoin the complexity,

forms as well as SVM-pairwise, an approach that previouslyielding O (x| + |y|) computation time (Vishwanathan and

outperforms other known methods in this setting. Smola, 2002). If such techniques could be extended to inex-
Our method has several advantages over other SVNct matching kernels, we could hope for more computational

approaches to protein classification, such as SVM-Fisher anghavings.

SVM-pairwise. The SVM-Fisher method is appealing because Finally, in certain biological applications, tikelength sub-

it combines the rich biological information encoded in a pro-sequence features that are ‘most significant’ for discrimination

file hidden Markov model with the discriminative power of canthemselves be of biological interest. For such problems, it

the SVM algorithm. However, one generally needs a lot ofwould be interesting to use the mismatch data structure for fea-

data or prior knowledge to train the hidden Markov model.ture selection on the setbfmer features, so that we identify a

In addition, because calculating the Fisher scores depends d@ature subset that both allows for accurate discrimination and

dynamic programming (quadratic in sequence length for progives biologically interesting information about the spectrum

file HMMs), in practice it is very expensive to compute the differences between positive and negative examples.

kernel matrix. Our mismatch kernel approach gives efficient

kernel computation, linear time prediction and maintains gOO%CK NOWLEDGEMENTS
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