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ABSTRACT
Summary: This paper studies the problem of building
multiclass classifiers for tissue classification based on gene
expression. The recent development of microarray technolo-
gies has enabled biologists to quantify gene expression of
tens of thousands of genes in a single experiment. Biologists
have begun collecting gene expression for a large number of
samples. One of the urgent issues in the use of microarray
data is to develop methods for characterizing samples based
on their gene expression. The most basic step in the research
direction is binary sample classification, which has been stud-
ied extensively over the past few years.This paper investigates
the next step—multiclass classification of samples based on
gene expression. The characteristics of expression data (e.g.
large number of genes with small sample size) makes the
classification problem more challenging.

The process of building multiclass classifiers is divided into
two components: (i) selection of the features (i.e. genes) to
be used for training and testing and (ii) selection of the clas-
sification method. This paper compares various feature selec-
tion methods as well as various state-of-the-art classification
methods on various multiclass gene expression datasets.

Our study indicates that multiclass classification problem is
much more difficult than the binary one for the gene expres-
sion datasets. The difficulty lies in the fact that the data are
of high dimensionality and that the sample size is small. The
classification accuracy appears to degrade very rapidly as
the number of classes increases. In particular, the accuracy
was very low regardless of the choices of the methods for
large-class datasets (e.g. NCI60 and GCM). While increasing
the number of samples is a plausible solution to the problem
of accuracy degradation, it is important to develop algorithms
that are able to analyze effectively multiple-class expression
data for these special datasets.
Contact: ogihara@cs.rochester.edu
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1 INTRODUCTION
The fate and functions of cells are characterized by produc-
tion of proteins, which consist of amino acids. The patterns
of the amino acid sequences are many-to-one encoded in
genes, which constitute a part of the genome. To produce the
protein defined by a gene, a cell first transcribes its genetic
sequence into its messenger RNA (mRNA) sequence. This
is the molecule-wise copy of the DNA sequence into RNA
(in eukaryotic organisms, parts of RNA sequences are elimin-
ated). Then the mRNA sequence is translated in triplets into
an amino acid sequence, which is the protein of the sequence.
Gene expression refers to the level of production of protein
molecules defined by a gene. Monitoring of gene expres-
sion is one of the most fundamental approach in genetics
and molecular biology. The standard technique for meas-
uring gene expression is to measure the mRNA instead of
proteins, because mRNA sequences hybridize with their com-
plementary RNA or DNA sequences while this property lacks
in proteins.

The DNA arrays, pioneered in Chee et al. (1996) and Fodor
et al. (1991), are novel technologies that are designed to
measure gene expression of tens of thousands of genes in
a single experiment. A DNA array consists of probe DNA
sequences that are immobilized on a surface (gold or glass).
To assess gene expression of tissues, their mRNA sequences
are first extracted from them. The mRNA sequences are then
amplified (copied at an exponential rate) and then reverse-
transcribed to DNA sequences. The reverse-transcribed DNA
sequences are fluorescently tagged. The probe sequences on
the array are designed to hybridize with these reverse tran-
scriptions (by virtue of DNA–DNA hybridization). After
DNA–DNA hybridization, the array is scanned to quantify
the fluorescent light dissipated from each probe. There exist
two technologies for designing DNA arrays: using the com-
plete sequence for each gene, called cDNA arrays (see Chee
et al., 1996), and using a small number (usually one to two
dozens) of short fragments of the mRNA sequence which, as
a whole, uniquely capture the mRNA sequence, called DNA
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microarrays (see Fodor et al., 1991). For an extensive survey
of the technologies see, e.g. Eisen and Brown (1999).

The capability of measuring gene expression for a very large
number of genes, covering the entire genome for some small
organisms, raises the issue of characterizing cells in terms
of gene expression, i.e. the question of whether gene expres-
sion can be used to determine the fate and functions of the
cells. There are four major technical issues that confront the
researchers who address such questions. First, with the cur-
rent technology amplification of mRNA from a single cell is
an extremely difficult task. So, tissues that seemingly share
the same fate or the same functions are pooled to obtain a sig-
nificant amount of mRNA. This implies that the expression
levels calculated are the means of all the cells in the pool.
Second, genetic variability affects gene expression, i.e. the
expressions of two individuals can be different. Third, there is
much room for noise to affect the outcome, at various points
of experiments, e.g. at the time of tissue collection, at the
time of mRNA amplification and at the time of hybridization
on to the chip (see Dorris et al., 2002 for such discussions).
Finally, the samples collected are small in numbers (not more
than two dozens in many cases; rarely in the hundreds). Given
that the dimensions of the data are very large (thousands to
tens of thousands), the sample sizes are much too small.

The most fundamental of the characterization problem is
the problem of identifying genes whose expression patterns
either characterize a particular cell state or predict a certain
forthcoming cell state. The first step in solving this problem
is the development of tools for classifying samples according
to their gene expression and of tools for clustering genes or
samples. Significant progress has been made in the develop-
ment. However, while binary classification and clustering are
heavily studied, (see, e.g. Alizadeh et al., 2000; Ben-Dor et al.,
2000; Brown et al., 2000; Der et al., 1998; Eisen et al., 1998;
Friedman et al., 2000; Raychaudhuri et al., 2002; Tamayo
et al., 1999; Welsh et al., 2001), only a small amount of work
has been made on multiclass classification, i.e. classification
involving more than two classes (Alizadeh et al., 2000; Golub
et al., 1999; Khan et al., 2001; Ross et al., 2000; Tamayo et al.,
1999).

This paper compares state-of-the-art machine learning tech-
niques for multiclass classification with the goal of identifying
a technique that is best suited for building multiclass sample
classifiers based on gene expression. To achieve the goal, com-
prehensive experiments have been conducted, the programs
for which will be made accessible to the community. Although
no clear winner has been identified, some insights have been
obtained from the experimental results classification.

2 PRIOR WORK ON MULTICLASS
CLASSIFICATION

Classification problems aim at building an efficient, effective
model for predicting class membership of data. The builder

of a model (often called the learner) is given the training data,
which consist of data points chosen from the input data space
and their class label. A model built from the training data
(often called a hypothesis) is expected not only to produce
the correct label on the training data but to predict correctly
the label for any unseen data. In the case when there are only
two class labels, a classification problem is said to be bin-
ary. In the case when there are at least three class labels, a
classification problem is said to be a multiclass classifica-
tion problem. While binary classification problems are the
simplest of all, but many real-world problems are multiclass
problems.

Multiclass classification techniques can be roughly divided
into two types. One type is the binary classification algorithms
that can be naturally extended to handle multiclass prob-
lems directly. Discriminant analysis (Hastie et al., 2001; Li
et al., 2003), regression and decision trees are of this type.
The other type is the decompositions of multiclass prob-
lems into binary ones. One-versus-the-rest method (Scholkopf
and Smola, 2002; Bottou et al., 1994), pairwise compar-
ison (Kreeel, 1999; Hastie and Tibshirani, 1998; Friedman,
1996), error-correcting output coding (Dietterich and Bakiri,
1991, 1995; Allwein et al., 2000) and multiclass objective
functions (Weston and Watkins, 1998; Lee and Lee, 2003) are
of this type.

Scholkopf and Smola (2002) note that there is probably
no multiclass method that outperforms everything else and
that for practical purposes the choice of the method has to
be made depending on the constraints, such as the desired
level of accuracy, the time available for development and
training, and the nature of the classification problems. How-
ever, choosing the best method is a very difficult task in
practice. Even for a fixed multiclass approach, there are
many details that can be fine tuned. For example, Crammer
and Singer (2000) study various strategies for building code-
words for error-correcting output coding, and find no clear
winner.

This makes us to wonder whether there is one method
that works the best for all classification problems based
on gene expression. There are two pieces of prior work.
Liu et al. (2002) present a comparative study of vari-
ous feature selection heuristics using two datasets, Dudoit
et al. (2002) compare various discrimination methods for
tumor classification using three datasets. This paper com-
bines and extends these two pieces of work. It provides
comparison of various feature selection methods combined
with various multiclass classification methods, include both
of the two types of techniques, using a wider variety of
datasets.

3 MULTICLASS LEARNING METHODS
This section briefly describes the multiclass classification
methods that are studied in this paper.
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3.1 Support vector machines and their reduction
methods

Support vector machines (SVMs) (Vapnik, 1998) have
exhibited superb performance in binary classification tasks.
Intuitively, SVM aims at searching for a hyperplane that sep-
arates the two classes of data with largest margin (the margin is
the distance between the hyperplane and the point closest to it).
This paper studies four multiclass decomposition techniques
for SVM. They are one-versus-the rest, pairwise comparison
and error-correcting output coding (ECOC) with two code
generation strategies: random coding and exhaustive coding.
In the following, let k ≥ 3 be the number of class labels.

In the one-versus-the-rest method, classifiers for discrimin-
ating one from all the other classes are assembled. For each
i, 1 ≤ i ≤ k, a binary classifier that separates class i from
the rest is built. To predict a class label of a given data point,
the output of each of the k classifiers is obtained. If there is
a unique class label, say j , which is consistent with all the k

prediction, the data point is assigned to class j . Otherwise,
one of the k classes is selected randomly. In practical situ-
ations often arise in which consistent class assignment does
not exist. The method is criticized because of this, and also for
solving potentially asymmetric problems using a symmetric
approach (Scholkopf and Smola, 2002). Although it is being
used widely, experiments (Allwein et al., 2000) show that the
method is easy to beat.

In the pairwise comparison method, a classifier is trained
for each pair of classes, so there are k(k −1)/2 independently
built binary classifiers. To predict a class label of a given data
point, the prediction of each of the k(k − 1)/2 classifiers is
calculated, which is viewed as a vote. If there is a class, say
j , which receives the largest number of votes, the data point
is assigned to class j , where a tie is broken randomly. As
in one-versus-the rest, the method can be criticized for solv-
ing asymmetric problems symmetrically. Also, the method
is criticized for simplifying too much by removing the rest of
the classes from consideration in training of pairwise clusters,
which provides little overlap in the training sets between two
classifiers. An advantage of using this method is that each clas-
sifier is easy to train since it is purely a binary problem to be
solved. However, when individual training is time-consuming
and the number of classes is large, the pairwise comparison
method requires a large amount of time.

The ECOC method is due to Dietterich and Bakiri (1995).
ECOC decomposes the original multiclass problem into a col-
lection of binary classifiers that each solve a binary partition
of the classes. Here the size, d , of the collection is determined
by the ‘coding strategy’ to be used. Each binary classifier is
designed to produce one of +1 and −1 as the class label. So,
given a list of d classifiers, the outputs of them can be viewed
as a (usually, a row) vector in S = {+1, −1}d . Each class is
assigned to a unique codeword in S. To predict the class label
of an input x, the output ‘word’ of the d classifiers on input x

is compared against the codeword of each class, and the class

having the smallest Hamming distance (the number of dis-
agreements) to the output ‘word’ is selected. Designing a good
set of codewords for ECOC requires separation among classes
and among classifiers and there are many design strategies
(Dietterich and Bakiri, 1995). In this paper, two major ones
are studied: random coding and exhaustive coding.

1. Random coding. In random coding, [10 log2(k)] clas-
sifiers (i.e. columns) are used. The binary separation
corresponding to each classifier is selected by assign-
ing a value from {+1, −1} uniformly at random (Allwein
et al., 2000).

2. Exhaustive coding. In this strategy, each codeword
starts out having length 2k−1. The codeword for the first
class is all +1. For i, 2 ≤ i ≤ k, the codeword for the
i-th class is constructed by repeating 2i−2 times a pat-
tern, which is a length-2k−i block of +1’s followed by
a length-2k−i block of −1’s. The classifiers correspond-
ing to the codewords are clearly pairwise distinct. The
first classifier is supposed to assign +1 to every input,
so unnecessary. Thus, the first +1 is dropped from every
codeword. This reduces the codeword length to 2k−1 −1.
It is easy to see that the minimum Hamming distance
between any pair of codewords is [2k−1 − 1/2] (see
Dietterich and Bakiri, 1995). A limitation to this strategy
is that the number of classifiers increases exponentially
in the number of classes.

3.2 Other methods
Naive Bayes. Naive Bayes is one of the most successful
learning algorithms for text categorization. Naive Bayes is
based on the Bayes rule assuming conditional independence
between classes. Based on the rule, using the joint probabilit-
ies of sample observations and classes, the algorithm attempts
to estimate the conditional probabilities of classes given an
observation.

K-nearest neighbor (KNN). KNN is a non-parametric clas-
sifier. KNN has been applied to various information retrieval
problems. KNN uses an integer parameter, K . Given an input
x, the algorithms finds the K closest training data points to x,
and predicts the label of x based on the label of the K points.
In this paper, the parameter for KNN is set to 1. It has been
proven that the error of KNN is asymptotically at most two
times the Bayesian error.

Decision Tree. Decision tree builds a binary classification
tree. Each node corresponds to a binary predicate on one attri-
bute, one branch corresponds to the positive instances of the
predicate and the other to the negative instances. Thus, each
node corresponds to a sequence of predicates and their values
appearing on the downward path from the root to it. Each leaf
is labeled by a class. To predict the class label of an input, a
path to a leaf from the root is found depending on the value
of the predicate at each node that is visited. The predicates
are chosen from top to bottom by calculating the information
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gain of each attribute, which is the expected reduction in
entropy caused by partitioning of the samples according to
the attribute. A post-pruning process is carried out to prevent
overfitting. In our experiments, we use the J4.8 version of
the decision tree algorithm, which is implemented in WEKA
(Witten and Frank, 2000).

4 FEATURE SELECTION METHODS
Intuitively, one hypothesizes that a good feature set consists
of those highly correlated with a class but are uncorrelated
with other classes, which is confirmed in Hall (1999).

In gene expression data, the number of features is usu-
ally very high. The program Rankgene (Su et al., 2003)1

is used for this study and feature selection is performed on
the training set only. A total of eight feature selection meth-
ods are supported in the package: information gain, twoing
rule, sum minority, max minority, Gini index, sum of vari-
ances, one-dimensional SVM and t-statistics. The first six
of these have been widely used either in machine learning
(information gain and Gini index) or in statistical learning
theory (twoing rule, max minority, sum minority and sum
of variances). They quantify the effectiveness of a feature by
evaluating the strength of class predictability when the predic-
tion is made by splitting the full range of expression of a given
gene into two regions, the high region and the low region. The
split point is chosen to optimize the corresponding measure.
The evaluation of the strength is different in each (Su et al.,
2003). One-dimensional SVM measures the effectiveness of
a future by calculating the accuracy of single-feature SVM
classifiers. The t-statistics measure was first used in Golub
et al. (1999)2 to measure the class predictability of genes for
two-class problems. Here, we compute t-statistics based on
distinguishing one class from the rest.

5 EXPERIMENTAL RESULTS AND
ANALYSIS

5.1 The datasets
The ALL/AML dataset consists of gene expression profiles
of two acute cases of leukemia: acute lymphoblastic leukemia

1The program can be downloaded at http://genomics10.bu.edu/yangsu/
rankgene/.
2There are other ranking methods that are neither supported in RankGene
nor tested in this paper. Bijlani et al. (2003) propose a binary classification
algorithm that uses a pair of asymmetric measures. The method is not tested
in this study because of its asymmetry. Bagirov et al. (2003) propose a method
that uses the ranges of the values. Let k = 2 and for each i ∈ {1, 2} let emax

i

and emin
i respectively be the maximum and the minimum value for feature e in

the i-th class. Suppose that emax
1 ≤ emax

2 . Then the strength is measured by the
ratio emax

1 −emin
2 /emax

2 −emin
1 . The quantity is at most 1. The genes are ranked

in the decreasing order of their distance from 1. For each i, emax
i +emin

i = 2ēi .
So, 2(ē2 − ē1) = emax

2 + emin
2 − emax

1 − emin
1 = (emax

2 − emin
1 )− (emax

1 − emin
2 ).

Thus, good discrimination based on the distance between the mean values of
the two classes also requires (emax

2 − emin
1 ) being large while (emax

1 − emin
2 )

being small, which is essentially the same requirement as t-statistics.

(ALL) and acute myeloblastic leukemia (AML). The ALL part
of the dataset comes from two types, B-cell and T-cell, while
the AML part is split into two types, bone marrow samples
and peripheral blood samples. The dataset was studied in
the seminal paper of Golub et al. (1999). It is available at
http://www-genome.wi.mit.edu. Golub et al. (1999) studied
the data for binary classification between AML and ALL.
However, due to the bipartition of each component, it can
be treated both as a three-class dataset (B-cell, T-cell and
AML) and as a four-class dataset (B-cell, T-cell, AML-BM
and AML PB). Here, the three-class version is referred to as
ALL-AML-3 and the four-class version as ALL-AML-4.

The ALL dataset (Yeoh et al., 2002) is one that
covers six subtypes of ALL. The dataset is available at
http://www.stjuderesearch.org/data/ALL1/. Using SVM with
a set of discriminating genes selected by a correlation-
based feature selection (CFS), Yeoh et al. (2002) achieve the
accuracy of 96% on the test dataset.

The GCM dataset (Ramaswamy et al., 2001; Yeang et al.,
2001) consists of 198 human tumor samples of 15 types. The
prediction accuracy of 78% is reported in Ramaswamy et al.
(2001) using one-versus-the rest SVM with all the genes.

SRBCT (Khan et al., 2001) is the dataset of small, round
blue cell tumors of childhood and can be downloaded
at http://research.nhgri.nih.gov/microarray/Supplement/. The
training set of this dataset consists of 83 samples spanning
four classes (excluding the five non-SRBCT samples). It is
reported in Khan et al. (2001) that after excluding several
samples a neural net achieved 100% accurate prediction.

The MLL-leukemia dataset consists of three classes and can
be downloaded at http://research.dfci.harvard.edu/korsmeyer/
Supp_pubs/Supp_Armstrong_Main.html. The dataset was
first studied in Armstrong et al. (2002). The best reported
performance is 95% with KNN.

The lymphoma dataset is a dataset of the three most
prevalent adult lymphoid malignancies and available at
http://genome-www.stanford.edu/lymphoma. The dataset
was first studied in Alizadeh et al. (2000).

The NCI60 dataset was first studied in Ross et al. (2000).
cDNA microarrays were used to examine the variation in
gene expression among the 60 cell lines from the National
Center Institute’s anticancer drug screen. The dataset spans
nine classes and can be downloaded at http://genome-
www.stanford.edu/nci60/.

The HBC dataset consists of 22 hereditary breast cancer
samples and was first studied in Hedenfalk et al. (2001).
The dataset has three classes and can be downloaded at
http://www.columbia.edu/xy56/project.htm.

In the experiments, the original partition of the datasets
into training and test sets is used whenever information about
the data split is available. In the absence of genuine test set,
the different predictors are compared based on random divi-
sions of the dataset into a training set and a test set. Popular
choices for the split ratio are leave-one-out cross-validation
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Table 1. The breakdown of each datasets

Dataset No. of training
samples

No. of test
samples

No. of genes No. of
classes

ALL-AML-3 72 — 7129 3
ALL-AML-4 72 — 7129 4
ALL 163 85 12 558 6
GCM 144 54 16 063 14
SRBCT 63 20 2308 4
MLL-leukemia 57 15 12 582 3
Lymphoma 62 — 4026 3
NCI60 60 — 1123 9
HBC 22 — 3226 3

and 10-fold cross-validation. The latter appears impossible
due to smallness of the datasets. So, 4-fold cross-validation
is used. The datasets and their characteristics are summarized
in Table 1.

5.2 Experimental set-up
Our implementation of the various classifiers is based
on the Weka (Witten and Frank, 2000) environment
(http://www.cs.waikato.ac.nz/ml/weka/). The classification
accuracy is used as the performance measures. All the experi-
ments are performed on a P4 2 GHz machine with 512M
memory running Linux 2.4.9-31. For experiments involving
SVM, linear, polynomial and radius-based kernels are tested.
The numbers reported are the best among these trials.

Data preprocessing is an important step for handling gene
expression data. This includes two steps: filling missing values
and normalization. For both training and test dataset, missing
values are filled using the average value of that gene. Nor-
malization is then carried out so that every observed gene
expression has mean equal to 0 and variance equal to 1.

5.3 Deciding the number of genes
Deciding the number of genes to select is the first question
for feature selection. Finding the optimal number of genes is
generally very difficult. Many practical solutions are based
on experience or some heuristics. A set of experiments are
first conducted on the ALL dataset by varying the number of
genes selected to investigate the effects of the number of genes
using SVM with random coding (Fig. 1). It is observed that,
when the number of selected genes is >150, the variation of
the performance is small. The same test is then conducted on
other methods, and the same property is observed. Hence, in
all the rest of the experiments the top 150 genes are used.

5.4 Experimental results
Figures 2–9 show the results on various datasets. In each
chart, No Rank presents the results obtained via various
methods without feature selection, and the others, rank 1
through rank 8, correspond to the results obtained using

Number of Features Selected
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Fig. 1. SVM random.
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Fig. 2. ALL-AML-3 and ALL-AML-4 datasets.

the eight feature selection methods, numbered in the following
order: information gain, twoing rule, sum minority, max
minority, Gini index, sum of variances, t-statistics and
one-dimensional SVM.
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Fig. 3. ALL dataset.

GCM

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 No

Rank Method

A
cc

u
ra

cy

J4.8
Naïve Bayes
KNN
SVM 1 vs. all
SVM random
SVM pairwise

Fig. 4. GCM dataset.
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Fig. 5. SRBCT dataset.

We observe the following:

• SVM is shown to be the best classifier for tissue classi-
fication based on gene expression. They achieve better
performance than any other classifiers on almost all the
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Fig. 6. MLL-leukemia dataset.
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Fig. 7. Lymphomia dataset.
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Fig. 8. NCI60 dataset.

datasets. However, the best decomposition method for
SVM appears to be problem-dependent, and there is is
no clear overall winner.

• KNN achieves good performance on most of the data-
sets. Although its performance is not always as good
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HBC

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 No

Rank Method

A
c

c
u

ra
c

y

J4.8
Naïve Bayes
KNN
SVM 1 vs. all
SVM random
SVM exhaustive
SVM pairwise

Fig. 9. HBC dataset.

as that of SVM, it outperforms decision tree and Naive
Bayes on most datasets. On the ALL dataset, KNN with
the twoing rule gives the perfect result. This indicates
that after feature selection, the expression data can be
well discriminated according to the distance. This also
seems to suggest that the choice of feature selection
method is very important for KNN. Although it has been
widely used in text categorization, Naive Bayes does not
appear to perform very well for tissue classification based
on gene expression. This is not very surprising, since
Naive Bayes is based on the assumption that the features
are conditional independent given the class label, which
may not be the case for gene expression data because of
co-regulation.

• It is difficult to select the best feature selection method.
There does not seem to exist a clear winner. For example,
information gain has the superb performance on the
ALL dataset; max minority performs the best on the
SRBCT dataset; and sum of variances, t-statistic and
one-SVM achieve the best result on the MLL-leukemia
and Lymphoma datasets. Overall, the methods 6–8 (sum
of variances, t-statistics and one-dimensional SVM)
appear to have similar performance (by selecting almost
identical set of features). In fact, on each of the datasets
excluding GCM, the three methods produce exactly the
same top-150 ranking.

• How the feature selection and the classification methods
interact seems very complicated. On one hand, it is con-
ceivable that feature selection lowers the accuracy since
information may be lost by removing many features.
This is indeed the case for decision tree, since the tree
is built by dynamically selecting the most informative
features. To wit, on all the datasets except NCI60 and
GCM, feature selection actually downgrade the accuracy
of decision tree. On the SRBCT dataset, the accur-
acy of decision tree with sum minority decreases by as
much as 17%.
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Fig. 10. ALLAML3 dataset SD.

On the other hand, it is conceivable that feature selec-
tion raises the accuracy since it may eliminate noise
and may reduce the number of insignificant dimensions,
thereby overcoming the curse of dimensionality. This
appears to be the case for KNN, which works based on
geometric distance between samples. The accuracy of
KNN is improved on all the datasets except the HBC
and Lymphoma datasets (where the accuracy is lowered
by 2–5%). The accuracy of Naive Bayes is also dra-
matically improved on almost all the datasets except the
MLL-Leukemia and GCM datasets.

SVM does not seem to be either of the two cases. On the
MLL-leukemia and ALL datasets, the accuracy of SVM
is improved significantly (10–30%), while on the NCI60
and GCM datasets, the accuracy is lowered by 10–20%.
Also, remarkably, only with the aid of feature selection
SVM achieves the 100% accuracy on the MLL-leukemia
and ALL datasets.

• The accuracy of classification is highly dependent on the
choice of the classification method. The choice is more
important than the choice of feature selection method.

• It is possible to achieve very high accuracy on most of
the datasets studied here. For instance, on the ALL,
MLL-Leukemia, Lymphoma and HBC datasets, SVM
can achieve perfect prediction on the test datasets. On
the SRBCT, ALL, ALL/AML-4-class and ALL/AML-
3-class datasets, the best accuracy is >93%. However,
the best performance on the NCI60 and GCM datasets
is 66.66 and 63.33%, respectively. These two datasets
have smaller sample sizes than the other datasets, so one
may conclude that multiclass classification based on gene
expression can be effectively solved when sample size is
large.

Figure 10 shows the SD of the accuracy on the ALL/AML-
3-class dataset by executing 4-fold cross-validation 20 times.
It can be observed that the SD is always high for decision
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tree and is consistently small for SVM. Similar results have
been obtained (not included in this paper) with other datasets.
However, one has to be careful, since estimation of SD can
be very inaccurate for datasets with small sample size such as
the HBC dataset.

6 CONCLUSION AND FUTURE WORK
This paper provides a comparative study on feature selec-
tion and multiclass classification for gene expression data.
The study suggests that multiclass classification problems
are more difficult binary one in general. The results are
generally good for datasets with a small number of classes.
The prediction accuracy is dramatically lower for the datasets
with a large number of classes (e.g. NCI60 and GCM).

There are some natural future directions. First, are there bet-
ter feature selection schemes? Most of the previously studied
feature selection schemes rank features ignoring correlations
between features (Dudoit et al., 2002). Is it possible to design
a feature selection method that takes into consideration cor-
relations between features? Second, can prediction strength,
as those presented in Bijlani et al. (2003) and Golub et al.
(1999), be taken into consideration to better estimate the pre-
dictive power of a feature? Finally, can ensemble methods in
machine learning be applied to gene expression classification?
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