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ABSTRACT
Motivation: The expression of genes is controlled by
specific combinations of cellular variables. We applied In-
dependent Component Analysis (ICA) to gene expression
data, deriving a linear model based on hidden variables,
which we term ‘expression modes’. The expression of
each gene is a linear function of the expression modes,
where, according to the ICA model, the linear influences
of different modes show a minimal statistical dependence,
and their distributions deviate sharply from the normal
distribution.
Results: Studying cell cycle-related gene expression in
yeast, we found that the dominant expression modes
could be related to distinct biological functions, such
as phases of the cell cycle or the mating response.
Analysis of human lymphocytes revealed modes that were
related to characteristic differences between cell types.
With both data sets, the linear influences of the dominant
modes showed distributions with large tails, indicating the
existence of specifically up- and downregulated target
genes. The expression modes and their influences can
be used to visualize the samples and genes in low-
dimensional spaces. A projection to expression modes
helps to highlight particular biological functions, to reduce
noise, and to compress the data in a biologically sensible
way.
Availability: The FastICA algorithm (Hyvärinen, IEEE
Trans. Neural Netw., 10, 626–634, 1999) is freely available
at http://www.cis.hut.fi/projects/ica/fastica/. Additional mat-
lab scripts and detailed results can be downloaded from
http://www.molgen.mpg.de/research/lehrach/projects/
genica/
Contact: wolfram.liebermeister@rz.hu-berlin.de

INTRODUCTION
Cells react to external stimuli and to their internal needs by
the induction or repression of genes, among other things
by up- or downregulating the amounts of corresponding
mRNA molecules. Samples of cells or tissues that repre-
sent different biological situations or experimental treat-

ments show characteristic expression patterns. Gene ex-
pression is controlled by a combination of mechanisms
including networks of signaling substances, transcription
factors and their binding sites in the promoter regions of
genes, as well as modifications of the chromatin structure
and different types of posttranscriptional regulation. Thus,
the expression of each gene relies on the specific process-
ing of a number of regulatory inputs, which are still un-
known in most cases. The gene Endo16 in the sea urchin,
whose regulatory function has been presented in the style
of a computer program (Yuh et al., 1998), remains a rare
exception.

Genomic-scale gene expression data, which are pro-
vided by high-throughput methods like the microarray
technology, give new insights about the regulatory ma-
chinery behind gene expression. Different types of genetic
network models (see for example Liang et al., 1998;
Wahde and Hertz, 2000; Weaver et al., 1999; D’haeseleer
et al., 1999; Friedman et al., 2000) have been used to
represent coregulation or feedback relations between
genes. However, constructing detailed genomic-scale
networks in an unsupervised fashion, i.e. from expression
data alone, suffers from two drawbacks: the measurement
errors are still large, and a realistic network model would
involve many quantities besides the observed mRNA
concentrations, like the amounts of the gene products,
metabolites, signaling molecules, or transcription factors.
However, the coregulation of genes may be described by
a small number of ‘effective’ regulators, each acting on a
large set of genes and varying between distinct biological
situations.

Clustering is a widely used tool in the analysis of gene
expression: with two-way hierarchical clustering (Eisen et
al., 1998), the genes and samples are organized in tree
structures. After a rearrangement, clusters become visible
in the data matrix. Self-organized maps (Tamayo et al.,
1999) determine gene clusters of similar size, which are
joined by a predefined topology. Ben-Dor et al. (1999)
proposed an algorithm to recover clusters from noisy data.
Gene shaving (Hastie et al., 2000) determines optimal
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small clusters of marker genes that show a large variance
either across all samples or between predefined sample
groups.

In contrast to clustering, linear models rely on the idea
of a combinatorial control, describing the expression
levels of genes as linear functions of common hidden
variables. Ideally, these variables may be related to
distinct biological causes of variation, like regulators
of gene expression, cellular functions, or responses to
experimental treatments. The ‘reduce’ model (Busse-
maker et al., 2001) is based on the occurrence of common
motifs in the genes’ promoter sequences, assuming
that each regulator acts on the genes via a particular
promoter element. Principal Component Analysis (PCA;
Raychaudhuri et al., 2000; Wen et al., 1998), and singular
value decomposition (Alter et al., 2000) decompose the
gene profiles into linear combinations of ‘eigengenes’,
the eigenvectors of the covariance matrix. Holter et al.
(2001) fitted the time-behaviour of eigengenes by a linear
dynamical model. The ‘plaid model’ (Lazzeroni and
Owen, 2000) decomposes the expression matrix into a
sum of submatrices, each related to specific subsets of
genes and samples.

In this paper, we study the application of Independent
Component Analysis (ICA) (see Hyvärinen et al., 2001) to
gene expression data: the variables (corresponding to the
samples) are linearly transformed to so-called ‘indepen-
dent components’ with minimal statistical dependencies
between them. ICA has been used for blind source separa-
tion, denoising, and sparse coding. In the context of gene
expression, we propose to regard the independent compo-
nents as linear influences of unobserved variables, which
we term ‘expression modes’. Each component defines cor-
responding groups of induced and repressed genes. Sam-
ples and genes can be visualized by projecting them to
particular modes or to their influences, respectively. In the
two data sets studied, we found that the dominant modes
could be related to particular biological or experimental
effects. We projected the data to selected modes in order
to highlight these factors and to filter out other sources of
variation. Reducing the number of data dimensions may
be useful to simplify further analysis, while maintaining
the most relevant biological information.

METHODS
Independent component analysis
We consider a data matrix X = (Xil) whose rows corre-
spond to individuals (genes) and whose columns corre-
spond to the variables (cell samples)†. The column means

† In the ICA literature, the problem is usually formulated using the
transposed matrix XT.

have been shifted to zero. The ICA model

Xil =
∑

k

Sik Akl

splits the data matrix into a matrix product X = S A (see
Figure 1), subject to the condition that the statistical de-
pendence between the columns of S be minimized. The
new variables, contained in the columns of S, are called
‘independent components’. The statistical dependence be-
tween variables can be quantified by the mutual informa-
tion I = ∑

k Hk − H , where Hk and H denote the en-
tropy of the kth variable and the total entropy, respectively
(see, for instance, Cover and Thomas, 1991). As the to-
tal entropy H remains constant under linear transforma-
tions, minimizing the mutual information I is equivalent
to minimizing the marginal entropies Hk . Among the dis-
tributions with unit variance, the normal distribution has
the maximal entropy value HN , so ICA determines direc-
tions where the distribution of the data is as non-normal,
and thus as informative, as possible. As a side-effect, ICA
can identify components that are ‘approximately sparse’,
showing an increased fraction of values around zero.

We used the FastICA algorithm, which has been pub-
lished by Hyvärinen (1999). As illustrated in Figure 2, the
matrix A is split into the product A = R C1/2, where the
‘dewhitening matrix’ C1/2 representing the linear corre-
lations is calculated from the data covariance matrix C .
The remaining rotation R is chosen such that the statis-
tical dependence between the independent components is
minimized. In order to avoid the time-consuming calcula-
tion of the Hk , FastICA substitutes the difference HN −Hk
by a ‘contrast function’

JG(k) = |〈G(Sik)〉i − 〈G(ν)〉|.
JG applies some even, non-quadratic function G(·) (we
chose the Gaussian function because of its robustness
properties) to each variable S·k and to a normally dis-
tributed variable ν, returning the absolute difference of
the mean values. R is initialized with random values
and then iteratively adjusted to maximize the JG until a
convergence criterion is met.

Like PCA, ICA removes all linear correlations. By
introducing a non-orthogonal basis, it also takes into
account higher-order dependencies in the data. If the
data lack such higher order structure, for instance if
they are normally distributed, the solution is not unique.
The ICA model leaves some freedom of scaling and
sorting: by convention, the independent components are
scaled to unit variance, while their signs and their order
can be chosen arbitrarily. The number of independent
components equals the number of variables, but it may
be reduced, for instance by removing weak principal
components before applying the ICA, which considerably
decreases the computational costs.
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Fig. 1. Independent Component Analysis. ICA splits the gene expression matrix X (coded by shades of grey) into a matrix product X = S A,
introducing new variables (‘independent components’, contained in the columns of S) with minimal statistical dependencies between them.
The two lower panels show scatterplots between two variables (shaded columns of X ) and between two independent components (shaded
columns of S). The independent components represent the data with respect to a new basis formed by the rows of the ‘mixing matrix’ A. The
first three basis profiles are shown in the panels on the right. The data describe the α factor time-course of the yeast cell cycle experiment
(see below).
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Fig. 2. Reconstructing artificial data using ICA. Left: N data points were produced by (a) choosing independent coordinates (S1, S2) from
the two-sided exponential distribution and (b) shearing the data cloud by a linear transformation A. The centered data are contained in a
N × 2 matrix X . ICA reconstructs the unsheared data up to scaling, permutation, and reflection of the axes, based on the knowledge that
the coordinates were independent. Middle: (c) linear correlations between the two variables are represented by the covariance matrix C : its
eigenvectors point along the axes of an ellipse defined by x C−1 xT = 1. ICA ‘whitens’ the data (d) by stretching them to unit variance along
these directions, thereby removing the linear correlations. Right: the whitened data (e) are rotated to independent components (f) maximizing
the ‘contrast function’ JG , a dissimilarity between their marginal distribution and the normal distribution.
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Interpreting linear models of gene expression
The gene expression profiles (rows of X ) can be regarded
as points in a multidimensional space with dimensions
corresponding to the different samples. A linear model
X = S A represents the data by new variables (the rows
of S) or, alternatively stated, with respect to a new set
of basis vectors (the rows of A). To interpret the linear
decomposition, we propose a model of gene expression
based on the following assumptions:

(1) The sample expression profiles are determined by a
combination of hidden regulatory variables. We call
these variables ‘expression modes’.

(2) The genes’ responses to these variables can be
approximated by linear functions.

Expression mode k is characterized by its profile over
the samples (kth row of A) and by its linear influences
on the genes (kth column of S). If logarithmic data are
used, the linear combination of inputs corresponds to a
multiplicative rather than to an additive processing.

It would be useful to detect modes related to distinct
biological processes involved in gene regulation: direct or
indirect regulators of mRNA synthesis, like transcription
factors or external stimuli, or cellular tasks that require the
activation or repression of cooperating genes, for instance
shock responses or the regulation of metabolic pathways.
Modes might also describe general differences between
individuals or tissue types, or different compositions
of tissue samples. In order to determine biologically
meaningful modes, the statistical assumptions underlying
a linear model should reflect plausible properties of
effective biological regulators.

PCA assumes its first components to capture a maximal
amount of data variance. This constrains the modes, as
well as their influences, to be orthogonal. Although the bi-
ological interpretation of individual principal components
is not obvious, PCA can be expected to separate a sub-
space of biological effects from the subspace of weaker
noise components. The plaid model (Lazzeroni and Owen,
2000) determines modes that are active only in subsets of
the cell samples (sparse A), acting on distinct (but overlap-
ping) groups of genes (sparse S). The ICA model states
that different modes exert independent influences on the
genes. As a consequence, ICA is sensitive to modes whose
influences on the genes follow a ‘supergaussian’ distribu-
tion with large tails and a pronounced peak in the middle.
These modes correspond to regulators which specifically
act on (possibly overlapping) sets of target genes and have
little effect on the others. In cases where the data cloud
contains a few pronounced gene clusters on the surface
and less structure in the central part, the ICA modes will
be attracted by those clusters. Relationships between clus-
tering and ICA have been described by Hyvärinen (1998).

If data sets contain much more samples than genes,
ICA may be applied to the cell sample profiles using the
transposed data matrix XT. In this case, the ICA model
states that the modes themselves assume their values
independently, while the influences might be correlated.
Such expression modes may be interpreted as signals with
optimal coding properties.

RESULTS
We applied ICA to publicly available sets of microarray
data. In the experiments studied, cDNA (reverse-
transcribed mRNA) populations from the sample being
studied and from a reference sample were stained with
different fluorescent dyes and both hybridized to the same
chip. The gene expression matrix X contains the log-ratios
Xik = log2(Rik/Gik) between the red (experiment) and
green (reference) intensities. As the mean values for genes
and samples mainly reflect the experimental procedure,
we shifted them to zero and then replaced the missing
values by zeros. For the independent components, we
adopted the following conventions:

(1) Assuming that some of the components were of bi-
ological significance while others represented noise,
we sorted them in order to discriminate roughly be-
tween those groups. When compared to noise, the
biological components should be more informative,
showing a large contrast JG , and they should also
capture a higher amount JA of the data variance.
With centered data and components scaled to unit
variance, the variance explained by component k is
proportional to JA(k) = ∑

l A2
kl . To take both prop-

erties into account, and without considering a bio-
logical meaning behind the exact order, we sorted
the components according to a linear combination

s(k) = cJ (k)
G /〈JG〉 + (1 − c)J (k)

A /〈JA〉
of both quantities, scaled by their mean values, with
some arbitrary c ∈ [0, 1].

(2) For each component, the sign was chosen such that
the mean influence was higher than the median. Ac-
cordingly, a mode will rather induce than repress
genes, which is of course not more than a conven-
tion: when a mode is downregulated, the genes re-
pressed by it are upregulated.

(3) By setting the gene mean values to zero, we
implicitly shifted the mode mean values to zero as
well, although one could also have shifted the modes
to zero for a chosen reference sample.

For the whole data sets, performing an ICA took about
4 min on a 900 MHz PC, and about 8 s when projecting
the data to the first 10 principal components. The dominant
modes were quite reproducible, whereas their order varied
in some cases.
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Fig. 3. ICA of cell cycle data (Spellman et al., 1998). Left: sorting the 76 independent components. Each component is characterized by
the fraction of the data variance it captures (abscissa) and by the contrast JG (ordinate) measuring the non-normality of its distribution. JG
indicates, among other things, the presence of outliers. The components are connected by lines to indicate their order according to a linear
combination of both quantities. Components with small values on both axes are likely to represent noise. Right: the first 12 independent
components (columns of S). Each panel shows the values of two subsequent components plotted against each other, with the genes represented
by dots. In our interpretation, the components are related to unobserved variables called ‘expression modes’, describing the modes’ linear
influences on the genes. For each component, outliers from the normal distribution (thresholds shown as lines) are regarded as highly induced
or repressed genes.

Yeast cell cycle data
We applied ICA to data from Spellman et al. (1998) who
studied the expression of 6178 Open Reading Frames
(ORFs) during the cell replication cycle in the budding
yeast Saccharomyces cerevisiae. Within separate exper-
iments, cell cultures were synchronized with different
methods: addition of the α mating pheromone, which
arrests cells in G1 phase, blocking of the cell cycle regu-
lators Cdc15 and Cdc28 (Cho et al., 1998), and selection
of small G1 cells. Besides, the effects of two cyclins were
investigated: Cln3 induces the ‘start’ transition from G1
phase to S phase, when budding and DNA synthesis take
place, and Clb2 induces progress through mitosis (M
phase), involving separation of the chromosomes and cell
division.

The data set (http://cellcycle-www.stanford.edu/) con-
tains 77 samples in total, but shifting the gene mean
values to zero confined the data to a 76-dimensional
subspace. We ordered the independent components as
described above (see Figure 3, left panel) with c = 0.5,
putting similar weight on variance and contrast. The first
12 components are shown in the right panel of Figure 3.

For each component k, sets of induced and repressed
genes were determined by the following iterative proce-
dure: the gene with the largest absolute influence value
maxi (|Sik |) was considered as an outlier and excluded un-
til all remaining values were situated within nσ standard
deviations from their median. Thus, each mode defined
two groups of genes that showed a strong positive or nega-
tive response. Thus, we used the components to determine
differentially expressed genes, in analogy to using the log-

ratios between two samples. Setting nσ = 4, we found
2546 genes to be strongly influenced by some mode, while
a number of about 40 would be expected from normally
distributed data. Due to their high contrast JG , the domi-
nant modes defined large sets of target genes, which often
contained subgroups related to particular biological func-
tions, mostly consistent with the mode’s profile over the
samples (see Table 1 for a selection of modes). However,
all sets contained also considerable numbers of genes with
unrelated functions. The genes corresponding to lower-
scoring modes generally did not share any obvious bio-
logical roles.

Cell-cycle behaviour is mainly manifested by the
modes 1, 2, and 4, which show a periodic behaviour
with a slow decay in amplitude, possibly due to desyn-
chronization (see Figure 4). Mode 1, which oscillates
between M and S phase, is induced by Clb2 and repressed
by Cln3, while mode 4 peaks in early G1 and does not
respond in the cyclin experiments. Mode 2 is also active
in G1, but remains rather weak during the first cell cycle
round in the α and cdc28 experiment, and it appears
shifted to M-phase during the elutriation time-course. In
contrast to mode 4, it has a larger influence on metabolic
genes than on essential cell-cycle processes. Mode 3,
which reflects the response to the mating α factor, decays
during the G1 phase after α release. Many modes are
activated specifically in some of the experiments, or even
in single samples. For instance, mode 5 seems to repre-
sent an induced protein production in one of the cdc28
samples and might be filtered out as an experimental
artefact.
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Table 1. Selected modes from the cell cycle data. For each mode, target genes were selected as shown in Figure 2. The modes were characterized according to
functionally related groups among these genes. Some of the mode profiles are described in brackets, with cell-cycle oscillations indicated by a dot. Detailed
information is available on the web

Description Induced functions Repressed functions

1 Mitosis versus replication • M cyclins, mitosis, MCM complex, cytoskeleton, S phase cyclins, DNA replication,
cell wall, stress, mating cascade, H+-transport, histones, spindle pole duplication,
galactose, secreted acid phosphatases bud emergence, cell wall

2 G1 • G1/S cyclins, stress, mating, cell wall, Energy and amino acid
lipid production metabolism

3 Mating response Mating, cell wall, metabolism G2/M and S cyclins, histones,
stress, metabolism

4 Replication/budding G1/S cyclins, MCM, DNA replication/repair, G2/M cyclins, histones,
versus separation • chromatin, subtelomerically encoded genes cell wall

5 Translation Ribosomal, proteins, sugar metabolism Ribosomal

6 Growth Cell wall, sugar RNA processing

7 Sporulation • Sporulation, proteins, metabolism Meiosis-specific

10 (Single cdc15 sample) Meiosis, proteins

11 (Decrease in elutriation experiment) Stress, metabolism, Cu/Fe transport Cyclins

14 Galactose • Galactose metabolism Hexose transport, sugar

15 (• During cdc15, cdc28) Galactose, protein targeting Stress

16 (Rising during cdc15) Mating α type, stress

18 (Single cdc15 sample) Meiosis, proteins

19 Late mating response Mating, meisosis, proteins, metabolism

21 Ribosomes Ribosomes

22 Oxidative/osmotic stress Oxidative/osmotic stress, sugar

23 Ribosomes (falling in elutriation) Ribosomes, translation

24 Stress Stress

25 Methionin • Methionin metabolism Sugar

Alter et al. (2000) reanalyzed the data by applying
singular value decomposition to the separate experiments.
To compare the PCA and ICA approaches, we generated
PCA modes from the data set as a whole (shown in the
web supplement). With both methods, most of the cell-
cycle behaviour is captured by a small number of modes.
However, we found that the separation into oscillatory,
spiky, and noise-like patterns was more distinct with ICA.
Besides, the dominant PCA modes varied during all time-
courses, while various ICA modes seemed to remain
inactive within some of the experiments, which was not
forced by the method itself. In contrast to ICA, PCA could
identify weak components that remain constant within the
four experiments, varying only between them. They may
be related to different experimental conditions, reference
samples, and normalization schemes.

Dimension reduction
Dimension reduction may be useful to compress data
sets before further calculation-intensive study. Assuming
that cell cycle behaviour is sufficiently captured by the
modes 1, 2, and 4, one may omit the remaining modes,
thereby compressing the data from 76 to 3 dimensions.
Such a projection to biologically relevant directions
should improve predictions of cell-cycle regulated genes
from the expression data. In order to test this, we studied
a list of 551 genes that are controlled by known cell-cycle
promoter elements (taken from the web supplement of
Spellman et al., 1998). Scoring all ORFs by the variance
of their expression levels over the samples, we predicted
the npred highest-scoring genes to be contained in the
list. Figure 5 shows the number of successful predictions
as a function of npred, based on the original data as
well as on different kinds of filtered data: projecting the

56



Linear modes of gene expression

− 0.2

− 0.2

− 0.1

− 0.1

0

0.2

M
od

e 
1

0

0.1

M
od

e 
2

0

0.2

M
od

e 
3

0
0.1

M
od

e 
4

0

M
od

e 
5

alpha cdc15 cdc28 elutriation 

0 119 0 290 0 160 0 390 

cyclins 

M/G1 
G1 
S 

G2 
M 

− 0.2

− 0.1

0

0.1

0.2 alpha

M
od

e 
4

cdc15

− 0.2 − 0.1 0 0.1 0.2

− 0.2

− 0.1

0

0.1

0.2 cdc28

Mode 1

M
od

e 
4

− 0.2 − 0.1 0 0.1 0.2

elutriation

Mode 1. 

Fig. 4. Expression mode profiles (rows of A) calculated from the cell cycle experiments. Left: levels of the first 5 modes. The samples
shown on the abscissa represent time-courses following different methods of cell synchronization (mating α factor, cdc15, cdc28, sorting
by elutriation), as well as the activation of cyclins Cln3 and Clb2 (two samples each). The numbers indicate duration in minutes. Cell cycle
phases are indicated in the lower panel. The corresponding sets of target genes (see Figure 2) confirm that modes 1, 2, and 4 are related to
the cell cycle, while the modes 3 and 5 correspond to the mating response and to protein translation, respectively. Right: expression modes 1
and 4, plotted against each other. The four experiments are shown in separate panels. Samples are joined to indicate their time order.

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

regulated genes predicted

re
gu

la
te

d 
ge

ne
s

optimal  
CDC score
IC 1,4   
IC 1,2,4 
PC 3,4,5 
euclidean

Fig. 5. Filtering the expression data using ICA improves a prediction
of cell-cycle regulated genes. We scored the yeast ORFs by
different methods to predict 551 genes controlled by a number of
known cell-cycle promoter elements (see text). The reliability of
each prediction method was assessed by plotting the numbers of
successful predictions versus the number of genes predicted. Upper
dotted line: perfect prediction. Lower solid curve: genes were scored
by the variance of the gene expression profiles. Replacing the gene
profiles by the influence values of cell-cycle-related ICA modes 1, 2,
and 4 (dashed–dotted curve ) or 1 and 4 (dashed curve) improved
the prediction. Projecting the data to the most cell-cycle related
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The ‘aggregate cdc score’ (Spellman et al., 1998) yielded the best
results (upper solid curve).

profiles to the cell-cycle related principal components 3–5
improved the prediction considerably, and replacing the
gene expression profiles by the influence values of the

cell-cycle related ICA modes had an even larger effect.
The best prediction was achieved using the ‘aggregate cdc
score’ (Spellman et al., 1998), which compares the gene
expression profiles to sine and cosine waves and to the
profiles of known cell-cycle regulated genes.

B-cell lymphoma data
We applied ICA to a second data set related to different
cell types rather than to time-courses. Alizadeh et al.
(2000) investigated the expression of 4026 human genes
in 96 samples of normal and malignant lymphocytes. The
‘lymphochip’ used in this study contains clones from
lymphoid cDNA libraries as well as genes related to
immune-response and oncogenesis. The samples included
T-cells, activated blood B-cells, B-cells from the Germinal
Centre (GC), six leukemia cell lines (WSU1, Jurkat,
U937, OCI Ly12, OCI Ly13.2, SUDHL5), and cells
from three types of lymphomas: Follicular Lymphoma
(FL), Chronic Lymphocytic Leukemia (CLL), and Diffuse
Large B-cell Lymphoma (DLBCL). We downloaded the
data from http://llmpp.nih.gov/lymphoma/ and analyzed
them as described above. The cell samples are visualized
in Figure 6 by scatter-plotting the first 12 expression
modes (see also Table 2). We compared the modes to
the gene clusters that had been determined in the original
work using hierarchical clustering. Although the clusters
and modes are not equivalent, as the modes describe
additive effects, we found some relations between them:
modes 2 and 5, which show the highest variance among
the modes, point towards the ‘proliferation’ and ‘lymph
node’ gene clusters , while mode 8 and 12 are related to
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Table 2. The first 12 expression modes inferred from the lymphoma data. Modes are characterized by the cell types in which they are most up- /downregulated
(compare Figure 6) and by functions of their target genes. More information is available on the web

Mode Upregulated in Downregulated in Functions induced Functions repressed

1 B-cell activation Lymph node, tonsil, T-cells, Immunoglobulins,
blood B, CLL, SUDHL6 Jurkat, U937, OCI differentiation

2 Lymph node DLBCL, lymph node, Interferon-induced genes,
tonsil activation, defense

3 Lymph node, tonsil, T-cells, Jurkat, Immunoglobulins
GC U937, OCI

4 MHC T-cells, Jurkat, U937 MHC

5 Proliferation DLCL, cell lines, T-cells, active B Cell cycle Interferon-
GC CLL, tonsil inducible

6 DLCL, GC Immunoglobulins
tonsil, lymph node

7 FL FL Anti-proliferative

8 B versus T-cells CLL, FL Jurkat, OCI, T-cells B receptors T receptors

9 Blood B, T-cells GC, Adhesion, proliferation,
SUDHL6, Jurkat, U937 CLL shock, signaling

10 Blood B, CLL Cell lines B receptors

11 T activation T-cells Active B, FL, CLL T activation, chemokines, Adhesion
T receptors (CD3),
interferon-inducible genes

12 GC GC, FL OCI B activation Homing

the ‘pan B-cell’ and the ‘germinal center B-cell’ cluster,
respectively. The authors of Alizadeh et al. (2000) stated
that genes from ‘T-cell signature’ appearing in DLBCL
samples indicated the presence of T-cells in the biopsies.

Mode 11, which is related to this cluster, may be expected
to describe the contamination with T-cells and might be
filtered out to correct the DLBCL expression patterns for
this particular effect.
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DISCUSSION
As increasing amounts of gene expression data become
available, there is a growing need for visualization tools
that reduce the data to their most relevant aspects. At the
moment, the most widely used method for organizing
and visualizing expression data is clustering, which
determines a (possibly large) number of gene groups,
each showing a particular behaviour across the whole set
of samples. In contrast to that, linear models explicitly
describe a superposition of a smaller number of regulatory
effects: the genes respond to different combinations of
common input variables, and the regulatory functions are
approximated by linear responses. While clustering may
identify groups of genes that respond to particular sets of
variables, it does not represent the combinatorial struc-
ture itself. By projecting the data to smaller subspaces
spanned by ‘interesting’ modes, special aspects of the
coregulation structure become highlighted, while partial
information about all genes and samples is maintained.
Such projections may be useful for visualization, defining
problem-relevant metrics, and systematic denoising and
dimension reduction. Reducing the complexity of gene
regulation to a small number of key variables may also
be a first step towards simple dynamic models of gene
regulation.

How could such effective variables be related to detailed
genetic network models? In a general setting, a cell may
be described as a dynamic system with a large number
N of (mostly unobserved) variables, among them the
measured mRNA levels. The system is constrained to a
submanifold M ⊂ R

N of cell states that can occur in
the experiment studied. In the neighbourhood of some
reference state, this manifold M may be approximated by
a hyperplane MT of low dimensionality q, which can be
parametrized by some set of coordinates. With p samples,
MT needs to have q = p − 1 dimensions at most, but one
may reduce the number of dimensions even further and try
to explain the remaining variation by experimental noise.
The remaining coordinates (‘expression modes’) describe
common variations of the cell variables, for instance a
whole pathway of interacting signaling molecules rather
than a single particular substance. As long as the complete
set of cell variables has not been defined, we cannot
determine how the hyperplane is embedded in the cell-
model space R

N . However, linear models may be used
to define expression modes by their values across the
samples, based on their linear effects on the mRNA levels.
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