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ABSTRACT

Genomics projects have resulted in a flood of
sequence data. Functional annotation currently
relies almost exclusively on inter-species sequence
comparison and is restricted in cases of limited data
from related species and widely divergent sequences
with no known homologs. Here, we demonstrate that
codon composition, a fusion of codon usage bias
and amino acid composition signals, can accurately
discriminate, in the absence of sequence homology
information, cytoplasmic ribosomal protein genes
from all other genes of known function in Saccharo-
myces cerevisiae, Escherichia coli and Mycobacterium
tuberculosis using an implementation of support
vector machines, SVMlight. Analysis of these codon
composition signals is instructive in determining
features that confer individuality to ribosomal
protein genes. Each of the sets of positively charged,
negatively charged and small hydrophobic residues,
as well as codon bias, contribute to their distinctive
codon composition profile. The representation of all
these signals is sensitively detected, combined and
augmented by the SVMs to perform an accurate
classification. Of special mention is an obvious outlier,
yeast gene RPL22B, highly homologous to RPL22A
but employing very different codon usage, perhaps
indicating a non-ribosomal function. Finally, we
propose that codon composition be used in combin-
ation with other attributes in gene/protein classification
by supervised machine learning algorithms.

INTRODUCTION

Our understanding of biology has been greatly influenced by
the numerous whole genome sequencing projects, beginning

with microbial genomes, continuing with the eukaryotic
species Saccharomyces cerevisiae, Caenorhabditis elegans
(worm), Drosophila melanogaster (fruit fly) and Arabidopsis
thaliana (mustard weed) and culminating most recently with
the human and mouse genomes. Others, either on the way or
being contemplated, include the genomes of rat, zebrafish,
puffer fish and non-human primates. Meanwhile, the wide-
spread use of electronic literature, introduction of high
throughput assays for gene expression and other large-scale
projects (for example, mutagenesis screens and phenotyping
projects for the mouse; 1,2) are also vastly increasing the
amount of digital information that is available. Although
researchers still need to practise critical thought, they are now able
to perform data-driven experiments by devising new ways to
handle and isolate appropriate subsets of complex observational
data derived from nature (3).

Genomic data of all types (e.g. sequence information) are of
relatively low value without the incorporation of data obtained
from classical ad hoc experimental approaches. As stand-alone
data, they do not immediately address questions concerning
function, mechanism and regulation, issues of the greatest
interest to biologists. Furthermore, all forms of genomic data
are prone to error, for example, the annotated information of
the function of a gene product inferred by sequence homology.
However, with the advent of both computational capacity and
underlying mathematical logic used to make inferences, statis-
tical learning theory (4), typically the support vector machine
(SVM) (4,5), is now in a phase of success characteristic of an
observational stage of science and is now capable of providing
additional insight into, for instance, gene expression and function
(6). The SVM is a type of supervised machine learning algorithm
that can be integrated with a priori knowledge based on
investigation and knowledge accumulated in each domain of
science, such as the Gene Ontology (GO) system (7). Here, all
genes of known function have been organized into a directed
acyclic graph (DAG) according to molecular function, localiza-
tion and biological processes their products are involved in. By
using a dynamic, controlled vocabulary applicable to all
eukaryotes, the GO system is rapidly gaining popularity and
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has been applied to the S.cerevisiae, fruit fly, mouse and worm
genomes to build a knowledge database of the roles of genes and
proteins in cells. Such a priori knowledge can be easily
exploited for the careful choice of genomic datasets; SVMs trained
on these datasets usually yield a robust classification in practice.

In this paper, we have investigated the ability of SVMs to
discriminate ribosomal protein coding genes (rp genes) from
all other genes of known function based on their codon com-
position in Escherichia coli, Mycobacterium tuberculosis and
S.cerevisiae. Codon composition is inherently the fusion of
both codon usage bias and amino acid composition signals. It
is well recognized that there is a high correlation between
codon bias and gene expression levels, which in turn is related
to function and/or similarity in regulation. Amino acid
composition is related to the physico-chemical properties of
the protein and, hence, perhaps ultimately to its function. Here
we demonstrate that rp genes exhibit markedly different
conserved codon composition patterns from other genes in
E.coli, M.tuberculosis and S.cerevisiae. We also show that a
careful analysis of the classification by the SVMs can provide
valuable insights into the specific features that confer individu-
ality to this set of genes. Finally, based on our results, we
propose that codon composition is a potentially efficacious
attribute that can be used in combination with other attributes
in the classifying of genes/proteins by supervised machine
learning algorithms.

MATERIALS AND METHODS

Sequence data

The whole genomes of E.coli K-12 (8) and M.tuberculosis
CDC1551 and full-length sequences of the 16 S.cerevisiae
chromosomes along with gene annotations were retrieved from
the Genome division of GenBank. All coding sequences (CDS)
and their translated sequences were checked locally with
respect to the corresponding translation tables (translation
table 11 for E.coli and M.tuberculosis and the standard table
for S.cerevisiae) to avoid annotation errors present in the
original datasets. There were 4289 putative protein coding
genes in E.coli, 4187 in M.tuberculosis and 6312 in S.cerevisiae.

Codon composition and codon usage

Each protein coding gene sequence (excluding initiation and
stop codons) was represented by a 61-dimensional vector with
respect to the 61 sense codons,

ck = (ck
ij), k = 1, 2, …, K; i = 1, 2, …, 20; j = 1, …, ni

where, ck is the vector representing the kth protein coding gene
(out of a total of K genes) and ni is the number of synonymous
codons (j represents the jth synonymous codon) of the ith
amino acid (of the possible 20). In our study, K = 4289 for
E.coli, 4187 for M.tuberculosis and 6312 for S.cerevisiae (see
above). Based on the dataset of 61-dimensional sense codon
vectors, the codon composition of each gene was calculated as
the frequency of each codon of the gene. Codon bias (of the kth
gene), measured by its relative synonymous codon usage
(RSCU; 9), was calculated thus:

Training and test datasets for E.coli, M.tuberculosis and
S.cerevisiae

Ribosomal protein genes were extracted from the 4289 genes
of E.coli and the 4187 genes of M.tuberculosis by a keyword
search of the annotation field of the CDS in the feature table of
the complete genome sequences. In E.coli, the 55 rp genes
obtained (Table 1) were taken as positive training examples for
the SVMs. We felt that 55 genes were too few to be split into
training and testing datasets, so we used this same set for
training and testing in E.coli. The rest of the genes were split
into two groups. One group consisted of 1432 genes of
unknown function whose products were annotated as ‘hypo-
thetical’, ‘unclassified’, ‘putative’ or ‘similar to…’. The other
group comprised 2802 genes whose functions are well known.
This group was further subdivided randomly into two groups
that were used as the negative training dataset (1408 genes) and
the negative test dataset (1394 genes), respectively. Similarly, in
M.tuberculosis, the 56 genes annotated as rp genes (Table 1)
were used as the positive training and testing datasets. Of the
remaining protein coding genes the 2146 with known function
were randomly and equally divided into the negative training
and testing datasets. The trained model was also applied on the
set of 1905 genes of unknown function.

Similarly, using the GO counterpart of the classification of
molecular function of genes of the Saccharomyces Genome
Database (SGD) (http://www.geneontology.org/gene_association.
sgd), the 6312 genes of S.cerevisiae were classed as genes of
unknown function (3039 genes). Among the genes of known
function, the 137 cytoplasmic rp genes (10,11) were divided
into two groups. One of them included 78 non-duplicated genes
and was used as the positive training dataset; the other 59
duplicated genes were used as the positive test dataset. Also,
genes coding for histones (9) and enzymes (1041) were chosen
as the negative training dataset; the rest of the genes of known
function (2086) were taken as the negative test dataset.

Support vector machines

In theory, a simple and intuitive way to build a binary classifier
is to construct a hyperplane, which separates class members
from non-members. Unfortunately, most real world problems
are not linearly separable based on the collected data. One
solution is to map the data into higher dimensional space
(feature space) and define a separating hyperplane there.
However, this usually invokes both computational and
learning algorithmic costs, which SVMs elegantly bypass
(4,5). SVMs avoid over-fitting by choosing the maximum
(soft) margin separating hyperplane in the feature space and
reduce computational complexity by using kernel functions
which connect input space and feature space directly for simi-
larity comparison computing. Kernel functions allow one to
work in feature space without explicitly computing all
elements. Though an SVM is essentially a binary classifier, it
can also deal with multi-class classification problems (4,12).
Success with SVMs requires careful attention to two key
aspects: the kernel function and the magnitude of the trade-off
between accuracy and generalization.

In this study, we used SVMlight v.3.5 (13; http://ais.gmd.de/
~thorsten/svm_light/) for SVM data training and classifying.
SVMlight is an implementation of SVMs in C. Its main features
include a fast optimization algorithm, efficient computation of
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leave-one-out estimates and the capacity to handle many
thousands of support vectors and several tens of thousands of
training examples, as well as the sparse vector representation
of input objects that are either trained or classified. Different
kernel functions were applied in our experiments, including
linear function, polynomial function and radial basis function
(RBF). We found that the RBF along with well-chosen para-
meters (100 ≤ γ ≤ 120; we usually chose 110) performed best
compared to the other two types of kernel function, implying
that our classification problem was highly non-linear.

Measurements of SVM performance

Performance of the SVMs was measured using the indices:
cost, cost savings, error rate, recall and precision. Cost is
defined as C = FP + (2 × FN), where FP is the number of false
positives for a SVM classifier and FN is the number of false
negatives. We weighted false negatives more heavily than false
positives because, in our datasets, the number of positive
examples is much smaller than the number of negative examples.
Cost savings is defined as S = C – C′, where C′ is the cost of the
null learning procedure that classifies all test examples as
negatives. Error rate, recall and precision are determined thus:

error rate = (FP + FN)/(FP + FN + TP + TN)
recall = TP/(TP + FN)
precision = TP/(TP + FP)

where TP and TN are the number of true positives and true
negatives, respectively.

RESULTS

Functional classification based on codon composition

The codon composition of each gene in E.coli, M.tuberculosis
and S.cerevisiae was represented as a vector in 61-dimensional
space (considering only sense codons). SVMs were trained on
the positive and negative training datasets from the three
organisms (see Materials and Methods) by using the leave-
one-out cross-validation method. To evaluate the perform-
ances of the trained models, each of them was applied to
training and test datasets. Evaluation on the training dataset is
important as the model can find ‘outliers’, elements that may
have been wrongly assigned to the dataset in the first place.
The results (Table 2) indicate that the SVM learning technique
was able to accurately recognize rp genes, indicating that this
set of genes has a unique codon composition profile compared
with all other functional classes of genes. The classification
was quite accurate in E.coli and M.tuberculosis: none of the
false positives and negatives obtained had significant decision
values, except for MT1666 (training dataset, –1.17; testing
dataset, –1.13) and MT2958 (training dataset, –0.8; testing dataset,
–0.76) (Table 2). (Throughout this analysis, false positives and
false negatives were considered significant if they had decision
values >0.2 and <–0.2, respectively.) Even in S.cerevisiae, the
only significant false negatives obtained were RPP0 (training
dataset; –0.35; discussed below), RPL22B (test dataset; –1.37;
discussed below) and RPS22B (test dataset; –0.28); the significant
false positives were TEF1 (0.27) and TEF2 (0.26) (Table 2). It

Table 1. The list of ribosomal protein coding genes in E.coli and S.cerevisiae

aMost authors state that there are 34 r proteins in the large subunit and 21 in the small subunit of E.coli. However, according to annotation information extracted
from GenBank records there are 33 and 22 r proteins in the large and small subunits, respectively.

Organism Subunit Length Genes

E.coli Large subunit 33a (34) rpmF, rplT, rpmI, rplY, rplS, rpmA, rplU, rplM, rplQ, rpmJ, rplO, rpmD, rplR, rplF, rplE, rplX, rplN,
rpmC, rplP, rplV, rplB, rplW, rplD, rplC, rpmG, rpmB, rpmH, rpmE, rplK, rplA, rplJ, rplL, rplI

Small subunit 22a (21) rpsT, rpsB, rpsA, rpsV, rpsP, rpsU, rpsO, rpsI, rpsD, rpsK, rpsM, rpsE, rpsH, rpsN, rpsQ, rpsC, rpsS,
rpsJ, rpsG, rpsL, rpsF, rpsR

M.tuberculosis
(CDC1551)

Large subunit 34 MT0669.1, MT0680, MT0669, MT3548, MT0741, MT0748, MT0735, MT3563, MT0745, MT2972,
MT0731, MT1681, MT2518, MT0733, MT0730, MT0741.1, MT2517, MT3052.2, MT2118, MT0114,
MT0736, MT0728, MT0747, MT1337, MT2117.1, MT0663, MT4041.1, MT1680, MT3567.1,
MT0729, MT0742, MT0744, MT0681, MT0062

Small subunit 22 MT1666, MT0727, MT3566, MT0710, MT3567, MT2117, MT0742.1, MT2855, MT2977, MT0737,
MT2116, MT0061, MT0732, MT2958, MT2485, MT0734, MT3565, MT0746, MT0059, MT0711,
MT0743, MT3547

S.cerevisiae Large subunit 46 RPP0, RPP1A, RPP2A, RPL1A, RPL2A, RPL3, RPL4A, RPL5, RPL6A, RPL7A, RPL8A, RPL9A,
RPL10, RPL11A, RPL12A, RPL13A, RPL14A, RPL15A, RPL16A, RPL17A, RPL18A, RPL19A,
RPL20A, RPL21A, RPL22A, RPL23A, RPL24A, RPL25, RPL26A, RPL27A, RPL28, RPL29,
RPL30, RPL31A, RPL32, RPL33A, RPL34A, RPL35A, RPL36A, RPL37A, RPL38, RPL39,
RPL40A, RPL41A, RPL42A, RPL43A

35 duplicates RPP1B, RPP2B, RPL1B, RPL2B, RPL4B, RPL6B, RPL7B, RPL8B, RPL9B, RPL11B, RPL12B,
RPL13B, RPL14B, RPL15B, RPL16B, RPL17B, RPL18B, RPL19B, RPL20B, RPL21B, RPL22B,
RPL23B, RPL24B, RPL26B, RPL27B, RPL31B, RPL33B, RPL34B, RPL35B, RPL36B, RPL37B,
RPL40B, RPL41B, RPL42B, RPL43B

Small subunit 32 RPS0A, RPS1A, RPS2, RPS3, RPS4A, RPS5, RPS6A, RPS7A, RPS8A, RPS9A, RPS10A, RPS11A,
RPS12, RPS13, RPS14A, RPS15, RPS16A, RPS17A, RPS18A, RPS19A, RPS20, RPS21A, RPS22A,
RPS23A, RPS24A, RPS25A, RPS26A, RPS27A, RPS28A, RPS29A, RPS30A, RPS31

24 duplicates RPS0B, RPS1B, RPS4B, RPS6B, RPS7B, RPS8B, RPS9B, RPS10B, RPS11B, RPS14B, RPS16B,
RPS17B, RPS18B, RPS19B, RPS21B, RPS22B, RPS23B, RPS24B, RPS25B, RPS26B, RPS27B,
RPS28B, RPS29B, RPS30B
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is interesting to note that TEF1 and TEF2 encode an identical
protein, the translation elongation factor eEF1α A chain,
which, like ribosomal proteins, is part of the translation
machinery of the cell. The performances of the SVM on E.coli,
M.tuberculosis and S.cerevisiae were 98.1, 95.5 and 88.4% (on
the training datasets) and 91.3, 94.5 and 87.5% (on the testing
datasets), respectively (Table 2). As mentioned earlier, the
information contained in codon composition is representative
of both codon bias and amino acid composition. It is therefore
implicit in our finding that ribosomal proteins, as a class, have
very similar amino acid compositions. To test if this was a
result of homology among ribosomal proteins, we performed a
ClustalW (14) multiple sequence alignment of all the ribo-
somal proteins and examined the output for homology. We
found no significant homology across the ribosomal proteins
(data not shown); it is fascinating that despite this, ribosomal
proteins have similar amino acid compositions. We were
therefore interested to understand the physiological implications
of this finding and also to determine the relative contribution
of amino acid composition and codon bias to the uniqueness of
the codon composition of rp genes.

The contribution of amino acid composition

At the outset we compared the amino acid composition of
ribosomal (cytoplasmic ribosomal in S.cerevisiae) and non-
ribosomal proteins from the three organisms. There is a
marked enrichment in basic amino acids (Lys and Arg) and
small, hydrophobic amino acids (Ala, Val and Gly), as well as
significant depletion in the negatively charged amino acids Glu
and Asp (in S.cerevisiae), in ribosomal proteins (Fig. 1). To
test the contribution of this skewed amino acid composition on
the SVM classification we trained models in which the input
vectors of the examples were only based on the protein’s
amino acid composition. The accuracies of these models,
understandably, were not as good as those trained based on
codon usage composition (Table 3). Furthermore, in the three
organisms, the performances of all the models decreased due to
more false negatives with moderately high values of the
decision function. For instance, in E.coli, rpsB (decision value
–1.18), rpsA (–0.61), rpsF (–0.49), rpsO (–0.43), rpsJ (–0.36),

rpmC (–0.32), rplK (–0.30) and rplD (–0.21) were confidently
classified as non-rp genes (Table 3A). In S.cerevisiae, HHT1
and HHT2 (both of which code for the identical protein
histone H3) were misclassified as rp genes (both with decision
value 0.33) and rp genes RPP0 (–0.87), RPL1A (–0.49), RPL5
(–0.49), RPL30 (–0.43), RPL27A (–0.31), RPL22A (–0.27)
and RPS0A (–0.22) were not recognized, with decision values
<–0.2 (Table 3B). Hence, while amino acid composition does
contribute to the segregation of ribosomal proteins by SVMs, it
is not the sole discriminator.

We then determined if the uniqueness of ribosomal proteins
was due to their abundance of basic or small hydrophobic
amino acids. The mapping of conserved amino acid residues
onto the structure of the ribosome has revealed that these
exposed charged residues frequently form surface patches that

Table 2. The performance of support vector machines

SVMs were able to recognize cytoplasmic rp genes in both S.cerevisiae and E.coli with high precision and recall. Further, although false positives are
scored in the S.cerevisiae and E.coli datasets, the decision values are very low. FP is the number of false positives predicted by the SVM, FN is the
number of false negatives, TP is the number of true positives and TN is the number of true negatives, respectively. Savings is a method to measure the
performance of SVMs. The exact definition and meaning of each of these indices in the table is defined in Materials and Methods.

Dataset FP FN TP TN Savings Error
(%)

Recall
(%)

Precision
(%)

Performance Significant FPs
(>0.2)

Significant FNs (<–0.2)

E.coli training 0 5 50 1408 100 0.3 90.9 100 95.5

E.coli test 1 5 50 1393 99 0.4 90.9 98 94.5

M.tuberculosis
training

0 13 43 1073 82 1.6 76.8 100 88.4 MT1666 (–1.1650)
MT2958 (–0.8045)

M.tuberculosis
test

0 14 42 1059 84 1.3 75 100 87.5 MT1666 (–1.1333)
MT2958 (–0.7572)

S.cerevisiae
training

2 1 77 1048 152 0.3 98.7 97.5 98.1 RPP0 (–0.3510)

S.cerevisiae
test

3 7 52 2083 101 0.5 88.1 94.5 91.3 TEF1 (0.2676)
TEF2 (0.2628)

RPL22B (–1.3718)
RPS22B (–0.2846)

Figure 1. A comparison of amino acid composition between cytoplasmic
ribosomal proteins (red) and all known function proteins (black) in S.cerevisiae.
(A) Average compositions with their standard deviations. (B) The difference in
composition between cytoplasmic ribosomal proteins and all known function
proteins. Ribosomal proteins have a much higher frequency of Arg, Lys, Ala,
Val and Gly residues, but fewer Asp and Ser. Similar trends were observed in
E.coli and M.tuberculosis.
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reflect RNA-binding sites (15). It is therefore probable that these
residues (at least Arg and Lys) may be present more frequently
in ribosomal proteins than in most of the other functional
groups. Accordingly, we omitted Arg and Lys and retrained
the SVMs on codon composition. On the training sets one
significant false negative was obtained for E.coli (rpsH, –0.63;
Table 3A); in S.cerevisiae, RPS9A (–0.68), RPL11A (–0.42)
and RPL12A (–0.27) were significant false negatives
(Table 3B). On the E.coli test dataset, elongation factor Ts
gene tsf (0.23) and triosephosphate isomerase gene tpiA (0.22)
were significant false positives; rpsH (–0.63) was a confident
false negative. Interestingly, the elongation factor Ts is also
part of the translation machinery of the cell and is found just
257 nt downstream (3′) of rpsB. On the S.cerevisiae test
dataset, SNU13 (0.31), a component of the U4/U6.U5 snRNP
which is involved in pre-mRNA splicing, was a significant
false positive; RPL22B (–1.10), RPS22B (–0.56) and RPL11B
(–0.44) were significant false negatives. Overall, the number of
false negatives in E.coli, M.tuberculosis (data not shown) and
S.cerevisiae was greater than that obtained with SVMs trained
on the complete codon composition.

Similar experiments were conducted, training SVMs on
codon composition excluding the amino acid sets {Ala, Val,
Gly} and {Asp, Glu} (Tables 3 and 4). It is worth noting that in

all instances the SVMs failed to recall gene RPP0 (coding for
an acidic ribosomal protein containing an unusually low
number of basic residues) except when trained excluding {Lys,
Arg} (Table 3). Interestingly, in S.cerevisiae, SVMs trained
excluding {Ala, Val, Gly} confidently predicted genes HHT1
(histone H3) and HHF1 (histone H4) as cytoplasmic rp genes
on the training dataset (Table 3B). This indicates that the {Ala,
Val, Gly} content in histones and rp genes differs sufficiently to
help the SVMs discriminate between them. On the S.cerevisiae
test dataset, NOP10, a nucleolar rRNA processing protein, and
TEF2 were significant false positives when {Ala, Val, Gly}
were excluded, and STM1 (whose product has affinity for
quadruplex nucleic acids) and TEF1 when {Asp, Glu} were
omitted (Table 4). Similarly, on the E.coli test dataset, when
{Asp, Glu} were omitted hupB (encoding the β subunit of the
DNA-binding histone-like protein HU) was recognized (Table 4).
It is important to note that all the above falsely predicted genes
are involved in binding to nucleic acids, similar to ribosomal
proteins. Hence, what sets cytoplasmic ribosomal proteins
apart from them is the significant contribution to their distinctive
codon composition profile from the positively charged,
negatively charged and small hydrophobic residues. This
strongly suggests the importance of these sets of residues in the
unique functionality of the ribosome.

Table 3. A comparison of SVM performance using codon composition, amino acid composition alone and codon composition excluding {K, R}, {A, V, G} and
{D, E} on the training datasets

The upper half of the table represents E.coli training datasets (A), the lower half the S.cerevisiae training datasets (B). Training using amino acid composition
alone resulted in the prediction of more false negatives and false positives with higher decision values. Each of the sets of amino acids (that were excluded)
contributed to performance in classification. Results here are similar to those obtained with M.tuberculosis (data not shown). Only top two values for the last two
columns are listed due to space limitation.

Dataset FP FN TP TN Savings Error
(%)

Recall
(%)

Precision
(%)

Performance Significant FPs
(>0.2)

Significant FNs
(<–0.2)

(A)

Codon
composition

0 5 50 1408 100 0.3 90.9 100 95.455

Amino acid
composition

0 15 40 1408 80 1 72.7 100 86.364 rpsB (–1.1785)
rpsA (–0.6130)

Codon
composition
excluding

KR 1 10 45 1407 89 0.8 81.8 97.8 89.822 rpsH (–0.6287)

AVG 0 11 44 1408 88 0.8 80 100 90 rpsF (–0.4867)
rpsA (–0.4414)

DE 0 2 53 1408 106 0.1 96.4 100 98.182

(B)

Codon
composition

2 1 77 1048 152 0.3 98.7 97.5 98.093 RPP0 (–0.3510)

Amino acid
composition

3 12 66 1047 129 1.3 84.6 95.7 90.134 HHT1 (0.3352)
HHT2 (0.3352)

RPP0 (–0.8666)
RPL1A (–0.4939)

Codon
composition
excluding

KR 1 5 73 1049 145 0.5 93.6 98.6 96.119 RPS9A (–0.6761)
RPL11A (–0.4220)

AVG 5 3 75 1045 145 0.7 96.2 93.8 94.952 HHT1 (0.7299)
HHF1 (0.2936)

RPP0 (–0.8073)
RPS0A (–0.2215)

DE 2 2 76 1048 150 0.4 97.4 97.4 97.436 GPM1 (0.2917) RPP0 (–0.5199)
RPP1A (–0.3181)
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The contribution of codon bias

To determine the contribution of the codon bias signal to the
ability of SVMs to distinguish cytoplasmic ribosomal proteins
from all others, we used RCSU data (see Materials and
Methods for details) alone as the learning attributes for the
SVMs. However, none of the SVMs were able to discriminate
ribosomal protein genes, regardless of the parameters that were
specified (data not shown).

It is well known that highly expressed genes have a highly
biased codon usage in order to maximize efficiency and accuracy
of translation in bacteria and unicellular eukaryotes (16).
Although the level of expression is unknown for all genes in
the genome, genes such as ribosomal proteins, elongation
factors and RNA polymerase subunits are known to be highly
expressed in all bacterial species analyzed so far. For example,
in S.cerevisiae, at least 40 ribosomes must be made every
second with a 90 min generation time (17). Further, it has also
been shown earlier that ribosomal protein genes have a highly
biased codon usage (10,18). Taken together, we conclude that
with our representation in the SVMs, the mixture of both
amino acid composition and codon bias signals were detected
well, combined and the fused signals augmented to perform
accurate classification.

DISCUSSION

The uniqueness of ribosomal proteins

Ribosomal proteins have been shown to be unique among
cellular proteins in E.coli, M.tuberculosis and S.cerevisiae in
terms of their codon composition (see Results; 10,18). As
already emphasized, this implies that they have a unique amino
acid composition as well as codon bias. It is interesting to
speculate as to what the physiological implications of this may be.

The ribosome is a pivotal molecular machine in the cell
because it synthesizes all proteins by the execution of two main
functions: decoding the genetic message and the formation of
peptide bonds. During the past year, significant insight has
been gained into structural, functional and mechanistic aspects

of the ribosome, based to a large extent on the availability of
3-dimensional structures of the ribosome and parts thereof (for
reviews see 19–21). However, according to our current under-
standing, the primary function of ribosomal proteins seems
only to be as a stabilizer of the highly compact rRNA structure
to guarantee the peptidyltransferase activity based on catalysis
by RNA (22), despite extra-ribosomal functions of ribosomal
proteins having been described (23). From the 3-dimensional
structure of the ribosome it is obvious that the protein–rRNA
contacts are far greater than expected from earlier in vitro
studies with isolated proteins and RNAs (20). This kind of
intimacy between negatively charged nucleic acids and
proteins dictates that ribosomal proteins possess a high proportion
of basic residues, a unique requirement they perhaps share only
with proteins that stabilize chromatin, such as histones. Hence
it is likely that the high proportion of positively charged amino
acids (Lys and Arg) and the relative depletion of negatively
charged amino acids (Glu and Asp) are sensed by the SVMs to
be significant discriminators of ribosomal proteins from the
rest of the cellular proteins. The amino acid composition
profile of histones is very similar to that of ribosomal proteins:
there is a high proportion of Lys, Arg, Ala and Gly residues
and significantly fewer Asp residues than other cellular
proteins (Fig. 2A). While the presence of a high proportion of
positively charged amino acids has a physiological explan-
ation, what about the large number of small hydrophobic
amino acids, notably alanine? It has recently been shown that
highly expressed proteins in S.cerevisiae are enriched in
alanine (24). Hence, the enrichment of alanine is likely linked
to the high expression of ribosomal genes. Therefore, the
skewed amino acid composition of ribosomal proteins, despite
the lack of sequence homology among themselves, is probably
vital to the structural and functional integrity of the ribosome.
It would hence be highly conserved throughout all life forms,
as the near universality of the genetic code implies.

The high expression level of ribosomal proteins has been
alluded to. It is a well known fact that synonymous codon
usage in various genomes is non-random. The occurrence of
codons in a gene strongly correlates with the relative

Table 4. A comparison of SVM performance using codon composition excluding {K, R}, {A, V, G} and {D, E} on the test datasets in S.cerevisiae and E.coli

Results here were similar to those obtained with the training datasets (Table 3). The overall performance was similar to M.tuberculosis (data not shown).

Dataset FP FN TP TN Savings Error
(%)

Recall
(%)

Precision
(%)

Performance Significant FPs
(>0.2)

Significant FNs
(<–0.2)

E.coli codon
composition
excluding

KR 3 10 45 1391 87 0.9 81.8 93.8 87.784 tsf (0.2253)
tpiA (0.2232)

rpsH (–0.6287)

AVG 1 11 44 1393 87 0.8 80 97.8 88.889 rpsF (–0.4867)
rpsA (–0.4414)

DE 3 2 53 1391 103 0.3 96.4 94.6 95.503 hupB (0.2070)

S.cerevisiae
codon
composition
excluding

KR 6 9 50 2080 94 0.7 84.7 89.3 87.016 SNU13 (0.3056) RPL22B (–1.1006)
RPS22B (–0.5589)

AVG 7 8 51 2079 95 0.7 86.4 87.9 87.186 NOP10 (0.3352)
TEF2 (0.2264)

RPL22B (–1.7212)
RPS22B (–0.7575)

DE 4 4 55 2082 106 0.4 93.2 93.2 93.22 STM1 (0.4306)
TEF1 (0.2901)

RPL22B (–1.3539)
RPS22B (–0.4144)



Nucleic Acids Research, 2002, Vol. 30, No. 11 2605

abundance of their respective tRNA pools in many species.
Furthermore, there is a clear positive correlation between
codon usage and gene expression level in E.coli and S.cerevisiae
(25–27). Consistent with this trend, most of the ribosomal
protein coding genes we investigated here use significantly
biased synonymous codons to code corresponding amino
acids. For example, these genes have a high codon adaptation
index (CAI) with values usually from 0.6 to 0.9 in S.cerevisiae
(10). The preference for a major codon, i.e. the binding of a
relatively abundant tRNA species to the ribosome, has a direct
positive impact on translational efficacy and accuracy for
highly expressed genes (16,28,29). Hence the strong codon
bias, in addition to the high proportion of alanine residues, is
likely linked to high expression levels of ribosomal genes,
although perhaps the former attribute is what discriminates
ribosomal genes from histone genes (Fig. 2). In addition, the
frequency of occurrence of Ser, Val, Ile and Leu in histones is
significantly different from that in cytoplasmic ribosomal
proteins and matches more closely the average frequency in all
genes of known function in S.cerevisiae (Fig. 2A).

Lessons learnt from machine learning

As mentioned earlier, the rationale behind choosing codon
composition as a classifying attribute was because it is linked
to the physico-chemical properties of the protein and could
perhaps have functional implications (see Introduction). The

SVMs were able to accurately separate ribosomal genes from
non-ribosomal genes. Analysis of the signals that the SVMs
perceived provided data on this class of proteins that permitted
biochemical interpretation, with the benefit of a priori infor-
mation (see above). Further, as a result of our experiments some
interesting data emerged. The S.cerevisiae gene RPL22B (a
duplicate of the RPL22A gene), encoding ribosomal protein
RPL22B, was misclassified by the SVMs as a non-ribosomal
protein coding gene with a very high decision value (–1.4;
Table 2). We determined the codon compositions of these two
genes (Fig. 3A). Interestingly, though these two genes share
high identity (84.4%) at the amino acid sequence level
(Fig. 3B), they employ a very different codon usage pattern.
The codon usage bias of RPL22B is quite low (CAI = 0.29)
while that of RPL22A is much higher (CAI = 0.86) (10). Since
codon bias is strongly linked to expression level in S.cerevisiae
(25–27), this would indicate that these two genes probably
have very different expression profiles. Microarray expression
data determined at 17 different time points of the yeast mitotic
cycle in synchronized cells (30) reveals that RPL22A is
expressed on average 4.32 ± 0.70-fold higher than RPL22B.
This leads us to hypothesize that RPL22B may not be a
bona fide ribosomal protein coding gene, but might have a
very different function from RPL22A.

The multiplicity of function of genes (ribosomal protein or
otherwise) may pose a wider problem in the functional

Figure 2. (A) A comparison of the amino acid composition of histone coding genes, cytoplasmic rp genes and all known function genes in S.cerevisiae. The amino
acids that contribute to the discrimination of cytoplasmic ribosomal proteins from histones are mainly Ser and Val. (B) A comparison of the average codon
composition of histone genes with cytoplasmic ribosomal protein genes. There is a significant difference in use of the codons GCC, GGT, GTT, TCT, etc., indicating
that, in addition to amino acid composition, codon usage in histones also differs from that of cytoplasmic ribosomal proteins.
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classification of genes. Although they are species-related, we
argue that the high conservation of structure and function of
ribosomal proteins would enable us to accurately identify them
based on codon composition in multicellular organisms such as
D.melanogaster, rat and human. However, preliminary results
indicate that though there are conserved patterns of codon
composition in D.melanogaster (K.Lin, Y.Kuang, J.S.Joseph
and P.R.Kolatkar, unpublished results), the accuracy of
discrimination of ribosomal genes is lower. We speculate that
cytoplasmic ribosomal proteins in these organisms may be
involved in multiple functions (23) and may hence possess less
obvious similarities as a class at the codon composition level.
There is some precedence for this: we found that the MT1666
gene in M.tuberculosis and the rpsA gene in E.coli, both
encoding their respective 30S ribosomal subunit protein S1,
were more likely to be classified as non-ribosomal protein
coding genes, with decision values of –1.17 (Table 2) and –0.12
(data not shown), respectively. It is known that, at least in
E.coli, S1 is also involved in extra-ribosomal functions (21).

Codon composition as a classifying attribute

The proof of the efficacy of a classifying attribute is its ability
to accurately predict the role of genes of unknown function.
Therefore, we attempted to identify ribosomal genes in the
datasets consisting of genes of unknown function from E.coli,
M.tuberculosis and S.cerevisiae. We were aware, of course,
that due to their crucial roles, most (if not all) ribosomal
proteins and their genes in these organisms would already have
been investigated at the genetic, biochemical, genomic and
structural levels. It would hence be unlikely that we would
identify a hitherto unknown ribosomal gene. Not surprisingly,
we did not find any new candidates among them. However, the
method that we have described in this paper may have the
potential to be used to predict ribosomal genes in divergent

genomes where sequence homology alone may not be
sufficient to identify them all.

More importantly, we have demonstrated here that codon
composition has strong potential to be used as an attribute in
the functional classification of genes. Codon usage alone
has been earlier used in the prediction (using factorial
component analysis) of the location of ribosomal proteins and
aminoacyl-tRNA synthetases in eukaryotic cells (31).
However, the segregation of genes into functional classes by
purely computational means will realistically necessitate the
employment of an array of complementary attributes rather
than a single one. For example, the promoters of ribosomal
protein genes have a characteristic architecture (for a review
see 32) that has been exploited for their classification. As better
supervised learning methods in analyzing gene expression
profiles, especially methods derived from statistical learning
theories (4), emerge, these can be combined with the knowledge
obtained from better structured gene functional taxonomies
(for example the GO system; 7) and various other data sources,
including the published literature, DNA and protein sequence
databases, gene expression data, 3-dimensional structural data,
metabolic pathways and localization information of gene
products. These methods, especially the application of SVMs
to the increasing a priori knowledge, will become more and
more important (33,34; and references therein) in the post-
genome era. The data presented in this paper strongly suggests
that machine learning theories, especially supervised methods,
could provide the best initial approaches to characterizing and
assigning gene function in functional genomics.
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