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Support Vector Machines (SVMs) are used to estimate aqueous solubility of organic compounds. A SVM
equipped with a Tanimoto similarity kernel estimates solubility with accuracy comparable to results from
other reported methods where the same data sets have been studied. Complete cross-validation on a diverse
data set resulted in a root-mean-squared error) 0.62 andR2 ) 0.88. The data input to the machine is in the
form of molecular fingerprints. No physical parameters are explicitly involved in calculations.

INTRODUCTION

The aqueous solubility of compounds is one of the most
important factors determining their usefulness as drugs.
Insufficient solubility is a common reason for poor bioavail-
ability of drug candidates. Computational methods are often
applied to virtual libraries early in the drug development
process to screen out sublibraries based on estimated physical
properties. These methods must be computationally efficient
and reliable. Several methods have been proposed for the
estimation of aqueous solubility, and most of them fall into
two categories: Methods of the first type calculate logS as
a sum of contributions from functional groups or fragments.1-6

These procedures often employ various correction terms to
account for pairwise group interactions.2-6 Methods of the
second type use regression of experimental or nonexperi-
mental molecular parameters.7-11 Some nonexperimental
parameters can be derived from the molecular structure with
low cost, such as topological indexes or count of hydrogen
bond donors. These are often called 2D-descriptors or fast
descriptors. Others parameters require more calculation, such
as those from ab initio calculations. Commonly used regres-
sion methods are partial least squares, multiple linear
regression, and artificial neural networks. Methods which
include experimental molecular parameters are of no interest
for virtual screening.

Support Vector Machines (SVMs) are computer programs
for regression and classification. These were first applied to
classification problems;12 the methodology for regression was
developed later. In recent years, SVM methods have suc-
cessfully been applied to a range of pattern-recognition
problems. The potential of SVMs for use in QSAR and
QSPR has been discussed.13,14

In this paper, we report the application of Support Vector
Regression for the estimation of aqueous solubility. We will
briefly outline the theory underlying Support Vector Regres-
sion. For a full description with historical background, see
monographs of Vapnik,15 Christianini,16 Herbrich,17 and
Schölkopf.18

THEORETICAL BASIS AND DEFINITIONS

The general learning problem is to find a relationship
between objectsx ∈ X and targetsy ∈ Y based solely on a

samplez ) (x,y) ) ((x1,y1),...,(xm,ym)) ∈ (X × Y)m of sizem
∈ N. This relationship is called ahypothesis. If the output
spaceY contains a finite number of elementsY ) (y1,...yn)
∈ Yn, then the task is calledclassification. If the output space
is a set ofn real targetsY ∈ Rn, then the task is called
regression. In this paper, we deal with regression and with
input spacesX which are sets of molecules.

A function Φ:X f R that maps each objectx ∈ X to a
real valueΦi(x) is called afeature. Combiningn features
Φ1,...,Φn results in afeature mappingΦ:X f F where the
spaceF is called afeature space.The number of features
may be infinite, corresponding to an infinite dimensional
feature space.

A kernel is an inner product functionk:X × X f R in F,
so that for allxi,xj ∈ X andΦ:X we have

whereK is a Gram matrix for a given kernel. The Gram
matrix and the feature space are also called thekernel matrix
and thekernel space, respectively.

Support Vector Regression (SVR).A support vector
machine is first trained on a sample with objects having
known target values. After training, the machine is used to
predict or estimate target values for objects where these
values are unknown. A kernel-induced feature space with
functionk(xi,x) is used for the mapping of objects onto target
values. Thus a nonlinear feature mapping will allow the
treatment of nonlinear problems in a linear space. The
prediction or approximation function used by a basic SVM
is

where Ri is some real value,xi is a feature vector corre-
sponding to a training object, andk(xi,x) is a kernel function.
The components of vectorR and the constantb represent
the hypothesis and are optimized during training. It may be
useful to think of the kernel,k(xi,x) as comparing patterns,
or as evaluating the proximity of objects in their feature
space. Thus a test point is evaluated by comparing it to all
training points. Training points with nonzero weightRi are
called thesupportVectors.
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k(xi,xj) ≡ 〈Φ(xi),Φ(xj)〉 ) 〈xi,xj〉 ) K ij (1)

f(x) ) ∑i)1
l Rik(xi,x) + b (2)
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Kernel Requirements. The functionk(x,z) is a kernel
corresponding to the feature mappingΦ if the kernel matrix
K is symmetric, and there is an orthogonal matrixΛ such
that K ) VΛVT, whereΛ is a diagonal matrix containing
the eigenvaluesλt of K with corresponding eigenvectorsVt

) (Vti) i)1
n andΦ(xi) ) xΛVi, so that

It is required that the eigenvalues ofK are nonnegative
(K is positive semidefinite), because a negative eigenvalue
λs with eigenvectorVs would give rise to a point in the feature
space with norm squared||Φ(xs)||2 ) Vs

TΛVs ) λs < 0,
contradicting the geometry of an inner product space (see
also Mercer’s theorem19).

Some commonly used kernels15-18 are

It may seem necessary to first design a mapping function
specifically for the particular problem at hand and then work
out the corresponding kernel, but this is seldom done in
practice. A key idea of kernel-based learning methods is that
a kernel may often be chosen directly, without first examin-
ing the corresponding feature space.

Tanimoto Kernel. In chemistry, the Tanimoto, or Jaccard,
index20 (Tab) is often used to measure the similarity between
molecules.Tab is implemented in a number of commercial
computational chemistry toolkits and is typically applied to
bit vectors known as molecular fingerprints (see below). In
the case of binary valued vectors, the Tanimoto index may
be defined as

whereNab is the number of bits that patternsa andb have
in common, andNa andNb are the numbers of bits set ina
andb, respectively.

An important feature of this index is that it disregards
information of nonoccurrences common to the compared
objects. For example, the similarity between two molecules
differing by one atom will depend on molecule size, so that
similarity is high between a pair of large molecules but low
between a pair of small ones.

The Tanimoto index is a symmetric (Tab ) Tba) and
positive semidefinite function as shown by Gower,21 thus it
fulfills the necessary conditions of a kernel function. It has
been used as an SVM kernel function in the context of image
analysis.22 Applications of the Tanimoto function in chem-
istry include similarity searching of chemical databases23 and
clustering.24 Two comparative studies on 22 binary similarity
indexes25,26applied to similarity searches concludes that the
Tanimoto index may be the best single measure of similarity

and that no combinations with other indexes results in
consistent improvement over its use.

SVM Training. During training, an expression for the cost
of errors called theloss function, L(y,f(x,R)), is minimized.
In this work, we use a so-called linearε-insensitive ma-
chine,15 for which

here

is minimized. The parameterε, which is chosen a priori,
defines a band of width 2ε around the output function. The
cost of errors for points lying inside that band is zero. Points
lying outside the band defined byε are support vectors and
will give rise to nonzero components in the optimizedR
vectors. The purpose ofε is to protect against overfitting.
For a detailed discussion of the solution to this minimization
problem, see ref 15. For a description of the algorithm which
is used in this work to solve this problem numerically, see
ref 27. A parameter calledC defines the maximum value of
all Ri and is called the cost, or regularization parameter. The
purpose of the constraintC is to limit the influence of
outliers.

Molecular Fingerprints . Historically, molecular finger-
prints have evolved fromstructural keys, which are used
for searching chemical databases. Generation of structural
keys employs a predefined dictionary of substructures and
lets each bit in a bit vector correspond to the presence or
absence of a particular substructure. Fingerprints does not
make explicit use of substructures; the common approach is
to enumerate all subpatterns of bonds and atoms in all
possible paths of the molecular graph up to some predefined
length. Then, some representation of each pattern seeds a
pseudorandom number generator, the output of which indexes
the bit vector where bits are turned on as corresponding
patterns are encountered. Thus, a particular bit may be set
by unrelated features, and the process does not strictly
guarantee that different molecules give distinct fingerprints;
however, a substructure will always turn on some common
set of bits in the fingerprints of all its superstructures. Typical
fingerprints are of size 1024 to 4096 bits. Software for the
generation of molecular fingerprints is available from a
number of companies28-33 and as open source.34 The genera-
tion of fingerprints is in itself a feature mapping, which may
be seen as separate from the mapping from fingerprints to
kernel space.

Fingerprint Kernels. The SVM kernel used in this work
evaluates the Tanimoto similarity of molecular fingerprints.
We use the SynChemistrySimilarityMatchEx35 function in
the Accord Software Development Kit,28 which generates
sets of attributes for a pair of molecules and evaluates their
Tanimoto distance. The exact algorithm used by this function
is not disclosed by Accelrys, and the underlying attributes
may be different from those coded by traditional fingerprints.
No comparisons with other types of similarity functions were
made.

SOFTWARE

The software which we have used for SVM calculations
is based on the shareware program Libsvm36 v. 2.33 of Chih-

Kij ) 〈Φ(xi),Φ(xj)〉 ) ∑
t ) 1

n

λtVtiVtj ) (VΛVT)ij ) K(xi,xj)

(3)

Linear: k(xi,xj) ) [xi,xj]

Polynomial: k(xi,xj) ) ([xi,xj] + 1)d

Radial Basis Function, RBF:k(xi,xj) )

exp(-(xi - xj)
2/(2σ2))

Tab ≡ Nab/(Na + Nb - Nab) ) 〈xa,xb〉/(〈xa,xa〉 + 〈xb,xb〉 -
〈xa,xb〉) (4)

L(y,f(x,R)) ) L(|y - f(x,R)|ε) (5)

|y - f(x,R)|ε ) {0, if |y - f(x,R)| eε

|y - f(x,R)| - ε, otherwise

1856 J. Chem. Inf. Comput. Sci., Vol. 43, No. 6, 2003 LIND AND MALTSEVA



Chung Chang and Chih-Jen Lin. Libsvm is available as Java
and C++ code. The basic training algorithm of libsvm is a
simplification of both Sequential Minimal Optimization
(SMO)27 by Platt and SVMLight37 by Joachims. The Java
version was rewritten in VB.NET and modified for use with
chemistry. The chemical functionality of the Accord Software
Development Kit (SDK) version 5.228 was incorporated in
the program as separate classes. This choice of software
components was based on considerations of cost, develop-
ment time, and run-time efficiency. All functionality was
compiled into a single program, where SVM and chemistry
functions run in the same process. Although various separate
fingerprint and similarity functions are availible in the Accord
SDK, only the SynChemistrySimilarityMatchEx function was
tried in this work. Classes for statistical analysis and batch
run control were added. A graphical interface for control of
parameters was also constructed. This modified program
takes a text file with SMILES38 strings as input and uses
Accord SDK functions to instantiate corresponding chemical
objects.

Values for training parametersε andC were chosen after
running partial (20× 20) cross-validations on the training
data. The optimization stopping parameter of libsvm was 0.1
in all experiments. Root-mean-squared errors were calculated
as

and the squared correlation coefficient as

whereyobs are experimental andypred are predicted values.

DATA SETS

Three data sets were used in this study: set A (n ) 883)
is essentially39 the training data set of Huuskonen,7 compiled
from the AQUASOL40 and PHYSPROP41 databases. This
set, which has been used in several studies,9,42-44 contains a
large proportion of drugs and pesticides. LogS values span
from -11.62 to 1.58, with standard deviation of 2.01. Set B
(n ) 412) is the data referred to as the testing set in
Huuskonens work.7,39 This set is similar in character to set
A. Set C (n ) 411) is the data used in the work of Katritzky
et al.,8 in which regression models based on electrostatic,
quantum chemical, and topological parameters are studied.
This set contains no drugs and consists mostly of haloalkanes
and monofunctional compounds. The logS values of all data
sets are based on solubilities given as moles per liter. The
data sets of Huuskonen are available as supplementary data
of ref 7. The data set of Katritzky et al. is available from ref
8.

RESULTS

On set A, a complete cross-validation using the Tanimoto
fingerprint kernel gave rmse) 0.62 andR2 ) 0.88. Figure
1 is a graph showing the results of this cross-validation. On

the smaller set B, a similar cross-validation resulted in an
rmse) 0.77 andR2 ) 0.86.

A machine was trained on set A and used to predict logS
values in set B. The effect of theε parameter on the fit to
set A training data can be seen in Figure 2, where a band of
width 2ε is apparent. The measures of fit on the training
data are rmse) 0.29 andRtrain

2 ) 0.98. A number of 630
compounds (71%) were selected as support vectors by the
machine in this experiment. This trained machine predicts
the log S values of set B with a standard deviation of
prediction, rmse) 0.68, and withRpred

2 ) 0.89. Parameters
used for experiments on sets A and B wereε ) 0.2 andC
) 0.15.

A complete cross-validation on set C resulted in a root-
mean-square error (rmse)) 0.57 and a squared correlation
coefficient (R2) ) 0.88. Parameters for this run wereε )
0.1 andC ) 20.

Dependency on Similarity with Training Set. An
important question is to what degree the successful prediction
requires the presence of compounds in the training set which
are similar to the compounds to be predicted. In other words,
can some measure of similarity between test and training
data be used to grade the confidence of prediction of
individual points? In an attempt to answer this question,
compounds in set A were partitioned into two dissimilar
subsets, A1 (629 compounds) and A2 (254 compounds). A
standard clustering algorithm based on mean pairwise
Tanimoto similarities was used for this division. Compounds
in A1 had mean internal Tanimoto similarity) 0.53. The
average similarity between members in set A1 and A2 was
0.32. The mean internal similarity in A2 was 0.51. A SVM
trained on A1 predicted logS values in set B with rmse)
1.02. Thus the predictive ability was lowered as compared

rmse) x1

n
∑
i)1

n

(yi
obs- yi

pred)2

R2 ) 1 - ∑
i)1

n

(yi
obs- yi

pred)2/∑
i)1

n

(yi
obs- yaVerage)2

Figure 1. Complete cross-validation on data set A.

Figure 2. Fitting of solubility data for set A.
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to machines trained on the complete set A. This may be due
to the smaller size of the training set, or to the exclusion of
a class of compounds in the training set which are similar
to some proportion of compounds in B, or to both factors.

The compounds in set B were binned into groups based
on their absolute error of prediction, using an SVM trained
on set A1. The average Tanimoto similarity with all
compounds in the training set was calculated. For each test
compound, compounds in the training set more similar than
0.5, 0.6, 0.7, 0.8, and 0.9 were counted. Table 1 summarizes
the results. Compounds in the bin with the highest error of
prediction have a significantly lower number of similar
compounds in the test set as compared to compounds in other
bins. Test compounds having at least one compound in the
training set more similar than 0.6 (n ) 332) have a root-
mean-squared error of prediction) 0.76, significantly lower
than the overall value. This suggests that some measure of
overall similarity to test set members may be used to grade
the level of confidence for individual predictions, although
there is not enough evidence to state any quantitative rule.

Comparison with Other Methods. The Tanimoto kernel
method was compared to several other reported methods
where large training sets have been used. Two of these
methods use the same data set as the present work, making
a direct comparison possible in these cases. Katritzky et al.8

uses a five-descriptor model and multilinear regression to
estimate solubilities of compounds in the set C. The method
makes use of molecular mechanics, AM1 geometry optimi-
zation, and quantum-chemical descriptors. A complete cross-
validation was run to assess the quality of the model. The
results of this cross-validation is rmse) 0.57,R2 ) 0.87.
The method we present here gives a model of comparable
quality (rmse) 0.57 andR2 ) 0.88) on the same data set.

Huuskonen7 uses multiple linear regression (MLR) and
an artificial neural network (ANN) to fit E-state45 and other
topological indices to logS data. The molecules in set B39

were used for testing. The fit on test data was rmse) 0.71
andR2 ) 0.88 for the best MLR model. The best ANN model
gave rmse) 0.60 andR2 ) 0.92. The corresponding values
in the present work are rmse) 0.68 andR2 ) 0.89.

Similar work of Tetko et al.42 resulted in a model which
had rmse) 0.81 for a MLR model, and rmse) 0.60 for a
ANN model when tested on compounds from set B.

A fragment-based method of Klopman et al.1 was devel-
oped by fitting data from 1168 compounds. The fit on
training data was rmse) 0.50,R2 ) 0.95. The estimation
of logS on a 120 compound test set resulted in rmse) 0.79.

A method of Cheng and Merz46 uses descriptors derived

from molecular graphs. The fit on a 784 compound training
set is rmse) 0.87 andR2 ) 0.84. The fit on a test set was
rmse) 0.79 andR2 ) 0.88.

Gao and Shanmugasundaram reports a method47 which is
based on molecular descriptors calculated with MOE soft-
ware.32 The descriptors were selected by means of principal
components regression and a genetic algorithm. Testing of
the model on a 249 compound diverse test set resulted in
rmse) 0.40 andR2 ) 0.91.

Comparison with Simple Similarity Method . We com-
pared the SVM method to a method in which test compounds
were given similar values as similar compounds in the
training data set. The logS values were calculated as

where the exponentn is an integer. For both sets A and C
the lowest observed rmse was 1.02. This value was found
for set A with n ) 30 and for set C withn ) 36. These
values ofn give a strong weighting of contributions from
the very closest neighbors.

Computational Efficiency. The time for training on set
A was 140 s on a standard 1000 MHz PC. Training time
was found to scale with slightly less than the square of
training set size, as expected for this algorithm.27 Testing
performance was in the order of 7 compounds per second
for a machine trained on set A having 630 support vectors.
Most of the CPU time during testing was spent on the
instantiation of Accord chemical objects from SMILES and
on evaluating the Accord similarity function, processes which
include generation of the underlying fingerprints. It follows
that the testing throughput of this application type is in
practice limited by the rate to which test compound
fingerprints can be generated and fed to the SVM.

DISCUSSION

We use support vector regression to learn solubility
directly from experimental data and general-purpose molec-
ular fingerprints. There is no manual selection of descriptors
and no construction of a fragment library. No prior knowl-
edge about the physical phenomena underlying solubility is
used.

Fixed Training Process. The training process is fixed
once the training parameters and fingerprint type are chosen.
This means that the machine can be trained on new or
expanded data sets without any need for manual steps or
expert guidance. This can be useful in a drug development
scenario where experimental logS values for representatives
of a new class of compounds become available after
synthesis. The binning analysis described above and the
experiments with data sets A1 and A2 suggest that adding
training compounds similar to the compounds to be tested
will improve the accuracy of prediction, although it is not
clear to what extent.

Interpretability. By the nature of molecular fingerprints,
there is no direct way to express a learned hypothesis in
human-understandable terms. This is a disadvantage of the
method.

CONCLUSIONS

A support vector machine equipped with a Tanimoto
similarity kernel acting on general-purpose molecular fin-

Table 1. Compounds in Test Set B Binned by Absolute Error
of Prediction

av no. of compds
in training set

being more similar than:bin
no.

logS
absolute

error n

av Tanimoto similarity
of bin compds with

compds in A1 0.5 0.6 0.7 0.8 0.9

1 <0.1 41 0.50 296 152 64 19 5
2 0.1-0.25 57 0.49 276 144 65 21 4
3 0.25-0.5 82 0.49 297 163 70 22 4
4 0.5-0.7 65 0.47 273 143 54 14 3
5 0.7-1.0 61 0.47 255 129 47 14 2
6 1.0-2.0 80 0.41 187 98 38 12 1
7 >2.0 26 0.27 30 11 2 0 0

y ) ∑
i)1

m

k(x,xi)
nyi/∑

i)1

m

k(x,xi)
n
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gerprints is able to estimate aqueous solubility with good
accuracy. It may be possible to estimate a confidence of
prediction for individual points by using a measure of
similarity between the test point and the training points. Once
implemented, the learning system can be applied to new data
sets without expert guidance.
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