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Abstract

Feature selection plays an important role in classification. We present a comparative study on
six feature selection heuristics by applying them to two sets of data. The first set of data are gene
expression profiles from Acute Lymphoblastic Leukemia (ALL) patients. The second set of data
are proteomic patterns from ovarian cancer patients. Based on features chosen by these methods,
error rates of several classification algorithms were obtained for analysis. Our results demonstrate
the importance of feature selection in accurately classifying new samples.
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1 Introduction

One of the important recent breakthroughs in experimental molecular biology is microarray technology.
It allows scientists to monitor the expression of genes on a genomic scale. Such a technology increases
the possibility of cancer classification and diagnosis at the gene expression level. However, many
factors may affect the outcome of the analysis. One of them is the huge number of genes included in
the original data. Some of them may be irrelevant to analysis. Thus, selecting discriminatory genes
is critical to improving the accuracy and speed of prediction systems [1, 8, 7, 2].

This paper presents six feature selection heuristics based on entropy theory [6], X 2-statistics, and t-
statistics. After features are selected by these methods from the expression profiles, their effectiveness
are investigated by comparing error rate of four traditional classification algorithms applied to only
these selected features versus all features. The four classification algorithms are k-nearest neighbor (k-
NN) [4], C4.5 [16], Naive Bayes (NB) [10], and Support Vector Machines (SVM) [3]. It will be seen that
a great accuracy improvement can be achieved by the four classification algorithms if discriminatory
features are first determined by the six feature selection methods.

Recently, we have developed a new classifier [18, 12] called PCL (Prediction by Collective Likelihood
of emerging patterns [5]). The basic idea of PCL is to use a collection of multi-feature discriminators
for classification. It is new because feature groups are used in PCL’s input instead of the traditional
use of individual features in the other classification algorithms. We also compare the performance of
our PCL classifier with the four traditional classifiers to see whether PCL is competitive to the best
of them.

The organization of this paper is as follows. The two data sets used in this study are described in
Section 2. The feature selection methods and heuristics are outlined in Section 3. The five classification
algorithms (including our PCL classifier) are briefly described in Section 4. Our experimental results
are reported in Section 5. Our analysis on the results, including the significance of the feature selection
methods, are presented in Section 6. Then we provide some discussions and future work in Section
7. Supplementary information (other tables and figures) can be found at http://sdmc.lit.org.sg/
GEDatasets.



52 Liu et al.

BCR-ABL classifier

E2A-PBX1 predicted

BCR-ABL predicted

E2A-PBX1 classifier

a new instance

T-ALL classifier

OTHERS

T-ALL predicted

TEL-AML1 classifier

MLL classifier

Hyperdip>50 classifier

TEL-AML1 predicted

MLL predicted

Hyperdip>50 predicted

no

yes

no

yes

yes

yes

yes

yes

no

no

no

no

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Figure 1: A tree-structure system for predicting more than six subtypes of ALL samples.

2 Two Sets of Data

Acute lymphoblastic leukemia (ALL). This is a collection of gene expression profiles of 327
ALL samples [18]. These profiles were obtained by hybridization on the Affymetrix U95A GeneChip
containing probes for 12558 genes. These 327 samples contain all known ALL subtypes, including
T-cell (T-ALL), E2A-PBX1, TEL-AML1, MLL, BCR-ABL, and hyperdiploid (Hyperdip>50). A
tree-structured decision system (as shown in Figure 1), proposed by the medical doctors [18], is used
to classify these samples. When a sample is given, rules are applied firstly for classifying whether it is
a T-ALL or a sample of other subtypes. If it is classified as T-ALL, then the process is terminated.
Otherwise, the process is moved to level 2 to see whether the sample can be classified as E2A-PBX1
or the remaining other subtypes. With similar reasoning, a decision process based this tree can be
terminated at level 6 where the subtypes Hyperdip>50 and OTHERS are determined. The data
was divided into a training set of 215 samples and a blind testing set of 112 samples by the medical
doctors[18]. In accordance to Figure 1, we further subdivide the training and testing data into six
pairs of subsets, one for each level of the tree. The data set names and their ingredients are given
in Table 1. The raw gene expression data can be found at http://www.stjuderesearch.org/data/
ALL1/. The processed data in the format .data and .names can be found at http://sdmc.lit.org.
sg/GEDatasets/Datasets#Leukemia, that is commonly used by machine learning communities.

Ovarian cancer. The second group of data is a set of ovarian cancer samples that was first
reported in [15]. The goal of this experiment is to identify proteomic patterns in serum that distinguish
ovarian cancer from non-cancer. That study is significant to women who have a high risk of ovarian
cancer due to family or personal history of cancer. The proteomic spectra were generated by mass
spectroscopy and the raw data can be found at http://clinicalproteomics.steem.com. Since the
web site is to display the most current data, it would be continually updated once new data sets and/or
better models come out. Our experiments and results reported in this paper are based on the data set
6-19-02, which consists of 91 controls (non-cancer) and 162 ovarian cancers. In order to be consistent
with [15], the relative amplitude of the intensity at each molecular mass/charge (M/Z) identity in the
spectral data was normalized against the most intense and the least intense values in the data stream
according to the formula: NV = (V −Min)/(Max−Min), where NV is the normalized value, V the
raw value, Min the minimum intensity and Max the maximum intensity. The normalization is done
over all the 253 samples for all 15154 M/Z identities. After the normalization, each intensity value is
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Table 1: Six pairs of training and testing data sets. The OTHERS1, OTHERS2, OTHERS3, OTHERS4, OTHERS5,
and OTHERS classes consist of more than one subtypes of ALL samples. Columns 3 and 4 give the number of samples of
the training and testing sets in the format of nl vs nr, where nl (nr) is the number of samples in the left-side (right-side)
class. OTHERS1 = {E2A-PBX1, TEL-AML1, BCR-ABL, MLL, Hyperdip>50, OTHERS}; Similarly, OTHERS2 =
{TEL-AML1, BCR-ABL, MLL, Hyperdip>50, OTHERS}; ...; OTHERS5 = {Hyperdip>50, OTHERS}.

Level Paired datasets Training set size Testing set size

1 T-ALL vs OTHERS1 28 vs 187 15 vs 97
2 E2A-PBX1 vs OTHERS2 18 vs 169 9 vs 88
3 TEL-AML1 vs OTHERS3 52 vs 117 27 vs 61
4 BCR-ABL vs OTHERS4 9 vs 108 6 vs 55
5 MLL vs OTHERS5 14 vs 94 6 vs 49
6 Hyperdip>50 vs OTHERS 42 vs 52 22 vs 27

in the range between 0 and 1. The processed data in the format .data and .names can be found at
http://sdmc.lit.org.sg/GEDatasets/Datasets#OvarianCancer.

3 Selecting Discriminatory Features

The number of features captured in the data is very large. We use an entropy-based [6], a X 2-statistics,
a correlation-based [9], a t-statistics, and a MIT correlation-based [8] feature selection method to filter
out irrelevant features. The first three methods are commonly used in the machine learning community,
while the last two are favored by earlier works on gene expression analysis. The X 2-statistics and the
correlation-based method are two refinements of the entropy method. The MIT correlation method
can be considered as a variant of the t-statistics. We study them here and aim to compare their
effectiveness in handling gene expression data. For simplicity, the word “features” is used in this
paper to mean genes in ALL data and M/Z identities in ovarian cancer data.

3.1 Entropy-Based

The basic idea of this method [6] is to filter out those features whose expression distributions are
relatively random. For the remaining features, this method can automatically find some cut points
in these features’ value ranges such that the resulting expression intervals of every feature can be
maximally distinguished. If every expression interval induced by the cut points of a feature contains
only the same class of samples, then this partitioning by the cut points of this feature has an entropy
value of zero. This is an ideal case. The smaller a feature’s entropy is, the more discriminatory it is.
For a detailed description of the algorithm, please refer to [13, 11, 12] or http://sdmc.lit.org.sg/
gedm/Preprocessing.html. We sort the values of entropy in an ascending order and consider those
features with lowest entropy values.

3.2 The X 2-Statistics and Correlation-Based Feature Selection Methods

The Chi-Squared (X 2) method [14] and the Correlation-based Feature Selection (CFS) method [9] are
built on the top of the entropy method.

The X 2 method evaluates features individually by measuring their chi-squared statistic with respect
to the classes. For a numeric attribute, the method first requires its range to be discretized into several
intervals using, for example, the entropy-based discretization method. The X 2 value of an attribute is

defined as: X 2 =
∑m

i=1

∑k
j=1

(Aij−Eij)2

Eij
, where m is the number of intervals, k the number of classes,
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Aij the number of samples in the ith interval, jth class, Ri the number of samples in the ith interval,
Cj the number of samples in the jth class, N the total number of samples, and Eij the expected
frequency of Aij (Eij = Ri ∗ Cj/N).

After calculating the X 2 value of all considered features, we can sort these values with the largest
one at the first position, as the larger the X 2 value, the more important the feature is. The degree of
freedom of the above X 2-statistics is (m−1) · (k−1). Since in most cases, there are only two intervals
found for a feature (ie, m = 2), we use k − 1 as the degree of freedom for the X 2-statistics. It is equal
to 1 in this paper. The critical X value for 1 degree of freedom at 5% significant level is 3.841 [17].

The CFS method is another approach to feature selection. Rather than scoring (and ranking)
individual features, the method scores (and ranks) the worth of subsets of features. As the feature
subset space is usually huge, CFS uses a best-first-search heuristic. This heuristic algorithm takes
into account the usefulness of individual features for predicting the class along with the level of inter-
correlation among them with the belief that “good feature subsets contain features highly correlated
with the class, yet uncorrelated with each other”. CFS first calculates a matrix of feature-class and
feature-feature correlations from the training data. Then a score of a subset of features assigned by
the heuristic is defined as: MeritS =

krcf√
k+k(k−1)rff

, where MeritS is the heuristic merit of a feature

subset S containing k features, rcf is the average feature-class correlation, and rff is the average
feature-feature intercorrelation.

Symmetrical uncertainties are used in CFS to estimate the degree of association between discrete
features or between features and classes [9]. The formula below measures the intercorrelation between
two features or the correlation between a feature X and a class Y which is in the range [0, 1]. rxy =
2.0 ∗ [ gain

H(X)+H(Y ) ], where gain = H(X) + H(Y ) − H(X,Y ), is the information gain between features

and classes, H(X) is the entropy of the feature. CFS starts from the empty set of features and uses
the best-first-search heuristic with a stopping criterion of 5 consecutive fully expanded non-improving
subsets. The subset with the highest merit found during the search will be selected.

3.3 T-Statistics and MIT Correlation

An often used feature selection method is based on t-statistics. This method starts with a data set S
consisting of m expression vectors: X i = (xi

1, · · · , xi
n), where 1 ≤ i ≤ m, m is the number of samples,

and n is the number of features measured. Each sample is labeled with Y ∈ {+1,−1} (for classes, such
as T-ALL vs. OTHERS1). For each feature xj , the mean µ+

j (resp. µ−
j ) and the standard deviation

δ+
j (resp. δ−j ) using only the samples labeled +1 (resp. −1) are calculated. Then a score T (xj) can

be obtained by T (xj) =
|µ+

j
−µ−

j
|

√

(δ+
j

)2

n+
+

(δ−
j

)2

n
−

where n+ (resp. n−) is the number of samples labeled as +1

(resp. −1). When making selection, we simply take those features with the highest scores as the most
discriminatory features.

The score for each feature can be calculated by a slightly different formula as shown below. This
method is called MIT correlation [8], which is also known as signal-to-noise statistic. The score is

defined as: MIT (xj) =
|µ+

j
−µ−

j
|

δ+
j

+δ−
j

.

Observe that the entropy, X 2, and CFS feature selection methods are resistant to data normaliza-
tion. This means that each of these three methods will choose the same features regardless of whether
the data is normalized by a pre-processing step, for example, by taking logarithms. This is not true
for the t-statistics and MIT correlation methods, because the scores calculated by those formulas and
the features’ orderings can be different after the original data are processed with a normalization step.

3.4 Features Selection Heuristics Used in Our Experiments

We first consider the following six heuristics in our experiments:
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• Select all the features recommended by CFS (all-CFS);

• Select top 20 features with the highest X 2-statistics scores (top20-X 2);

• Select top 20 features with the highest t-statistics scores (top20-t);

• Select top 20 features with the highest scores calculated by MIT formula (top20-mit);

• Select features having an entropy value less than 0.1 if these exist, or the 20 features with the
lowest entropy values otherwise (Entropy); and

• Select all features which meet 5% significant level of X 2-statistics (all-X 2).

4 Classification Algorithms

After selecting the most discriminatory features, we apply k-NN, C4.5, NB, SVM, and PCL to obtain
error rates on our testing samples. The classification results of these algorithms are then used to
compare the effectiveness of various feature selection methods.

k-NN is a typical instance-based prediction model. By k-NN, the class label of a new testing
sample is decided by the majority class of its k closest neighbors based on their Euclidean distance.
In our experiments, k is set as 1.

C4.5 is a widely used decision tree based classifier. The implementation of C4.5 in this paper
is based on its Revision 8, which was the last public version before it was commercialized. In our
experiments, pruned trees and subtree raising techniques are used.

Naive Bayes (NB) is a probabilistic learner based on Bayes’s rule. It is among the most practical
approaches to certain types of learning problems.

SVMs are a kind of blend of linear modeling and instance-based learning. A SVM selects a small
number of critical boundary samples from each class and builds a linear discriminant function that
separates them as widely as possible. In the case that no linear separation is possible, the technique
of “kernel” will be used to automatically inject the training samples into a higher-dimensional space,
and to learn a separator in that space. The SVM used in this paper is a version that implements
a sequential minimal optimization algorithm using polynomial kernels. Transforming the output of
SVM into probabilities is conducted by a standard sigmoid function.

PCL is based on the concept of emerging patterns [5]. It needs to conduct a feature selection
process before its model is established. Those selected features are then discretized. Then, the core
knowledge patterns, our emerging patterns, are derived from the discretized training data. See the
supplementary material of the work [18] for a full description of PCL. Note that an emerging pattern
is a set of conditions often including several features, with which most of a class of samples’ expression
satisfy, but none of other class’s samples satisfy. So, an emerging pattern can be considered as a multi-
feature discriminator. The central spirit of PCL is to use top-ranked multi-feature discriminators to
make a collective prediction. PCL uses feature groups, does not assume that features are independent;
PCL can provide more than a mere prediction or a distance, but many interesting rules.

The main software package used in our experiments is Weka (Waikato Environment for Knowledge
Analysis), developed at the University of Waikato in New Zealand. It is a powerful open source Java-
based machine learning software package. It is publicly available online at http://www.cs.waikato.
ac.nz/ml/weka. Also, we have implemented in-house programs, like the discovery of emerging pat-
terns, PCL, the entropy feature selection, t-statistics and MIT correlation feature selection methods.
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Table 2: A summary of the number of misclassified testing samples for all the five classifiers for ALL data.

Selection Total misclassifications of six levels Average
heuristics SVM NB k-NN C4.5 PCL

all-CFS 6 12 7 12 - 9.25
top20-X 2 6 8 7 14 4 8.75
top20-t 10 19 10 18 5 14.25
top20-mit 7 7 9 14 4 9.25
Entropy 5 7 4 14 5 7.5
all-X 2 3 13 7 15 - 9.5

all genes 23 63 23 26 - 33.75

5 Experimental Results

5.1 Results of ALL Data

Recall that we have six levels of testing samples. For each level and for each feature selection heuristic,
we apply the classification algorithms to obtain our results. We note that every feature selection
heuristic and classification model is built on the training data only. We mostly use the error rate of
testing samples to illustrate our results. The format of the error rate x : y means that x number of
samples in the left-side class (e.g., T-ALL, E2A-PBX1 and etc.) are misclassified, and y number of
samples in the right-side class are misclassified (please refer to the data description in Table 1).

Results on the original data without feature selection. Table S1 in our Supplementary
Information reports the error rates of the four state-of-the-art classification algorithms on all six levels
of testing samples. In total, SVM, NB, k-NN, and C4.5 made 23, 63, 23, and 26 misclassifications
respectively. These error rates are not acceptable for diagnostic purposes.

Results on data consisting of only selected genes. For the training data at Level 1, the
CFS method selected only 1 gene (38319 at) from the total of 12558 genes. There were 13 genes with
entropy values less than 0.10. The number of genes selected by all-X 2 was 1309. SVM, NB, k-NN,
and PCL achieved 100% prediction accuracy on this level’s testing samples for all the six groups of
genes selected via the six selection heuristics. However, C4.5 misclassified a same particular testing
sample (from the “OTHERS1” class) for all the testing data based on the six groups of selected
genes. At level 2, CFS also selected only 1 gene (33355 at) as the most discriminatory gene. There
were 8 genes with entropy values less than 0.10. The number of genes selected by all-X 2 was 827.
All five classification algorithms achieved 100% accuracy on this level testing data no matter which
feature selection heuristic was used. After feature selection, the classification algorithms performed
excellently on the testing data of Levels 1 and 2. For the remaining four levels of data, the results
were not that perfect but were still very good. The error rates of Level 3 to Level 6’s testing data
varied for different learning algorithms and for different feature selection heuristics. Tables S2, S3,
S4 and S5 in our Supplementary Information report these error rates. (A “-” sign means that the
results are not available at the deadline of submission of the paper.) We use Table 2 to summarize
total misclassifications of all six levels for every classifier under different feature selection heuristics.
For a fixed feature selection method, the average misclassifications over the four traditional classifiers
are also reported in the last column of Table 2.

5.2 Results of Ovarian Cancer Data

For this data set, we use our six feature selection heuristics to choose important M/Z identities and
apply SVM, NB, k-NN, and C4.5 to obtain error rates of running 10-fold cross validation on all 253
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Table 3: Error rates on ovarian cancer data set with or w/o feature selection.

Selection heuristics # of selected feature SVM NB k-NN C4.5 Average

all-CFS 17 0:0 0:3 0:0 4:3 2.5
top20-X 2 20 2:3 2:2 2:3 5:4 5.75
top20-t 20 2:2 2:3 2:4 5:3 5.75
top20-mit 20 2:3 3:2 2:3 5:4 6
Entropy 20 2:3 2:2 2:3 5:4 5.75
all-X 2 6136 0:0 10:6 2:7 5:4 8.5

all features 15154 0:0 17:2 6:9 4:5 10.75

samples. Table 3 shows the error rates of the four traditional classification algorithms running 10-fold
cross validation on all 253 samples under different feature selection heuristics. The last row gives the
results on original data with 15154 M/Z identities. For this data set, the error rate format x : y means
that x numbers of ovarian cancer samples and y numbers of non-cancer samples are misclassified. In
this test, CFS selected only 17 features, but performed very well. With these 17 M/Z values, both
SVM and k-NN achieved 100% classification accuracy. Besides, SVM got 100% accuracy with all-X 2

selected M/Z values and PCL misclassified only one sample with Entropy selected features (data not
shown). On the other hand, although the results on the full set of 15154 M/Z identities is not very
bad, the response speed of each algorithm is very slow.

In [15], an approach was designed to use genetic algorithm and self-organizing cluster analysis to
locate some key M/Z values that best distinguish cancer from non-cancer. On their web site, there
is a group of best M/Z values provided. It contains seven key M/Z values: 2760.6685, 19643.409,
465.56916, 6631.7043, 14051.976, 435.4652 and 3497.5508. However, among these seven M/Z values,
we found 3 of them are having 0 X 2 value. They are: 2760.6685, 19643.409 and 6631.7043. If
we remove these 3 from the group, there are only 4 identities left. The error rates of 10-fold cross
validation using these seven or four key M/Z values are indeed very close by SVM, NB, k-NN and C4.5
(data not shown). Remarkably, SVM achieved 100% accuracy with these 4 M/Z values. Furthermore,
these 4 key M/Z values can be regarded as another example of best key M/Z values combination and
X 2-statistics is successfully used to narrow down the features selected by other approach.

6 Comparison and Analysis

First of all, in most of cases, the accuracy performance of the four classifiers were greatly improved
after features are selected by our proposed heuristics. For example, at every level’s testing samples of
ALL data, all the four traditional classifiers have improved their poor performance or maintained their
excellent accuracy after features are selected by most of our proposed heuristics. This is particularly
true for level 6. Next, we highlight other interesting points as follows:

• Of the six proposed selection heuristics, overall speaking, for ALL data set, the entropy one
appeared to be the best. Under this strategy, NB made its smallest number of errors of 7; k-NN
made its smallest number of errors of 4. Both SVM and C4.5 made their the second smallest
number of errors of 5 and 14 respectively. This can be also seen from the sixth column of Table 2
where the average number of errors per classifier under a specific feature selection heuristic is
summarized. Note that the average number under the entropy scheme was 7.5, the smallest.

• The relatively new selection method, CFS, also demonstrated its feasibility on gene or protein
expression profiles. In ovarian cancer data test, with the only 17 features selected by CFS, both
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SVM and k-NN achieved 100% accuracy. NB and C4.5 also got best results under this heuristic.
An advantage of CFS over other methods is that it can automatically determine the number of
discriminatory features. Sometimes, CFS can return very small number of features, for example,
only one gene at level 1 and level 2 of ALL data. However, the performance of the classifiers
based on those small number of genes were very good.

• Of the four traditional classification algorithms, SVM appeared to perform best even on the
original intact data. SVM contains non-linear kernel functions so that non-linear mappings and
decisions can be easily achieved. C4.5 can provide small-sized elegant decision trees to classify
testing samples. Its accuracy was not excellent, though its performance on the training data
closely approached to the perfect level. Interestingly, the simplest k-NN classifier provided us
a very good accuracy. This indicates that after feature selection the expression data can be
well clustered according to distance. The Naive Bayes classifier has an important assumption
that features should be independent. So, it’s not surprising that its performance was not good
because many feature groups interact closely.

• For our new PCL classifier, its performance was competitive to SVM. An advantage of PCL over
SVM is that PCL can provide users many high-level and comprehensible rules.

7 Discussion and Future Work

In this section, we discuss three questions. The first question is that if 20 features are randomly
selected from the total features, how far the resulting accuracy is from the accuracy based on the top
20 features selected by our proposed heuristics? We address this question to see if our selected 20
features are collectively outstanding.

Recall that the threshold of 20 used to cut off top ranked features is an arbitrary number, though
it is based on our experience. So the second question is to study the accuracy trend when varying the
number of selected top ranked features.

Our third question is to find how common are two groups of features selected by different heuristics.
Then we can understand more about which features are playing a discrimination role.

Misclassifications if 20 features are randomly selected

Our experimental procedure is (1) randomly select a set of 20 features, and extract corresponding
training and testing data from the original data. (2) apply the four traditional classification algorithms
on the dimension-reduced data to get the number of misclassifications on the testing data. These two
steps are repeated 100 times. Then the average and the minimum number of misclassified testing
samples over the 100 experiments are reported, as shown in Table 4 for ALL data. The result of this
test on ovarian cancer data for 10-fold cross validation is: average (minimum) number of misclassified
samples for SVM is 79 (49), NB 94 (70), k-NN 81 (30) and C4.5 76 (31). We found that: the accuracy
of the four traditional classifiers became very poor if the 20 features are randomly selected from the
original data. All are much worse than that with the features selected by our heuristics. In most
cases, for a specific classifier, its worst accuracy by our proposed six feature selection heuristics is
still better than the best one when using randomly picked-up features. Therefore, it can be seen that
the 20 features selected by our heuristics are much more discriminatory than those randomly selected
features.

Accuracy trends when varying the number of selected features

For ALL data, we used these numbers, 5, 10, 20, 50, 100, 150, 200, 250 and 300 to select top-ranked
features by Entropy. The error rates (number of misclassified samples) of SVM and C4.5 are reported
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Table 4: The average (minimum) number of misclassified testing samples over 100 experiments each with a set of 20
randomly selected genes at each level.

Level Ave.(min.) # of misclassifications
SVM NB k-NN C4.5

1 13.4 (1) 28.4 (6) 17.6 (4) 13.3 (2)
2 8.7 (3) 33.8 (2) 13.6 (6) 9.5 (4)
3 25.2 (8) 31.8 (13) 30.4 (14) 25.6 (11)
4 6.01 (6) 20.8 (5) 9.4 (5) 6.6 (4)
5 6.3 (3) 16.3 (4) 9.4 (3) 7.4 (3)
6 16.5 (4) 18.6 (6) 19.0 (5) 17.2 (5)

in Figure S1 and S2 in our Supplementary Information based on this series of gene groups for the 6
levels data. In general, we found that there was no regular rule to determine an optimal number of
features to get the best accuracy even for a specific classifier. We believe that the optimal number
of the most discriminatory features may change from data to data, may depend on classification
algorithms, and also may vary from different feature selection methods.

The number of 20 is used in some of our experiments as we had three considerations: (i) Medical
doctors and biologists like a small number of features to separate two classes of cells. Manually
examining a large amount of features is tedious and sometimes impossible; (ii) The decision speed
should be fast. Some classifiers would need a long time to complete their learning phase if thousands
of features are selected. (iii) For a classification problem where only two classes are involved, a small
number of most discriminatory features could be used to distinguish the two classes well. Otherwise,
even with more number of features, the distinction would not be necessarily become better.

How common are those features selected by two different heuristics?

Figure S3 and Table S6 in our Supplementary Information reports the number of overlapping features
between two groups of features selected by two different heuristics for ALL data and ovarian cancer
data. Observe that, the numbers and their distributions changes from data to data. We found that
the top20-X 2 and Entropy heuristics agreed on the most discriminatory features at the most degree.
On average across the four levels of ALL data, Table S7 in our Supplementary Information, about
75% of the two groups of features ranked by them are identical. For ovarian cancer data, the features
selected by top20-X 2 and Entropy heuristics are same.

We also applied the four traditional classification algorithms to the ALL data using the common
features selected by top20-X 2 and Entropy. In most cases, we got slightly better or equal results from
level 3 to 6’s testing samples.

Future work

As shown in our experiments, feature selection is very important for classifying gene and protein
expression data. For the future work, We will widen our scope to consider more feature selection
and classification algorithms such as boosting, genetic algorithm, evolutionary algorithm, and neural
networks. So that we can find an optimal approach to determining discriminatory features. To find
common features from different feature selection methods is another interesting problem. We may
also consider the union of features selected by different methods.
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