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Abstract
We investigate the following problem: Given a set
of documents of a particular topic or class , and a
large set of mixed documents that contains doc-
uments from class and other types of documents,
identify the documents from class in . The key
feature of this problem is that there is no labeled non-

document, which makes traditional machine learn-
ing techniques inapplicable, as they all need labeled
documents of both classes. We call this problem par-
tially supervised classification. In this paper, we show
that this problem can be posed as a constrained op-
timization problem and that under appropriate condi-
tions, solutions to the constrained optimization prob-
lem will give good solutions to the partially supervised
classification problem. We present a novel technique
to solve the problem and demonstrate the effectiveness
of the technique through extensive experimentation.

1. Introduction

Text categorization or classification is the automated as-
signing of text documents to pre-defined classes. The com-
mon approach to building a text classifier is to manually
label some set of documents to pre-defined categories or
classes, and then use a learning algorithm to produce a
classifier. This classifier can then assign classes to future
documents based on the words they contain. This approach
to building a text classifier is commonly called supervised
learning because the training documents have been labeled
(often manually) with pre-defined classes.

The main bottleneck of building such a classifier is that a
large, often prohibitive, number of labeled training docu-
ments is needed to build accurate classifiers. Recently, it
has been shown in (Nigam et al., 1998) that unlabeled data
is helpful in classifier building. Their approach basically
uses a small labeled set of documents of every class, and a
large set of unlabeled documents to build classifiers. They
show that using both labeled and unlabeled documents is
better than using the small labeled set alone. This tech-
nique alleviates some labor-intensive effort.

In this paper, we study a different problem, which is also
common in practice. It aims to identify a particular class of
documents from a set of mixed documents, which contain
this class of documents and also other kinds of documents.
We call the class of documents that we are interested in the
positive documents. We call the rest of the documents the

negative documents. This problem can be seen as a classi-
fication problem involving two classes, positive and nega-
tive. However, we do not have labeled negative documents
as they are mixed with positive documents in the mixed set.
Traditional techniques require both labeled positive and la-
beled negative documents to build a classifier. In this re-
search, we aim to build a classifier using only the positive
set and the mixed set. Thus, we save on the labor-intensive
effort of manual labeling of negative documents.

Finding targeted (positive) documents from a mixed set is
an important problem. With the growing volume of online
text documents available through the World Wide Web, In-
ternet news feeds, and digital libraries, one often wants to
find those documents that are related to one’s work or one’s
interest. For example, one may want to build a repository
of machine learning research papers. One can start with an
initial set of papers from an ICML proceedings. One can
then find those machine learning papers in related online
journals or in conference series such as the AAAI/IJCAI
conferences. Similarly, given one’s the bookmarks (posi-
tive documents), one may want those documents that are
of interest from Internet sources without labeling any neg-
ative documents. In applications, positive documents are
usually available because if one has worked on a particu-
lar task for some time, one should have accumulated many
related documents. Even if no positive document is avail-
able initially, finding some such documents from the Web
or any other source is relatively simple (e.g., using Yahoo
Web directory). One can then use this set to find the same
class of documents from any other sources without manual
labeling of negative documents from each source.

The key feature of these problems is that there is no labeled
negative document, which makes traditional classification
methods inapplicable, as they all need labeled documents
of every class. We call this problem partially supervised
classification, as there are only positive documents (which
can be considered as labeled with the class positive), but not
labeled negative documents. In this paper, we show theo-
retically that the partially supervised classification problem
can be posed as a constrained optimization problem. In
particular, we show that for the noiseless case, where there
is a fixed target function from a known function class
that maps the features (document keywords and their fre-
quences) to the label of the document, an algorithm that
selects a function from that correctly classifies all pos-
itive documents and minimizes the number of mixed docu-
ments classified as positive will have an expected error of



no more than with high probability if both the mixed doc-

uments and positive documents are of size . We
also generalize the result to the case where there may not be
a fixed target function from that maps from the features
to the label of the document, i.e. the labels may be noisy or
our function class may not be powerful enough to con-
tain the target function. In this case, we aim to find a func-
tion that performs close to the best possible, subject to a
desired expected recall . The corresponding optimization
problem is to minimize the number of mixed documents
classified as positive subject to a fraction of the positive
documents being corrected classified.

While the theory indicates that there is enough informa-
tion available to solve the partially supervised classification
problem, the constrained optimization problem required
appears to be difficult to solve in practice. In this paper,
we propose a novel heuristic technique for solving the par-
tially supervised classification problem in the text domain.
Our algorithm is built on the naive Bayesian classifier (Mc-
Callum & Nigam, 1998) in conjunction with the EM (Ex-
pectation Maximization) algorithm (Dempster et al., 1977).
Our algorithm has two main novelties:

After building an initial classifier (using naive Bayes
and the EM algorithm), we select those documents
that are most likely to be negative documents from the
mixed set (using some “spies”). These documents are
used together with the positive documents to reinitial-
ize the EM algorithm in order to obtain a good local
maximum of the likelihood function.
The EM algorithm generates a sequence of solutions
that increase the likelihood function. However, the
classification error of this sequence of solutions may
not necessarily be improving (in fact, performance
quite often deteriorates as the likelihood increases).
Motivated by the theoretical considerations, we give
a heuristic estimate to the probability of error and use
the estimate to select a good classifier out of the se-
quence of classifiers produced by the EM algorithm.

We carried out extensive experiments using 30 public do-
main document datasets. The results show that the pro-
posed technique is effective and computationally efficient.

2. Related Work

Text classification has been studied extensively in the past
in information retrieval, machine learning and data min-
ing. A number of techniques have been proposed, e.g.,
Rocchio algorithm (Rocchio, 1971), the naive Bayesian
method (Lewis & Ringuette, 1994), K-nearest neighbour
(Yang, 1999), and support vector machines (Joachims,
1997). These existing techniques, however, all require la-
beled data for all classes for building the classifier. They
are not designed for solving the partially supervised clas-
sification. Note that we use the naive Bayesian method as
the base in our technique because it has a strong foundation
for EM and is more efficient. In addition, the focus of this
paper is to demonstrate the potential of partially supervised
classification; a similar approach could be applied to more
complex classifiers.

A theoretical study of Probably Approximately Correct
(PAC) learning from positive and unlabeled examples was
done in (Denis, 1998). The study concentrates on the
computational complexity of learning and shows that func-
tion classes learnable under the statistical queries model

(Kearns, 1998) is also learnable from positive and unla-
beled examples. (Letouzey et al., 2000) presents an algo-
rithm for learning using a modified C4.5 (decision tree) al-
gorithm based on statistical query model. Recently, learn-
ing from positive example was also studied theoretically in
(Muggleton, 2001) within a Bayesian framework where the
distribution of functions and examples are assumed known.
The result obtained in (Muggleton, 2001) is similar to our
theoretical result in the noiseless case. However, we also
extend it to the more practical noisy case. From a practi-
cal point of view, we propose a novel technique to solve
the problem in the text domain. This technique produces
remarkably good results.

Another line of related work is learning using a small la-
beled set (Nigam et al., 1998) and (Shahshahani & Land-
dgrebe, 1994). In both works, a small set of labeled data of
every class and a large unlabeled set are used for classifier
building. It was shown that the unlabeled data helps classi-
fication. These works are clearly different from ours as we
do not have any labeled document of the negative class.

The proposed method is also different from traditional in-
formation retrieval (Salton, 1991). In information retrieval,
given a query document and a large document collection,
the system retrieves and ranks the documents in the col-
lection according to their similarities to the query docu-
ment. Web search uses a similar approach. It does not
perform document classification, but only produces a rank-
ing of documents according to some similarity measures.

3. Theoretical Foundations for Partially
Supervised Classification

This section gives the theoretical foundations of partially
supervised classification. We assume that our examples are
generated independently according to some fixed distribu-
tion over where . For the text do-
main, is the set of possible documents, is the set of
negative and positive classes and the term ’examples’ de-
notes documents with their labels. Let denote the
probability of event when are chosen randomly
according to . For a finite sample , denote the
probability with respect to choosing an example uniformly
at random from the set . We are given two sets of exam-
ples, a positive sample of size drawn independently
from the conditional distribution conditioned on

and an unlabeled sample of size drawn in-
dependently from the marginal distribution on . A
learning algorithm will select a function from a class of
functions to be used as a classifier.

To obtain insights into why learning is possible in the par-
tially supervised case, we rewrite the probability of error

(1)

We have

.

Substituting into equation 1, we obtain

(2)



Note that is constant. If we are able to hold
small, then learning is approxi-

mately the same as minimizing . Holding
small while minimizing

is approximately the same as minimizing
while holding (where is recall)

if the set of positive examples and the set of unlabeled
examples are large enough.

We will measure the complexity of function classes us-
ing the VC-dimension (Vapnik & Chervonenkis, 1971) of
the function class. The VC-dimension is a standard mea-
sure of complexity in computational learning theory (see
e.g. (Anthony & Bartlett, 1999)). For a class of function

and a finite set , let be the restric-

tion of to (that is, the set of all possible -valued
functions on the domain that can be obtained from the
class ). The VC-dimension of , is the size

of the largest set of points in such that .

In other words, if is larger than the VC-dimension of ,

there will be at least one of the possible functions on
the domain that is not in .

Obviously, if is a finite set of func-
tions. The VC-dimension of the class of thresholded linear
functions ,

where if and otherwise, is
(see e.g. (Anthony & Bartlett, 1999)). The class

of functions used in Naive Bayes is a subset of linear func-
tions. Hence the VC-dimension of the class is no more than

when is the number of words used in the clas-
sifier. The bounds obtained in this paper are only meant
to illustrate the rate at which the sample size should grow.

The constants have not been optimized in any way 1.

3.0.1 NOISELESS CASE

In the noiseless case, there is a function such that
for every drawn from . When a func-

tion correctly classify all the documents in the set of posi-
tive documents, we say that it achieves total recall on .

In error minimization, we would like our learning algo-

rithm to produce a function such that
. We want to show that under the appro-

priate conditions, selecting the function that min-
imizes on the unlabeled examples subject to

classifying all the positive examples correctly will give a
function with small expected error.

In retrieval applications, we are often more concerned with
precision and recall than with the error. Define expected
recall of , ER and expected
precision of , EP .

The following theorem gives conditions under which the
function that minimizes performs well.

Theorem 1 Let be a permissible2 class of functions with
VC-dimension and let be the target function. Let

1All proofs are omitted due to lack of space and can be found
in the full version of the paper

2This is a measurability condition which need not concern us
in practice. See (Haussler, 1992)

. Let be drawn from the
distribution of positive examples where

Let be unlabeled examples drawn inde-
pendently from where

Let be the subset of that achieves total recall on

and . Then, with probability

at least , , and

.

3.0.2 NOISY CASE

Unlike the noiseless case, in the noisy case, need not
be equal to for any when is inde-
pendently drawn from . This models the case where the
labels are flipped with some probability and also the case
where the target function may not belong to . To deal
with these noisy cases, we assume that the user wants to
use functions from some function class to do the classifi-
cation even though the user does not know whether con-
tains the target function or whether the labels are noisy. The
user is required to specify a target expected recall . The

learning algorithm then tries to output a function

such that with high probability the expected recall of is

close to and the expected precision of is close to the
best possible among all functions in that has expected
recall close to . To achieve this, the algorithm draws a
set of positive examples from and a set of

unlabeled examples from then finds the function that

minimizes on the unlabeled examples subject
to the constraint that the fraction of errors on the positive
examples is no more than .

Theorem 2 Let be a permissible class of functions with
VC-dimension . Let be drawn from the
distribution of positive examples where

and . Let be
unlabeled examples drawn independently from where

and . Let be the subset of
that achieves a recall of at least on , and let

. Let be the subset of

that achieves an expected recall of at least , and let
. Then with probability at

least ,

ER EP

and .



4. The Proposed Technique

The previous section showed theoretically that by using
positive and mixed document sets, one can build accurate
classifiers with high probablity when sufficient documents
in and are available. However, the suggested theoret-
ical method suffers from two serious practical drawbacks:
(1) The constrained optimization problem may not be easy
to solve for the function class that we are interested in and
(2) Given a practical problem, it does not appear to be easy
to choose a desired recall level that will give a good classi-
fier using the function class that we are using. This section
proposes a practical heuristic technique based on the naive
Bayes classifier and the EM algorithm to perform the task.

4.1 Naive Bayesian Text Classification

Naive Bayesian method is one of the popular techniques for
text classification. It has been shown to perform extremely
well in practice by many researchers, e.g., (McCallum &
Nigam, 1998) (Lewis & Ringuette, 1994).

Given a set of training documents , each document is
considered an ordered list of words. We use to de-
note the word in position of document , where each
word is from the vocabulary .

The vocabulary is the set of all words we consider for
classification. We also have a set of pre-defined classes,

(in our case, ). In order

to perform classification, we need to compute the posterior
probability, , where is a class and is a docu-
ment. Based on the Bayesian probability and the multino-
mial model, we have

(3)

and with Laplacian smoothing,

(4)

where is the count of the number of times the
word occurs in document and where

depends on the class label of the document. Finally,
assumming that the probabilities of the words are indepen-
dent given the class, we obtain

(5)

In the naive bayes classifier, the class with the highest
is assigned as the class of the document.

4.2 The EM algorithm

The Expectation-Maximization (EM) algorithm (Dempster
et al., 1977) is a popular class of iterative algorithms for
maximum likelihood estimation in problems with incom-
plete data. It is often used to fill the missing values in the
data using existing values by computing the expected value
for each missing value. The EM algorithm consists of two
steps, the Expectation step, and the Maximization step. The
Expectation step basically fills in the missing data. The pa-
rameters are estimated in the Maximization step after the

missing data are filled or reconstructed. This leads to the
next iteration of the algorithm. For the naive Bayes classi-
fier, the steps used by EM are identical to that used to build
the classifier (equations (3) and (4) for the Expectation step,
and equation (5) for the Maximization step). Note that the
probability of the class given the document now takes the
value in instead of .

This ability of EM to work with missing data is exactly
what we want. We regard all the positive documents to
have the class value of . We want to know the class value
of each document in the mixed set. EM can help assign a
probabilistic class label to each document in the mixed

set, i.e., and . After a number of itera-
tions, all the probabilities will converge. However, a good
initialization is important in order to find a good maximum
of the likelihood function. Since we have one class of doc-
uments, we can initialize the parameters for using this
class. However, we cannot easily assign any probability in
the negative class ( ) because there are no documents
to start with. Below, we propose a technique to deal with
this problem by finding the most likely negative documents
to be used in initializing EM. The proposed technique con-
sists of two main steps (1) reinitialization and (2) building
and selecting the final clasifier.

4.3 Step 1: Reinitialization

4.3.1 APPLYING THE EM ALGORITHM

The EM algorithm can be applied in our context as fol-
lows: Initially, we assign each positive document in
the class label of (i.e., and ,
and each document in the mixed set the class label
of (i.e., and ). Using this
initial labelling, a naive Bayesian classifier NB-C can be
built. This classifier is then used to classify the documents
in the mixed document set . In particular, NB-C is used
to compute a posterior probability of each document in the
mixed set (using equation (5)), i.e., , which is as-
signed to as its new probabilistic class label. The class
probability for each positive document remains the same,
i.e., throughout the process.

After every is revised, a new classifier NB-C is
built based on the new values of the mixed doc-
uments, and the positive documents. The next iteration
starts. This iterative process goes on until EM converges.
The whole algorithm, called I-EM (initial EM), is given in
Figure 1. Note that during the process of assigning proba-
bilistic class label to each document in , we can also

compute and , which are sufficient to build
a new NB-C as the information computed in the initial pro-
cess for the positive set remains the same.

I-EM(M, P)
1. Build an initial naive Bayesian classifier NB-C

using the document sets and ;
2. Loop while classifier parameters change
3. for each document
4. Compute using the current NB-C;

//
5. Update and given the

probabilistically assigned class for
( ) and (a new NB-C is being
built in the process);

Figure 1. The I-EM algorithm with naive Bayesian classifier.



The final probabilistic class label for each document in
can be used to classify the mixed set to identify those

positive documents. Our experiment results show that this
technique indeed is able to improve classification compared
to the technique which simply applies the naive Bayesian
technique to the original documents assuming that all the
mixed documents have the negative ( ) class.

This technique performs classification well on ”easy”
datasets, i.e., positive and negative documents can be eas-
ily separated. However, for difficult datasets, significant
improvements can still be achieved. The reason that EM
does not work well for hard datasets is that our initializa-
tion strongly biased towards positive documents. Below,
we propose a novel technique to deal with this problem.

4.3.2 INTRODUCING SPY DOCUMENTS INTO THE

MIXED SET

To solve the problem discussed above, we need an initial-
ization that balance both the positive and negative docu-
ments. Since we do not know which documents are neg-
ative, we have to identify some very likely negative docu-
ments from the mixed set.

As discussed in Section 4.3.1, the I-EM algorithm helps to
separate positive and negative documents. After EM, we
are in a good position to identify those most likely nega-
tive documents from the mixed set. The issue is how to
obtain reliable information for the identification. We do so
by sending ”spy” documents from the positive set to the
mixed set . This idea was proven to be crucial. This
approach randomly selects % of the documents from the
positive set (in our experiment, we use 10%). These doc-
uments are the spies, denoted by . is added to the mixed
set . The spies behave identically to the unknown posi-
tive documents in and hence allows us to reliably infer
the behaviour of the unknown positive documents.

The I-EM algorithm is still utilized, but the mixed set now
has some spy documents. After the EM algorithm com-
pletes, the probabilistic labels of the spies are used to de-
cide which documents are most likely to be negative. A
threshold is employed to make the decision, which will
be discussed below. Those documents in with lower
probabilities ( ) than are the most likely nega-
tive documents, denoted by . Those documents in
(spies are not included) that have higher probabilities than

become unlabeled documents denoted by . The detailed
algorithm for identifying those most likely negative docu-
ments and also the unlabeled set is given in Figure 2.

Algorithm Step-1
1. ;
2. ;
3. ;
4. ;
5. Assign every document in the class ;
6. Assign every document in the class ;
7. Run I-EM( , );
8. Classify each document in ;
9. Determine the probability threshold using ;
10. for each document in
11. if its probability
12. ;
13. else ;

Figure 2. Identifying likely negative documents.

We now discuss how to determine the threshold . Let the

set of spies be , and the probabilistic la-
bel assigned to each be . Intuitively, we can
use the minimum probability of as the threshold value ,
i.e., , which
means that we want to retrieve all the spy documents. In a
noiseless domain, using the minimum probability is accept-
able. However, most real-life document collections have
outliers and noise. Using the minimum probability is unre-
liable. The reason is that the posterior probability
of a outlier document in could be or much smaller
than most (or even all) actual negative documents. How-
ever, we do not know the noise level of the data. We can
estimate it by trying a few noise levels and selecting the
best. We first sort the documents in according to their

. We then use a selected noise level to decide
: we select such that of documents have probability

less than . We experimented with a few noise levels, e.g.,
, , and . It turns out that it does not make much

difference if we choose , , or . The reason will be-
come clear later after discussing Step 2. In our system we
use .

In summary, the objective of this first step of the proposed
algorithm is to achieve the results given in Figure 3. The
left-hand-side shows the initial situation. In the mixed set,
we have both positive and negative documents. However,
we do not know which documents are positive or negative.
Spies from positive set are added to the mixed set. The
right-hand-side shows the result that our technique achieves
with the help of spies. We observe that most positive doc-
uments in the mixed set are put in the unlabeled set, and
most negative documents are put in the likely negative set

. The purity of is much higher than the mixed set.

4.4 Step 2: Building the final classifier using the
document sets , and

The step builds the final classifier. The EM algorithm is
again employed, with the document sets, , , and .
This step is carried out as follows:

1. Put all the spy documents back to the positive set .

2. Assign every document in the positive set the fixed
class label , , which will not change in
each iteration of EM.

3. Assign each document in the likely negative set
the initial class , i.e., , which changes
with each iteration of EM.

4. Each document in the unlabeled set is not as-
signed any label initially. At the end of the first iter-
ation of EM, it will be assigned a probabilistic label,

. In subsequent iterations, the set will par-
ticipate in EM with its newly assigned probabilistic
classes, e.g., ( ).

5. Run the EM algorithm using the document sets ,
and until it converges.

When EM stops, the final classifier is produced. We call
the two-step EM procedure S-EM (spy EM).

We now turn to discuss why the percentage used for select-
ing the most likely negative documents does not matter
as long as it is in a reasonable range from . This
is because in Step 2 (S-EM) of our algorithm, the probabili-
ties of both document sets and are allowed to change.
If there are too many positive documents in , EM will
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Figure 3. Before and after Step 1: Re-initialization

slowly correct the situation, i.e., moving them to the posi-
tive side. In our experiments, is used, which worked
very well. We also experimented with , and .
The classification results are similar.

4.5 Selecting a classifier

The EM algorithm works well when the local maximum
that the classifier is approaching separates the positive and
negative documents. This may not always be true. For
example, in many situations, the positive and negative doc-
uments each consists of many clusters and the clusters may
not be separable. In such a situation, it may be better to
stop at the naive Bayesian classifier instead of iterating with
EM. In general, each iteration of the S-EM algorithm gives
a classifier that may potentially be a better classifier than
the classifier produced at convergence. So, if we run EM
for iterations, we have a set of classifier from which we
can choose one. We try to estimate the classification error
by using an approximation to equation (2).

We note from equation (2) that, on an unlabeled sample ,
if we knew and ,
we will be able to calculate the probability of error since
we can measure . Furthermore, we can
estimate from the corresponding
measurement on the positive set . To get an estimate of
the probability of error, we only require a good estimate of

.

In this paper, we choose to use an estimate of the change
in the probability of error in order to decide which itera-
tion of EM to choose as the final classifier. From equation
(2), the change in the probability of error from iteration
to is Pr Pr

Pr Pr
Pr . We use as an

approximation to for and
, and use as an approximation

to to obtain

Pr Pr

Pr

Pr Pr

We select iteration as our final classifier the first time that
becomes positive. Here, is an approximation for the

error difference.

For this estimate to work well, we require
to be a reasonably good approximation to

. Our reinitialization of the EM algorithm is usually

able to provide us with a starting point near a good local
minimum where the estimate is not too far wrong. Without
reinitializing, we find that using as a selection criteria is
not very effective.

5. Empirical Evaluation

5.1 Evaluation measures

Since our task is to identify or retrieve positive documents
from the mixed set, it is appropriate to use information re-
trieval measures for our purpose. Two popular measures
are the score and breakeven point. score is defined
as, , where is the precision and is
the recall. score measures the performance of a system
on a particular class (see (Bollmann & Cherniavsky, 1981)
(Shaw, 1986) for its theoretical bases and practical advan-
tages). The breakeven point is the value at which recall and
precision are equal (Lewis & Ringuette, 1994). However,
the breakeven point measure is not suitable for our task as
it only evaluates the sorting order of class probabilities of
documents. It does not give a good indication of classifica-
tion performance. The value on the other hand reflects
an average effect of both precision and recall. When either
of them is small, the value will be small. Only when both
of them are large, will the value be large. This is suitable
for our purpose, as we want to identify positive documents,
and it is undesirable to have either too small a precision or
too small a recall. In our experiment results, we will also
report the accuracy results.

5.2 Experiment datasets

Our experiments used two large document corpora, from
which we created 30 datasets. The first one is the 20 News-
groups (Lang, 1995). It contains 20 different UseNet dis-
cussion groups, which are also categorized into 4 main cat-
egories, computer, recreation, science, and talk. We re-
move all the UseNet headers (thereby discarding the sub-
ject line) in our experiments. Since our task is to iden-
tify positive documents from a set of mixed documents, we
choose many categories as the positive classes, and then us-
ing various individual categories, or combinations of cate-
gories to form the negative class documents. Another col-
lection that we used is WebKB (Nigam et al., 1998). We-
bKB consists of Web pages from a number of university
computer science departments. The pages are divided into
7 categories: student, faculty, course, project, staff, dept
and other. In this work, we used the non-other categories:
student, faculty, cours, project, staff and dept. For our ex-
periment purposes, all the html tags are removed.

Our objective is to recover those positive documents put
into the mixed set . Note that we do not need separate
test sets as in normal classification. can be seen as the
test set. For each experiment, we divide the full positive set
into two subsets, and , where is the positive docu-
ment set used in our algorithm, which has of the full
positive set, and is the set of remaining documents.
of the documents in is then put into the negative set to
form the mixed set . We do not put all the documents
in into as we wish to create the realistic situations
of skewed datasets. We believe that in most realistic situ-
ations, the mixed set can be very large, but the number
of positive documents in is often small. We vary and

to create different settings for our experiments.



positive negative pos size M size pos in M NB(F) NB(A) I-EM8(F) I-EM8(A) S-EM(F) S-EM(A)
1 hardpc hardmac 1000 14000 2000 52.78 90.78 82.68 95.41 83.16 95.67
2 graphic hardmac 200 1400 400 14.87 73.56 41.11 78.47 75.00 85.99
3 stud course 200 1400 400 21.32 74.78 53.65 81.89 75.91 88.94
4 proj course 328 1586 656 64.84 78.46 96.51 97.16 95.73 96.61
5 facu course 100 1132 202 41.01 86.67 90.83 96.92 85.03 95.36
6 rec compu 224 1380 450 55.02 80.90 82.88 91.86 83.99 91.51
7 hockey baseball 800 6600 1600 89.60 95.43 96.82 98.44 96.39 98.30
8 os-win wind.x 200 1400 400 45.64 79.92 92.20 95.82 91.19 95.39
9 project student 200 1400 400 12.53 73.30 49.62 82.70 67.68 86.00
10 faculty student 100 1843 202 4.26 89.30 12.73 89.79 41.09 91.96
11 electr space 224 2091 450 15.00 80.16 56.21 86.08 62.71 85.95
12 med electr 200 1400 400 47.24 80.27 92.41 95.86 91.25 95.40
13 rec sci 200 1400 400 39.02 78.37 87.27 93.50 88.94 94.30
14 compu sci 800 5600 1600 78.76 89.95 92.66 96.05 91.93 95.72
15 politics rec 1000 6000 2000 28.82 72.59 29.65 73.11 77.39 87.77
16 sci talk 800 5600 1600 68.89 86.45 96.90 98.26 97.44 98.55
17 hardmac os-win 800 5600 1600 74.16 88.17 94.37 96.81 94.32 96.86
18 atheism rel.misc 200 1400 400 83.61 90.63 44.82 29.90 85.60 90.57
19 rel.misc pol.misc 200 1400 400 30.76 75.74 65.43 82.67 66.05 82.83
20 pol.guns pol.misc 200 1400 400 48.26 79.86 75.38 87.30 73.67 86.54
21 comp noncomp 200 1400 400 26.19 75.41 70.39 86.17 76.12 86.63
22 windows nonwin 200 4400 400 42.31 93.25 73.43 94.10 63.67 94.73
23 sci nonsci 800 14600 1600 50.17 92.58 82.85 95.90 77.16 95.27
24 rec nonrec 800 14600 1600 79.24 96.20 91.40 98.16 88.70 97.75
25 talk nontalk 800 14600 1600 80.88 96.43 78.11 94.01 93.44 98.58
26 hdibm.pc nonibm 200 4400 400 20.31 91.72 35.96 70.04 49.21 85.64
27 os nonos 200 4400 400 4.93 91.09 9.50 91.23 22.31 91.91
28 hdmac.pc nonmac 200 4400 400 25.22 92.09 50.24 81.38 62.16 94.38
29 graphic nongrap 200 4400 400 32.46 92.47 57.19 89.60 61.16 94.32
30 stufac nonstufac 579 2911 1159 39.81 69.15 74.09 77.64 79.86 85.31

Average 405 4471 811 43.93 84.52 68.58 87.54 76.61 92.16

Table 1. Results for datasets with and .

5.3 Experiment results

Three techniques are tested in our experiments:

Naive Bayesian classifier (NB): The Bayesian technique
is directly applied to (as ) and (as ) to produce a
classifier, which is then used to classify documents in .

I-EM: This applies the EM algorithm to and until it
converges (no spies in ). The final classifier is then used
to classify to identify the positive documents in .

S-EM: Spies are used to re-initialize EM to build the fi-
nal classifier. We also use the error estimate to select a
good classifier from the sequence of classifiers produced
by EM after reinitialization. We use of the positive
documents as spies in all experiments. The threshold for
choosing likely negative documents is .

The experiment results for 4 different settings of and
are shown in Tables 1 and 2. Table 1 shows the full re-
sults of the 30 datasets with and . De-
scriptions of the datasets are given in the full version of the
paper. From row 1 to 18, each negative document set con-
sists of documents from a single category. From row 19 to
row 30, each negative set contains documents of multiple
categories. In the table, Column 1 gives the dataset num-
ber. Columns 2 and 3 give the names of each positive and
negative document sets respectively. Column 4 gives the
total number of positive documents in . Column 5 gives
the total number of documents in . Column 6 gives the
number of positive documents in . Columns 7 and 8 give
the value and accuracy (A) of NB on the mixed set of
each dataset. Note that the value only measures retrieval
results of the positive documents in , while the accuracy
measures the whole set . Columns 9 and 10 show the

value and the accuracy of I-EM. We run I-EM with 8 iter-
ations, denoted I-EM8 (I-EM does not improve after that).
Columns 11 and 12 give the corresponding results of S-
EM. In our experiments, we found that it is not necessary
to run EM (with spies) to convergence before extracting
likely negative documents for reinitializing. Only 2 it-
erations of EM are sufficient. We also found that running
more than 4 iteration of S-EM after reinitializing does not
significantly improve the final results. Thus, we use 2 itera-
tion of EM before reinitialization and 4 iterations of EM af-
ter reinitialization to save computation (our method is thus
efficient as it only scans the data 6 times). The final row
of the table gives the average results of each column. All
the results are the average values of 5 random runs. Due
to space limitations, Table 2 summarize the average results
over the 30 datasets for the other three settings of and .

From the 2 tables, we observe that S-EM outperforms the
other two methods dramatically with values. The accu-
racy is also much better than I-EM8, and is slightly better
than NB. However, since our datasets are highly skewed
(the positive sets are very small), accuracy does not reflect
the classification performance well. We note that NB per-
forms quite well when the fraction of positive documents
in is small (row 2 of table 2). This is not surprising be-
cause when we assume the documents in M are all negative
we are mostly correct and the naive Bayes method is able to
tolerate a small amount of noise in the training data. How-
ever, we note that in many practical situations, items from
the positive class can form a significant fraction of the items
in the environment. For example, if the positive class is the
class of movies we may enjoy watching, we would expect
these movies to form a significant fraction of all movies.

A natural question to ask is whether the steps: (1) reinitial-



settings pos size M size pos in M NB(F) NB(A) I-EM8(F) I-EM8(A) S-EM(F) S-EM(A)
and 405 3985 324 60.66 94.41 68.08 91.96 76.93 95.96
and 1013 3863 203 72.09 95.94 63.63 86.81 73.61 95.28
and 1013 4167 507 73.81 93.12 71.25 85.79 81.85 94.32

Table 2. Summary of the other results.

20-20%(F) 20-20%(A) 20-50%(F) 20-50%(A) 50-20%(F) 50-20%(A) 50-50%(F) 50-50%(A)
I-EMbest 72.35 95.57 71.41 90.85 70.77 93.70 77.62 92.64

I-EM8 68.08 91.96 68.58 87.54 63.63 86.81 71.25 85.79
S-EM4 72.74 91.89 76.37 89.17 65.86 88.74 75.04 88.32
S-EM 76.93 95.96 76.61 92.16 73.61 95.28 81.85 94.32

Table 3. The score and accuracy (A) results for different datasets indicating the necessity of both reinitialization and selection of

classifier. The column descriptor - corresponds to the method of constructing the datasets described in Section 5.2.

izing and (2) selecting a good model instead of using the
converged model are both necessary for good performance.
For comparison, we obtained the best results of I-EM with-
out reinitialization from all 8 iterations where the value
is used to decide the best result. This result is not achiev-
able in practice as there is no way to decide the best result
without actual negative data. As we list in Table 3, S-EM
outperforms even this omniscient version of I-EM showing
that the reinitialization is essential for the improved perfor-
mance. We also show that reinitialization does not account
for all the improvement by calculating the performance of
the S-EM without selecting a good model (S-EM4, which is
the 4th iteration of EM after reinitialization). As shown in
Table 3, selecting a good model significantly outperforms
simply taking the final iteration of the reinitialized version
of EM. Note that our classifier selection method could not
be applied to I-EM because the estimates can be very in-
accurate since we initially assign all documents in the
class (negative).

Each iteration of the proposed technique in Step 1 of the
proposed technique is linear in the number of documents in

. Since we find that 2 EM iterations are sufficient
for Step 1, the complexity of this step is only .
The second step has the same complexity as only 4 adi-
tional EM iterations are needed. Thus, the whole technique
is linear to the number of documents in . Only 6
scans of the two document sets are required to build the
final classifier.

6. Conclusions

This paper studied the problem of classification with only
partial information, one class of labeled (positive) docu-
ments, and a set of mixed documents. We show theoret-
ically that there is enough information in the positive and
unlabelled data to build accurate classifiers. We proposed a
novel technique to solve the problem in the text domain.
Our algorithm utilizes the EM algorithm with the naive
Bayesian classification method. We reinitialize the EM al-
gorithm after a few runs by using the positive documents
and the most likely negative documents from the mixed set.
We then use an estimate of the classification error in order
to select a good classifier from the classifiers produced by
the iterations of the EM algorithm. Extensive experiments
show that the proposed technique produces extremely accu-
rate classifiers given that only the positive class is known.
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